
DEPTH IMAGE BASED VIEW SYNTHESIS WITH MULTIPLE
REFERENCE VIEWS FOR VIRTUAL REALITY

Sarah Fachada, Daniele Bonatto, Arnaud Schenkel, Gauthier Lafruit

Laboratories of Image, Signal processing and Acoustics
Université Libre de Bruxelles (ULB)

ABSTRACT

This paper presents a method for view synthesis from multiple
views and their depth maps for free navigation in Virtual Reality
with six degrees of freedom (6DoF) and 360 video (3DoF+), in-
cluding synthesizing views corresponding to stepping in or out of
the scene. Such scenarios should support large baseline view syn-
thesis, typically going beyond the view synthesis involved in light
field displays [1]. Our method allows to input an unlimited num-
ber of reference views, instead of the usual left and right reference
views. Increasing the number of reference views overcomes prob-
lems such as occlusions, tangential surfaces to the cameras axis
and artifacts in low quality depth maps. We outperform MPEG’s
reference software, VSRS [2], with a gain of up to 2.5 dB in PSNR
when using four reference views.

Index Terms — View synthesis, depth image based render-
ing, free navigation

1. INTRODUCTION

Free viewpoint navigation is an increasingly important domain in
virtual reality. Several standardization committees are actively
working on it, such as MPEG (with the MPEG-I Visual group),
to enhance the viewer experience in emerging domains such as
immersive rendering and holographic displays [3]. We propose a
new software which overcomes most of the common challenges
of view synthesis used in these domains, by applying more input
views.

In the context of view synthesis for free navigation, the avail-
able datasets often contain a huge number of views and corre-
sponding depth maps, e.g. the ULB dataset [4] used in MPEG.
However, many depth image-based rendering [5] methods limit
themselves to use a low number of reference views to synthetize
virtual ones. For example MPEG’s reference software VSRS [2]
proceeds only with two reference views, the left and right views,
also used to compute the corresponding depth maps with stereo
matching algorithms [6]. Moreover, the baseline between the in-
put views is often required to be small, restricting the view syn-
thesis to positions close to the reference cameras. This is also the
case for light fields [1], where the high density of input views does
not allow huge perspective changes in every direction.

We developed a view synthesis software that surpasses the
limitations on the number of reference views of VSRS. First, in-
creasing the number of input views helps in overcoming large
holes due to disocclusions. Disocclusions show parts of the scene
which remain invisible in the reference views and that are usually
only partially solved by inpainting, as [7]. Another objective is to
render the objects which surfaces are very tangential to the cam-
era optical axis. For such a surface, very few information about
depth and color is available per pixel. In that case, the background

(or empty pixels) might be seen through the foreground objects in
the synthesized view, in a process similar to the creation of holes
due to disocclusions. Finally, increasing the number of views also
conceals imperfect depth maps: the low quality of the depth is
compensated by the redundancy of the additional views informa-
tion.

Using multiple reference views implies to blend all the ob-
tained results. While some algorithms only pick one or two main
views and fill disocclusions with information from additional views
[8], we have chosen to not prioritize any view and warp all the in-
put views to blend them at the end of the algorithm. This is more
stable to color changes across the views. In order to blend our syn-
thesized images together, the images are separated in two frequen-
cies and weighted differently for each frequency, in an approach
similar to [9].

2. PROPOSED METHOD

Our algorithm consists in synthesizing the target view once for
each input view, and blending all the results together by assigning
a per-pixel quality to each synthesized view. The resulting im-
age is inpainted to fill the remaining missing information, mainly
at the borders of the image, as the disocclusions are mostly han-
dled by the multiple input views. The six degrees of freedom can
be obtained, provided the reference views contain enough data to
create the new virtual view. An example of view synthesis from
four reference images is displayed in figure 1.

2.1. Warping

The first step consists in warping the inputs using directly the dis-
parity rather than performing back and forth 3D re-projection of
the pixels, which is sensitive to rounding operations. For each ref-
erence view, the translation and rotation between each input and
the target cameras are applied to get the corresponding result. The
translation is obtained by moving each pixel according to its dis-
parity and the rotation is obtained with a homography.

For a camera movement in the image plane, for each pixel
p = (px, py), its translation t = (tx, ty) in the image is given by
the disparity:

t =
fT

d
(1)

where T = (Tx, Ty, Tz) is the translation vector of the camera, d
is the depth at (px, py) and f is the focal length.

For a movement along the Z axis of the camera, it is

t′ =
Tz(p+ t)

f (d− Tz)
(2)

Three degrees of freedom of translation are obtained by com-
bining (1) and (2). The rotation is obtained with a simple homog-
raphy. After the translation, each pixel p is displaced following

XXX-X-XXXX-XXXX-X/XX/$XX.XX c©2018 IEEE

(a) (b)

(c)

0

0.5

Figure 1: View synthesis from four input views, 100mm forward movement (step-in) towards the scene. (a) Synthesized view. (b)
Reference view. (c) Normalized per pixel error (The scale only displays the error from 0 to 0.5 for readability).

the rotation of the camera to get the final result:

p′ = (p′x, p
′
y, 1)

T =
1

R3 · (px, py, 1)T
R(px, py, 1)

T . (3)

where R is the rotation matrix and R3 its last row.
With those equations, a map is obtained, indicating the new

position of each pixel in the new warped image.
The input view is divided into triangles with the pixels centers

as vertices. The triangles are deformed using the translation and
rotation equations before being filled with interpolated colors. The
colors are obtained by the tri-linear interpolation between each
three vertices of the triangle. Discontinuities between objects cre-
ating disocclusions and tangential surfaces may lead to triangles
with very elongated shapes (see figure 2), which will not be kept in
the final result, as they get eliminated during the blending phase.

2.2. Resizing

In order to improve the final quality of the synthesized views, dur-
ing the rasterization of the warped triangles, the synthesized view
is upscaled. Hence, the displacement of each pixel according to its
depth is more precise and the resulting image, once downscaled to
the same size as the input, is sharper. Such rescale is less compu-
tationally expensive than rescaling both the input views and depth
maps at the beginning of the warping phase as in VSRS. The ras-
terization can be GPU accelerated.

(a) (b)

Figure 2: Image warping in a step-in movement. (a) The input
view, (b) The obtained view. The upper triangle is elongated, due
to a disocclusion and will be discarded during the blending phase.
The lower triangle has a regular shape as it lies on a continuous
surface.

2.3. Blending

The following step of our view synthesis consists in blending to-
gether all the synthesized images corresponding to each input view.
This is done by comparing a per-pixel quality, determined by its
depth and the shape of the triangle it lies in: a pixel of good quality
has a low depth (e.g. in the foreground) and belongs to a triangle

(a) (b) (c)

Figure 3: Different blending methods in acute close-up. View syn-
thesized from two images and low quality depth map. (a) Blend-
ing by argmax, (b) Weighted mean with α = 5, (c) Multi-spectral
blending: argmax is used on high frequencies and weighted mean
on low frequencies.

with a regular shape (e.g. does not lie in a disocclusion).
Taking the pixel with the maximal quality would give a sharper

result, while taking the weighted mean is more resistant to errors
in the depth maps, color differences between the input views and,
in the case of navigation leads to smoother navigation, with less
flickering. High and low frequencies are separated with a mean
blur with a kernel of size of 10% of the image size, and the most
adapted blending is applied to each frequency (see figure 3). The
low frequencies are blended with the weighted mean, and the high
frequencies are blended by choosing the pixel of highest weight.
The final color c of a pixel is hence:

c = chigh + clow (4)

clow =

n∑
i=0

wic
l
i

n∑
i=0

wi

with wi =

(
qi
di

)α
(5)

chigh = argmaxchi (wi) (6)

where n is the number of input views, cli, c
h
i the color of the

pixel in view i for the low and high frequencies, qi the quality of
the triangle the pixel lies in, α a parameter and di the depth at this
pixel for the synthesized view i. With the factor 1

di
, foreground

objects are prioritized even if they do not appear in all the input
views. The factor qi removes the elongated triangles (see figure 2).
Hence, the disocclusions can be filled with data from other input
views, which would not be the case comparing only the depth of
the pixels. We have chosen to define

qi =

2A/b2 if the triangle keeps the same

orientation during warping,
0 otherwise.

(7)

where A is the area of the triangle, b is the length of the second
longest side of the triangle. We can verify that we always have
0 ≤ qi ≤ 1 and if the triangle keeps its shape during the warp-
ing phase qi = 1. We can choose other formulas for qi, based
on the direction of the normal of the triangle in a 3D projection
compared with the direction of the input camera and obtain simi-
lar results. However, as we never project the pixels in 3D neither
create meshes, this solution would need additional computation.

2.4. Inpainting

The last step consists in inpainting the blended view. Most of
the disocclusions are filled by data of the input views and the re-
maining disocclusions are already filled with pixels lying in ”low

(a) (b)

Figure 4: Camera configuration for four input views. (a) ”X” Con-
figuration. (b) ”Plus” Configuration.

15

20

25

30

-250 -150 -50 50 150 250
P

SN
R

 [
d

B
]

Z Axis [mm]

VSRS - 2 views

Proposed - 2 views

Proposed - 4 views (+)

Proposed - 4 views (x)

Proposed - 1 view (ref)

Figure 5: PSNR for various camera configurations and for VSRS,
using depth maps generated with DERS, in step-in and step-out
experimental conditions. The 4 views are disposed in ”plus” con-
figuration (+) and ”X” configuration (x) with all the cameras par-
allel in the same plane. The ”X” configuration has a slightly wider
baseline.

quality” triangles. However, in the case of backward movements,
the input view does not contain the information out of the image,
which has to be inpainted.

3. RESULTS

3.1. Quantitative results

We compare our view synthesis for various configurations with
MPEG’s reference software, VSRS [2] (see figure 5). We have
performed the test on the ULB unicorn dataset [4]. We reach
gains of 1.8 dB for view synthesis corresponding to lateral move-
ments, 2.5 dB for step-in and 1dB for step-out scenarios, using
four views instead of the two reference views in VSRS. We tried
different configurations: one, two and four views (see figure 4
for the four-views configurations). As expected, we notice that
using wide baseline (4 views (x) configuration in figure 5) is pre-
ferred for step-in and step-out configurations, while a lower base-
line distance (4 views (+) configuration and 1 view) should be used
preferentially for movements in a small volume around the input
views.

3.2. Subjective results

Beyond the gain in PSNR, we notice a visual improvement during
navigation and more resilience against errors in depth maps. For
the synthesis of several frames, as we use only the data of the input
views and very few inpainting, the resulting images do not flicker
when free-navigation is used, making a video more appealing to
watch. In contrast, inpainting the output of a two views based syn-

(a) (b)

Figure 6: View synthesis with low quality depth map, from 2
input views, step-in configuration. (a) VSRS, (b) Proposed.

thesizer without propagating the inpainting between each frame,
as in VSRS, gives a sequence of images which is very unstable for
video synthesis and hence for navigation.

Eventually, we observe more stability for moderate quality
depth maps (see figure 6). Thanks to the quality given during the
blending phase to the pixels of each synthesized view, we are more
likely to find good pixels than methods based on a limited number
of reference views. Hence, increasing the number of views not
only generates output with higher PSNR values, but also gives the
opportunity to create a content more enjoyable for the end-user.

4. CONCLUSION AND FUTURE WORK

We solved the problem of disocclusions by using multiple refer-
ence views, increasing the probability that occluded regions are
captured by at least one reference camera. Due to a higher number
of views, most of those disocclusions can be filled. The remain-
ing holes of the synthesized views are filled with a plausible color
thanks to the division of the reference views into fictitious trian-
gles connecting adjacent pixels and thanks to inpainting. Further-
more, this way to overcome the disocclusions creates smoothness
between the output views, which gives a more pleasant navigation
in video applications. Moreover, our triangulation of the refer-
ence images increases the quality of the synthesis for tangential
surfaces, which can be completely rendered with the interpolated
pixels of the triangles.

Our results have demonstrated that the PSNR increases by
augmenting the number of input references, especially in the case
of large movements (step-in and step-out scenarios). Our algo-
rithm has therefore recently been selected as the core for a new
reference software (Reference View Synthesizer) in the MPEG-I
standardization activities for 360 virtual reality with motion par-
allax.

Nevertheless, taking more input views increases memory foot-
print and computation time (up to 10 seconds for an input view of
1920 × 1080 pixels). In future work, we plan to implement our
solution on GPU in order to reduce our computation time.

5. ACKNOWLEDGEMENTS

This work is supported by Innoviris, the Brussels Institute for Re-
search and Innovation, Belgium, under contract numbers 2015-
DS-39a/b & 2015-R-39c/d, 3DLicorneA.

6. REFERENCES

[1] Marc Levoy and Pat Hanrahan, “Light field rendering,”
in Proceedings of the 23rd annual conference on Computer
graphics and interactive techniques. ACM, 1996, pp. 31–42.

[2] Takanori Senoh, Kenji Yamamoto, Nobuji Tetsutani, Hiroshi
Yasuda, and Krzysztof Wegner, “View synthesis reference
software (VSRS) 4.2 with improved inpainting and hole fil-
ing,” ISO/IEC JTC1/SC29/WG11, M40657, Apr, 2017.

[3] Tibor Balogh, Tamás Forgács, Tibor Agács, Olivier Balet,
Eric Bouvier, Fabio Bettio, Enrico Gobbetti, and Gianluigi
Zanetti, “A scalable hardware and software system for the
holographic display of interactive graphics applications.,” in
Eurographics (Short Presentations), 2005, pp. 109–112.

[4] Daniele Bonatto, Arnaud Schenkel, Tim Lenertz, Yan Li, and
Gauthier Lafruit, “ULB High Density 2d/3d Camera Array
data set, version 2,” ISO/IEC JTC1/SC29/WG11 MPEG2017/
M41083, July 2017.

[5] Christoph Fehn, “Depth-image-based rendering (dibr), com-
pression, and transmission for a new approach on 3d-tv,” in
Stereoscopic Displays and Virtual Reality Systems XI. Inter-
national Society for Optics and Photonics, 2004, vol. 5291,
pp. 93–105.

[6] Takanori Senoh, Kenji Yamamoto, Nobuji Tetsutani, and
Hiroshi Yasuda, “Improved fast DERS,” ISO/IEC
JTC1/SC29/WG11, M41028, Jul, 2017.

[7] Alexandru Telea, “An image inpainting technique based on
the fast marching method,” Journal of graphics tools, vol. 9,
no. 1, pp. 23–34, 2004.

[8] Ce Zhu and Shuai Li, “Multiple reference views for hole re-
duction in dibr view synthesis,” in Broadband Multimedia
Systems and Broadcasting (BMSB), 2014 IEEE International
Symposium on. IEEE, 2014, pp. 1–5.

[9] Ruggero Pintus, Enrico Gobbetti, and Marco Callieri, “Fast
low-memory seamless photo blending on massive point
clouds using a streaming framework,” Journal on Computing
and Cultural Heritage (JOCCH), vol. 4, no. 2, pp. 6, 2011.

