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Abstract—We propose a framework for 2D/3D multi-modal
data registration and evaluate 3D feature descriptors for reg-
istration of 3D datasets from different sources. 3D datasets of
outdoor environments can be acquired using a variety of active
and passive sensor technologies. Registration of these datasets
into a common coordinate frame is required for subsequent
modelling and visualisation. 2D images are converted into 3D
structure by stereo or multi-view reconstruction techniques and
registered to a unified 3D domain with other datasets in a 3D
world. Multi-modal datasets have different density, noise, and
types of errors in geometry. This paper provides a performance
benchmark for existing 3D feature descriptors across multi-
modal datasets. This analysis highlights the limitations of
existing 3D feature detectors and descriptors which need to be
addressed for robust multi-modal data registration. We analyse
and discuss the performance of existing methods in register-
ing various types of datasets then identify future directions
required to achieve robust multi-modal data registration.

Keywords-3D feature descriptor; Multi-modal data registra-
tion; 2D/3D registration; Evaluation;

I. INTRODUCTION

The trend in digital media production is increasingly
towards full 3D representation of the actors, objects and their
environment. This simplifies the integration, artistic manip-
ulation and photo-realistic rendering but requires capture of
real-world scenes. A variety of techniques are commonly
used to capture scenes from Light Detection and Ranging
(LIDAR) which captures highly detailed geometry but lacks
photometric information and is relatively slow to digital
photographs which provide full photo-realism but result in
lower geometric precision. The 3D approach requires a large
amount of data and meta data such as camera tracks and cali-
bration. The result is an ocean of unstructured footage which
is hard to search, arrange and manage efficiently. Moreover,
datasets exist in different domains with different types of
format, characteristic and sources of error. Scene modelling
requires the registration of multi-modal 3D datasets acquired
from different sensor techniques into a common coordinate
frame. Multi-modal data normally includes 3D point clouds
from active sensors, manually generated 3D CG models, and
3D reconstruction from 2D video and photos as illustrated
in Fig. 1.

Registration of multi-modal 2D and 3D datasets acquired

Figure 1. Multi-modal data registration

using different sensor is challenging due to the difference
in information available. There have been a few researches
for 2D-to-3D data matching and registration. Sattler et al.
proposed a method to register a 2D query image to a
reconstruction of large scale scenes using Structure-from-
Motion (SfM) [12]. They implemented a two way matching
scheme for 2D-to-3D and 3D-to-2D using the SIFT descrip-
tor and RANSAC-based matching. Stamos et al. integrated
2D-to-3D and 3D-to-3D registration technique [14]. They
registered 2D images to dense point cloud from range
scanners by reconstructing sparse point cloud using a SfM
method. 3D lines and circular feature matching were used for
registration. Restrepo and Mundy evaluated performance of
various local 3D descriptors for models reconstructed from
multiple images [9]. They reconstructed urban scenes with
a probabilistic volumetric modelling method and applied
different descriptors for object classification to find the best
descriptor. However previous research has focused only on
registration for a single data modality.

In this paper, we propose a framework for registering
multi-modal data into a unified 3D space and evaluate
existing 3D feature descriptors for the framework. Direct
matching and registration of a 2D image to 3D structure
is a difficult problem due to differences in the information
content between a 2D projection and the 3D scene structure.



Therefore we assume that 2D images are at least a stereo
pair, video sequence or multiple images so that we can
extract 3D geometric information from the images. Another
problem of multi-modal data registration is the fact that
they have different structure, resolution and sources of error.
Active sensors such as LIDAR or Total Station produce a
set of 3D points or point cloud without color information.
Reconstruction from stereo images normally have mesh
structure with colour information. SfM or Multi-view stereo
(MVS) methods for a video sequence or multi-view images
produce 3D point clouds with colour information.

We use 3D point clouds without colour as a basis for
feature extraction and registration in this research because it
is the most common element for all types of input sources.
Point normals are calculated with neighbouring points and
3D keypoints are extracted using a 3D extension of Kanade-
Tomasi detector based on the surface normals. We test four
3D descriptors to evaluate their robustness for registering
various types of dataset.

II. INPUT SOURCES

Sensor technologies for acquisition of real-world scene
structure can be classified into two categories: active meth-
ods using laser or depth sensors and passive methods using
2D photographic devices. In this section we briefly review
capture devices and processing methods used in the evalua-
tion.

Range sensors:: LIDAR is one of the most popular
depth ranging techniques, which measures the range by the
time delay between transmission of a pulse and detection
of the reflected signal. A LIDAR scanner produces accurate
depth information, but each scan only yields points visible
from the scanner position. Combination of multiple scans
from different locations is commonly required for full scene
coverage. Architectural surveying equipment such as a total
station can be used to measure a sparse set of measured
points in the scene. The distance to the point as well as its
azimuth and elevation are recorded. The resulting data is
used to provide outline geometry and scale of the scene and
to position multiple LIDAR scans with a larger context.

Video and multi-view images:: Video and still cameras
are the most common sources for scene capture due to
the wide availability and ease of use. Reconstructing 3D
information from 2D image is one of the most active
research fields in computer vision. Video frames from a
moving camera can be considered as multi-view images. We
use Bundler, a bundle adjustment algorithm for initial point
cloud reconstruction and camera calibration for unordered
image collections [13]. Then more accurate and dense point
cloud is reconstructed by the PMVS algorithm [6] from the
results of the Bundler. Once we register this 3D point cloud
to other 3D model, we can say the original 2D images have
been registered to the 3D model because 3D positions of

the images are bound to the point cloud by the calibration
parameters.

Spherical images:: Omnidirectional spherical imaging
is commonly used to get an environment map or lighting
source detection. The most common way to capture the
full 3D space instantaneously is to use a catadioptric om-
nidirectional camera using an ellipsoidal mirror combined
with a CCD. However, the catadioptric camera is difficult
to calibrate and has limited resolution. Therefore, we use a
commercial off-the-shelf line-scan camera, Spheron1, with
a fisheye lens in order to capture the full environment as a
high resolution spherical image. In order to recover depth
information from a spherical image pair, we assume that the
scene is captured with the camera at two different heights
as a vertical stereo pair. We use a PDE-based method for
spherical line-scan image pairs proposed in [8] for 3D scene
reconstruction.

Proxy model:: Simplified scene models are useful in
understanding and representing rough geometry of the scene
with small amount of data. Google SketchUp2 provides a
simple 3D reconstruction tool by mapping multiple photos
to 3D primitives. It uses manual vanishing point alignment
for photo registration to a 3D coordinate. It is useful to build
simple scenes but has limitations in building complex scenes
because it requires manual matchings for each primitive. We
use a simple method to reconstruct a axis-aligned plane-
based model from point cloud in the experiments. We
assume that the world is piecewise planar and aligned to
orthogonal axes (Manhattan world) [5]. Independent 3D
rectangular planes are built by the plane fitting algorithm [3]
and they are aligned into x,y,z planes. We refine planes
by expanding planes, detecting intersections and cropping
planes based on visibility.

III. 3D KEYPOINT DETECTION

Keypoint detection is an essential step prior to matching
and registration. Keypoints are referred to as interest points,
salient points or feature points which are distinctive in their
geometry and locality. Dutagaci et al. [2] and Tombari et
al. [18] survey and evaluate 3D keypoint detectors mainly
for 3D objects. However all evaluations were carried out for
accurate 3D models generated by computer graphics or uni-
modal sensors. The evaluations were mainly performed in
terms of distinctiveness and repeatability. The distinctiveness
is performance to describe the characteristics of the point
and find correct point matches while the repeatability means
the stability to detect the same keypoints in various environ-
ments. Some 3D keypoint detectors show both high distinc-
tiveness and repeatability according to the evaluations [18].
However, previous evaluations have focused on registration
of 3D data of the same modality and are commonly limited

1Spheron, http://www.spheron.com/en/spheron-cgi/products/spherocam-
hdr.html

2http://www.sketchup.com/product/newin7.html



to high-accuracy range data. A problem in applying those
detectors to our datasets is the fact that the detectors do
not show such high repeatability and distinctiveness for
multi-modal data sets because they have potentially different
source of errors especially in reconstruction from images as
we pointed out in the Introduction. For example, Heat Kernel
Signature (HKS) detector [15] shows good repeatability and
distinctiveness in those experiments, but it is too selective
to yield enough number of repeatable keypoints between
active sensor model and image-based reconstruction models
due to geometrical errors induced from incomplete 3D
reconstruction methods. Evaluation of 3D keypoint detectors
is an important topic, but we focus on the evaluation of 3D
descriptors for one fixed keypoint detector in this research.

The repeatability of keypoints between models recon-
structed from different sources can be extremely low. There-
fore we use the Kanade-Tomasi detector [16] to extract a
large number of evenly distributed keypoints for all 3D data
modalities. Input of the 2D detector is replaced by surface
normal vectors of a point cloud which were calculated
with neighbouring points within the radius Rn, and all
calculations of the detector are extended to a 3D domain.
The Kanade-Tomasi detector uses an eigenvalue decompo-
sition of the covariance matrix of input 3D normal vectors.
Eigenvalues represent the principal surface directions and
the ratios of eigenvalues are used to detect plane, edge
and corner features. We use the Kanade-Tomasi detector
to extract 3D corner features in regular grid regions by
thresholding the smallest eigenvalue. We set the threshold
Ft as 0.1 for all experiments in this paper.

IV. MULTI-MODAL DATA REGISTRATION

A. 3D Feature Descriptors

There has been extensive research on 2D feature de-
scriptors, but relatively little on 3D descriptors. Most 3D
feature descriptors descriptors operate on a 2D domain by
local projection onto a 2D tangent plane or extend existing
2D descriptors to the 3D domain. We consider four 3D
descriptors which directly operate on 3D point clouds rather
than meshes or 2D projection. They are used for uni-
modal data classification in Restrepo and Mundy’s work [9],
here we evaluate their performance for multi-modal data
registration.

Spin Images (SI) [7]:: Spin Images are a classic 3D
shape descriptor encoding surface properties in a local
object-oriented system. Using a single point basis con-
structed from an oriented point, the position of other points
in the support radius Rs is described by two parameters in
a cylindrical system. The SI computes a 2D histogram of
points falling within a cylindrical volume by means of a 2D
plane spinning around the cylinder axis. We set the number
of bins along one dimension as 8, minimum support cosine
angle between surface normals as 0.5, and the minimum

number of points in the support as 16. The SI descriptor is
represented as 153 dimensional vectors.

3D Shape Context (SC) [4]:: This is a 3D extension
of the 2D shape context descriptor. The support region
for a 3D shape context is a sphere centred on the basis
point and its north pole oriented with the surface normal.
A region in the support radius Rs is divided into bins
by equally spaced boundaries in the azimuth and elevation
dimensions and logarithmically spaced boundaries along the
radial dimension. Each bin accumulates a weighted count
by local point density for each point. We set the number of
bins as 12 for azimuth, 11 for elevation and 15 for the radial
dimension. As a result, the SC descriptor is represented as
1980 dimensional vectors.

Signature of Histograms of Orientaions (SHOT) [17]::
SHOT descriptor relies on the definition of a repeatable local
Reference Frame (RF) based on the eigenvalue decomposi-
tion of the scatter matrix of surface points in the support
radius Rs. Given the local RF, an isotropic spherical grid
is used to define a signature structure. For each sector of
the grid a histogram of normals is defined and the overall
descriptor results from the juxtaposition of these histograms.
The set the number of spatial bins as 32 as suggested
in [17] and the angle between normal vectors as 10. The
SHOT descriptor also requires a 9 dimensional vector for RF.
Therefore the descriptor is represented as 329 dimensional
vectors.

Fast Point Feature Histograms (FPFH) [10]:: Point
Feature Histograms (PFH) are based on the combination
of certain geometrical relations between neighbours in the
support radius Rs. FPH extracts 4 features [α, ϕ, θ, d],
where α is angle to the second axis, ϕ is an angle to
the first axis, θ is a rotation on the UW plane and d is
a distance between 2 points which is used for weighting
parameter. The FPFH is a simpler and faster version of PFH
by caching previously computed values in feature histogram
computation. The number of bins is set as 11 for each α, ϕ,
θ. Therefore the FPFH descriptor can be represented with
33 dimensional vectors.

B. Feature matching and registration

The Kanade-Tomasi detector generate a relatively large
number of keypoints over the whole model. The resulting
set of key-points will have a sub-set of points which can
be matched between modalities but may also have many
outliers which cannot be matched. In order to eliminate such
outliers and accelerate matching speed, we use a sample
consensus method, SAC-IA [10]. Instead of greedy search
for feature matching, SAC-IA iteratively selects samples
whose pairwise distances are distant enough and compute a
rigid transform matrix with 6 DOF to find the best transform
matrix which minimise the error metric. We do not consider
scale because all datasets are reconstructed for the real world
scale.



This feature-based registration provides a good initial
alignment for the further refinement over the whole point
cloud using the Iterative Closest Point (ICP) algorithm [1].
The ICP algorithm finds the optimal transformation between
two point sets but it requires an initial rough alignment
to avoid local minima. Therefore the feature matching and
registration can be used as a prior step for automatic
ICP registration. We use this ICP result as a ground-truth
registration and evaluate initial registration performances of
descriptors in Section VI.

V. MULTI-MODAL DATASETS

To the best of our knowledge, there is no public multi-
modal datasets for 3D acquisition of a common scene with
different sensor technologies. Therefore we captured two
scenes with the devices in Section 2 and tested the proposed
multi-modal data registration framework on the datasets.

A. Gate scene

The Gate scene was captured in a indoor film set as
multiple spherical stereo pairs by the Spheron and also as
point clouds with a LIDAR scanner. The Gate model has a
width of 9m and height of 6m. Three pairs of spherical
stereo pairs were captured with a baseline of 60cm and
resolution of 12574 ×5658. Dense 3D geometry of the
scene was reconstructed using the PDE-based reconstruction
method [8]. For testing proxy model registration, a plane-
based model was reconstructed by plane fitting method
from the dense reconstruction. Figure 2 (a) shows original
spherical images of the scene and Fig. 2 (b)-(d) show
their 3D reconstructions from images and 3D model from
the LIDAR scans. We also took parts from the spherical
reconstruction in order to verify the performance of partial
model registration. Fig. 2 (e)-(g) show parts of the spherical
reconstruction.

As can be see in Fig. 2 (d), the LIDAR model is
incomplete due to occlusion. For evaluation against the
LIDAR data we only consider the overlapping parts of the
image-based reconstruction. We set the support radius Rn

and Rs as 10cm for both surface normal calculation and
3D descriptor computation. Figure 3 shows the detected
keypoints by the 3D Kanade-Tomasi detector [16]. The
keypoints are relatively evenly distributed over the model
and located on geometrically distinctive points in local
regions. For the plane-based reconstruction, we sub-sampled
the planes to get enough points to calculate normal vectors.
However, the number of detected keypoints is still small
because many planes are not connected or close enough to
each other.

B. Cathedral scene

The ”Cathedral” scene was captured in an outdoor envi-
ronment. The scene is composed of one main building and
surrounding open areas. The facade of the main building

(a) Spherical images (cropped) (b) Spherical reconstruction

(c) Plane reconstruction (d) LIDAR model

(e) part1 (f) part2 (g) part3

Figure 2. Gate dataset

(a) Spherical (885) (b) Plane (263) (c) LIDAR (844)

Figure 3. Point clouds and detected keypoints for Gate set (Number of
detected keypoints)

has a width of 30m and height of 20m, and has a complex
structure with many self-occlusions and complicated details
such as sculptures.

The main building was scanned as multiple spherical
stereo image pairs with the spherical line-scan camera at
three points. The resolution of each spherical image was
6284×2794 and we used the same dense reconstruction and
plane proxy model reconstruction techniques as the Gate
model. We also took 92 still photos of the main building
with a normal digital camera. The resolution of each photo
was 2272×1704 and we used the Bundler [13] for camera
pose estimation and the PMVS algorithm [6] to reconstruct
a dense point cloud. Finally we scanned the main building
with a LIDAR scanner at 7 points and also measured around
50 points with a Total station to get a ground-truth model.
We manually registered all LIDAR scans to the reference
points from the total station and generated an integrated



(a) Spherical reconstruction (b) Multi-view reconstruction

(c) Plane reconstruction (d) LIDAR model

(e) part1 (f) part2

(g) part3 (h) part4

Figure 4. Cathedral dataset

mesh model. Examples of the original inputs are briefly
shown in Fig.1, and Fig. 4 (a)-(d) show the 3D models
from various input sources. Figure 4 (e)-(h) show partial
reconstructions. Figure 4 (e) and (f) are from spherical
reconstruction and we removed window and door regions
because both spherical reconstruction and LIDAR model
have errors in those regions. Figure 4 (g) and (h) are
reconstruction from multiple photos.

The scale of this Cathedral scene is bigger than the Gate
model. Therefore we set the support radius as 20cm. Figure 5
shows detected keypoints for the common region.

VI. EVALUATION OF DESCRIPTORS FOR REGISTRATION

In this section, we evaluate registration performances
of the 3D feature descriptors introduced in Section IV.A
on the datasets in Section V. The proposed framework
was implemented based on the open source Point Cloud
Library [11].

(a) Spherical (2076) (b) Multi-view (2251)

(c) Plane (153) (d) LIDAR (2562)

Figure 5. Point clouds and detected keypoints for Cathedral set (Number
of detected keypoints)

A. Registration to LIDAR sets

In this experiment, we assume the LIDAR model as the
reference model and tried to register all other reconstructed
models to the LIDAR model. For objective performance
evaluation, we generated a ground-truth registration by man-
ual registration followed by the ICP refinement [1]. Figure 6
shows the ground-truth registration result and the error map.
We measured Hausdorff distance and mapped the distance
in the range of 0-5m to a Blue-Red colour range. It is
important to note that even the ground-truth registration
has errors between models because those models are from
different sources and have geometrical errors from capture
and reconstruction process.

For the registration evaluation, we measured RMS error
to the ground-truth registration instead of the Hausdorff
distance. Figure 7 shows RMS error to the ground-truth in
registration for different sets and descriptors.

In the experiment with the Gate sets, all descriptors could
register all test sets with errors in the range of 1m to the
ground truth. The SHOT descriptor shows particularly good
performance for the dense reconstruction model but poor for
the proxy model registration. The FPFH descriptor generally
shows more stable performances than others. Figure 8 shows
registration results of the part 1-3 to the LIDAR model.
However, this level of registration errors can be refined by
the ICP algorithm. In terms of computational load, FPFH
is normally 2-3 times faster in computing and matching
descriptors than other descriptors.

The Cathedral sets are from a large scale outdoor scene
which can induce more errors in capture and reconstruction.
In the experiment with the Cathedral sets, we can see that
some results show very high RMS errors in registration.
Most cases under 3m RMS error range could be refined by



(a) Spherical

(b) Multi-view

(c) Plane

Figure 6. Ground-truth registration (Left: Registration result. Right: Error
map)

the ICP in Fig. 7 (b). Therefore we refer the cases as success-
ful and cases over 3m RMS error as failure in registration.
Figure 9 shows examples of successful registration as their
error maps and Fig. 10 shows the failed cases which cannot
be refined by the ICP algorithm. Generally SHOT and FPFH
show better performances in registration. In the registration
of the plane model, only the SHOT descriptor failed in
registration. The plane model has a relatively small number
of keypoints and most of keypoints on the step of the scene
were matched to windows in the LIDAR model. The SHOT
descriptor also showed the worst performance in the Gate
plane model registration. However, SHOT could successfully
register the Part2 model while all other descriptors failed.
Actually other descriptors registered the Part2 model to
similar locations, but it is placed upside down as shown
in Fig. 10 (b) because the Part2 model is pseudo-symmetric
horizontally and vertically. The Part3 model is from multi-
view images which is much coarser and noisier. SI and SC
failed in registration.

Unfortunately, none of the descriptors could register the
Part4 model. Most keypoints in the Part4 were extracted
from the side wall, but relatively few keypoints were de-
tected from the side wall in the LIDAR model. Keypoints
on the side wall in Part4 were matched to the keypoints on
the frontal windows in the LIDAR model. From the failed
cases in Fig. 10, we can see that the errors are affected by
the features on the frontal windows of the LIDAR model
which were induced by noise from scanning transparent
or reflective regions. Those erroneous features dominated
matchings in the failure cases.

(a) Gate

(b) Cathedral

Figure 7. RMS error in registration

(a) SI (b) SC

(c) SHOT (d) FPFH

Figure 8. Registration error maps of partial Gate models (Distance in the
range 0-1m are mapped to a Blue-Red colour range)

B. Cross-modal registration

In this experiment, cross-evaluation is performed for data
from all modalities against all others. We selected the same
part of the Cathedral model from all reconstructions as
shown in Fig. 11, and registered them to the other full



(a) Spherical / SC (b) Multi-view / SI

(c) Plane / FPFH (d) Part1-3 / SHOT

Figure 9. Registration error maps of Cathedral model (Successful cases.
Distance in the range 0-5m are mapped to a Blue-Red colour range)

(a) Plane / SHOT (b) Part2 / FPFH

(c) Part3 / SI (d) Part4 / SC

Figure 10. Failure cases in registration (Cathedral models)

datasets. Registration error was measured as RMS error
against the ground-truth registration generated by manual
alignment followed by the ICP.

Table I and II show the RMS errors in registration
using the FPFH and SHOT descriptors, respectively. In both
tables, all part registrations related to the plane models
failed in registration due to lack of geometrical features.
Considering that the full plane model could be registered in
the previous evaluation, we can conclude that simple proxy
models require more feature points over a wide area to be
registered. We can also observe that both descriptors failed
in registration of the MVS-part to the LIDAR set. The MVS-
part model does not have the lower part as shown in Fig.
11 (b) and the corresponding part is rotationally pseudo
symmetric in the full dataset. They were 180◦ rotated and
mapped to the left part of the scene as it happened for the
Part2 model in the previous section. Geometrical symmetry
is one of main causes of failure in registration.

The FPFH descriptor shows relatively stable performances
in the cross-model registration. The SHOT descriptor could

(a) LIDAR-part (b) Spherical-part

(c) MVS-part (d) Plane-part

Figure 11. Partial models for cross-modal registration

Table I
RMS ERROR IN CROSS-MODAL REGISTRATION (FPFH)

FPFH LIDAR Spherical MVS Plane

LIDAR-part 1.080 0.897 8.476
Spherical-part 1.531 0.853 10.015

MVS-part 7.801 0.440 13.608
Plane-part 6.924 4.484 16.846

Table II
RMS ERROR IN CROSS-MODAL REGISTRATION (SHOT)

SHOT LIDAR Spherical MVS Plane

LIDAR-part 0.449 0.651 8.583
Spherical-part 0.986 8.879 16.025

MVS-part 10.346 1.015 12.670
Plane-part 9.058 12.840 17.086

register datasets more accurate than the FPFH descriptor, but
it sometimes failed in certain cases. This coincides with the
results in the previous experiment.

VII. DISCUSSION AND CONCLUSIONS

In this work, we proposed a framework for 2D and
3D multi-modal data registration and evaluated registration
performances of various 3D feature descriptors. 3D LIDAR
scan data, 3D proxy models, spherical images and multiple
photographs were considered in the framework. For 2D data
registration, 3D structures are reconstructed from the 2D
images using stereo or multi-view methods, then they are
registered in a 3D domain by 3D feature detection and
registration. As a result, evaluation was on multi-modal 3D
to 3D data registration where 3D data may be extracted from
either 2D images or direct 3D measurement.

SC, SI, SHOT and FPFH descriptors were evaluated for
various test sets. The performances of most descriptors are
acceptable for indoor datasets with stable material, lighting



condition and background, but FPFH works slightly better
in terms of accuracy and speed. For outdoor scenes with a
more variable environment, SHOT and FPFH show better
performance. The SHOT descriptor is good at registering
dense reconstructions with high accuracy. However, it is poor
at proxy model registration and sometimes shows unstable
behaviours. The FPFH descriptor failed in pseudo-symmetric
structure registration, but it shows relatively stable perfor-
mances in general registration.

For a simple planar proxy model or symmetric structure
registration, a wider area with enough feature points should
be considered because local features have limited informa-
tion about the geometry. Considering other properties of the
data such as colour information or geodesic distance between
feature points can be helpful for successful registration if
they are available.

The feature detector and all descriptors evaluated exhibit
problems with errors in reconstruction resulting from trans-
parent and reflective surfaces. This is a fundamental problem
from capture devices and reconstruction methods, but it is
still required to develop a feature detector and descriptor
which produce feature sets consistent in their locations and
descriptions regardless of local geometric sampling, errors
and noise.

This work is still in progress rather than a definitive
evaluation. Our future works will include testing more state-
of-the-art descriptors for matching between various multi-
modal datasets and analysing relationships between capture
errors, reconstruction errors, feature detectors and descrip-
tors to influence the whole registration framework. Novel
detectors and descriptors may be required to achieve robust
matching and registration of multi-modal data.
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