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Abstract—In this work we propose KinectDeform, an algo-
rithm which targets enhanced 3D reconstruction of scenes con-
taining non-rigidly deforming objects. It provides an innovation
to the existing class of algorithms which either target scenes with
rigid objects only or allow for very limited non-rigid deformations
or use precomputed templates to track them. KinectDeform com-
bines a fast non-rigid scene tracking algorithm based on octree
data representation and hierarchical voxel associations with a
recursive data filtering mechanism. We analyze its performance
on both real and simulated data and show improved results in
terms of smoothness and feature preserving 3D reconstructions
with reduced noise.

Keywords—Non-rigid registration, Enhanced reconstruction,
Recursive filtering.

I. INTRODUCTION

Reconstructing real objects accurately and efficiently is
one of the major goals in the field of 3D computer vision.
It opens doors to various applications from object detection
to environment mapping, from gesture control to security and
surveillance etc. Commodity depth cameras such as recently
available structured light and time-of-flight cameras, though
affordable and easily accessible, acquire noisy measurements
with limited resolution, and hence provide 3D representations
which are only suitable for a limited number of applications.
Many recent approaches try to solve the problem of attaining
improved 3D reconstruction of scenes or objects from low
quality raw data [1], [2]. One approach which stands out due
to its performance, efficiency, and high quality results is the
KinectFusion algorithm by Newcombe et al. [3], [4]. It either
uses a slowly moving RGB-D camera or considers objects
moving slowly in front of a static camera to obtain their
high quality 3D reconstruction. Fig. 1 (a) shows the high-level
pipeline of KinectFusion where a rigid-alignment of 3D data
captured during sequential time-steps is followed by filtering
or fusion of data accumulated over time. The key feature of
KinectFusion is its run-time performance by using commodity
graphics hardware, such that it is able to fuse and reconstruct
data acquired at a rate which is as high as 30 frames per second
in real-time.
KinectFusion became a cornerstone for various works which

either built on it or used similar ideas, e.g., to map larger envi-
ronments in one go by using a moving volume approach [5],

(a)

(b)

Fig. 1: High-level pipeline of: (a) KinectFusion, and (b) the
proposed KinectDeform. Di: input depth map at time-step i,
(Vfi−1,N

f
i−1): filtered vertex map and corresponding normal

map at time-step i − 1, Dri and Dri−1: resulting depth maps
of rigid and non-rigid registration steps correspondingly. For
more details please see Section II and Section III.

[6], or by using octrees for memory efficient surface recon-
struction [7], [8], or by using voxel hashing for even better
accuracy and efficiency [9]. Kainz et al. modified the Kinect-
Fusion pipeline in order to incorporate multiple cameras for
holistic 3D reconstruction of static objects [10]. Cerqueira et al.
customized KinectFusion for real-time tracking and modeling
of a human face [11]; whereas Sturm et al. used its components
for full-body 3D reconstruction of humans [12]. Moreover,
improvements were also proposed in the real-time tracking
module by computing poses by directly fusing depth maps with
the truncated signed distance function (TSDF) volume [13], or
by also using visual features together with 3D information [5]–
[7]. Similarly, textured 3D models were achieved by mapping
visual texture information on the reconstructed 3D models [5],
[6].
A downside of the techniques mentioned above is that they
target environments with rigid objects. This makes tracking
such objects relatively simple by merely calculating a single
rigid transformation for the whole object or scene. Moving



objects in otherwise static scenes are considered as unstable
regions, they are segmented and removed when detected [8],
[14]. In the work of face modeling, the facial expressions are
required to be as consistent as possible throughout the scanning
period [11]. Similarly, for full-body 3D reconstruction, the
person to be scanned is required to be static with small non-
rigidities handled by using a rough template from the first
frame [12]. For the same body scanning applications, Cui et
al. on the other hand, proposed to tackle non-rigidities by
using a global non-rigid alignment based on joint constraints.
Their technique however cannot handle large motions, and
is also not very practical for real-time applications [15].
Recently, Zöllhoefer et al. [16] have proposed what they claim
to be the first ‘general purpose’ non-rigid 3D reconstruction
system which works in real-time and produces refined 3D
reconstructions. It works by first acquiring a rigid template
of the object to be reconstructed. This template is then used
to track non-rigidities with high flexibility.

In this paper, we propose a framework which is derived
from KinectFusion with the ability to track and reconstruct,
with high accuracy, without any template or constraint on
motion, rigid as well as non-rigid moving objects. Fig. 1 (b)
shows the high-level pipeline of the proposed technique. Our
key contributions consist of using tracking based on non-
rigid registration of the result of the previous time-step to
the newly acquired deformed data, followed by a recursive
filtering mechanism based on the registered result and the
newly acquired data. We make use of a generic tracking
algorithm for non-rigid alignment which is efficient and can be
easily parallelized [17]. We use both real and simulated data
to validate the performance of proposed technique.

The remainder of the paper is organized as follows: Sec-
tion II introduces the problem at hand and gives an overview
of how KinectFusion tries to solve it with restrictions on
object’s rigidity. Section III details our proposed approach. In
Section IV, we present results of experiments for quantitative
and qualitative analysis of the performance of the proposed
method using both simulated and real data. This is followed
by a conclusion in Section V.

II. BACKGROUND & PROBLEM FORMULATION

Given a fixed single depth camera system with an asso-
ciated camera calibration matrix K, at each discrete time-
step i ∈ N, this camera acquires a depth map Di which
contains depth data ordered on a grid of size (U × V ) with
U, V ∈ N. This data represents a deformable moving surface
in the depth camera’s field of view. It can be converted into
its corresponding vertex map Vi, where each depth value in
Di is associated with a vertex in Vi such that:

Vi : R2 → R3

p 7→ Vi(p) = Di(p)K−1ṗ, (1)

where p represents a location on the 2D grid of Di and Vi,
and ṗ represents its corresponding homogenous coorindates.
Let us consider a sequence of N acquired depth maps
{D0,D1, · · · ,DN−1} of the same scene deforming over time.
Their corresponding vertex maps are {V0,V1, . . . ,VN−1}.
Each vertex map Vi is related to the previous vertex map Vi−1
via:

Vi = hi (Vi−1) + Ei, (2)

Fig. 2: Detailed pipeline of KinectFusion. Di: input depth map
at time-step i, D′i: result of bilateral filter on Di, (Vfi−1,N

f
i−1):

filtered vertex map and corresponding normal map at time-step
i−1, Dri : result of rigid registration of D′i to Vfi−1, (StVr

i
,WVr

i
)

and (St
Vf

i−1

,WVf
i−1

): TSDF volumes corresponding to vertex

maps Vri and Vfi−1 respectively. For more details please see
Section II and Section III.

where hi(·) is the deformation that transforms Vi−1 to its
consecutive vertex map Vi. The additional term Ei represents
the error map due to the acquisition system including camera
noise, and sampling errors.
The problem at hand is therefore to attenuate Ei for i > 0, and
recover an enhanced sequence {Vf0 ,V

f
1 , . . . ,V

f
N−1} starting

from the acquisition {V0,V1, . . . ,VN−1}.
As a solution, a recursive filtering function f(·, ·) may be
defined by sequentially fusing the current measurement Di and
the resulting enhanced vertex map Vfi−1 of the previous time-
step such that:

Vfi =

{
Vi for i = 0,

f(Vfi−1,Di) i > 0.
(3)

The KinectFusion algorithm proposes a practical solution for
(3) for the special case where the deformation hi is rigid,
i.e., when the transformation between Vi−1 and Vi is a single
rotation and translation with 6 degrees of freedom [4]. Fig. 2
shows the detailed pipeline of the KinectFusion algorithm. In
the first step, a bilateral filter is applied to the input depth
map Di resulting in a filtered map D′i [4], [18]. The new depth
map D′i is then given as input to the registration module where
its corresponding vertex map V ′i is computed using (1). The
normal map N ′i is also computed for each vertex in V ′i using
vertices belonging to neighboring points. The registration step
uses a multi-resolution point-plane error metric coupled with a
projective data association–based variation of Iterative Closest
Point algorithm (ICP) to estimate the camera (or conversely
object) pose [4], [19]. This second step estimates the rigid
deformation between V ′i and Vfi−1 using their corresponding
normal maps N ′i and N f

i−1, respectively. This transformation
is applied to Vi (computed from Di) to get Vri , which is back
projected using the inverse mapping of (1) in order to obtain
Dri . It is then fused with a global surface representation to get



an enhanced 3D surface reconstruction. We note that the reason
for using Di instead of D′i for fusion is to preserve the details
which might have been lost due to bilateral filtering. For the
last step of data fusion or filtering, KinectFusion uses a method
based on SDF representation of a surface in 3D [4], [20]. An
SDF SVi(.) corresponding to a vertex map Vi represents points
on surface as zeros, and free spaces in front of and behind
the surface as positive and negative values, respectively. These
values increase as distance from the surface increases. The
SDF is formally defined as:

SVi : R3 → R

P 7→

{
d(P,Vi) P lies in front of Vi,
0 P ∈ Vi,
−d(P,Vi) P lies behind Vi,

where d(., .) calculates the shortest distance between a given
3D point P and Vi. KinectFusion uses a volumetric repre-
sentation of the truncated SDF (TSDF). It is called TSDF
because the SDF is truncated using a limiting value of ±µ.
A continuous TSDF is sampled by a volume of resolution
(Z × Z × Z) with Z ∈ N, lying in the camera’s reference
frame. The volume consists of volumetric elements called
voxels where each voxel is represented by its centroid P. A
TSDF volume corresponding to Vri is defined by two values
computed for each of its voxels P; one is the TSDF value
itself StVr

i
(P), and second is the weight WVr

i
(P), using camera

parameters K, and the de-homogenization function π(.) such
that:

StVr
i
(P) = Ψ(‖P‖2 − ‖Vri (q)‖2), (4)

where q = bπ(KP)c, and

Ψ(η) =

{
min{1, ηµ} · sgn(η) iff η ≥ −µ,
0 otherwise, (5)

where µ is the truncation distance. Note that q represents a
location on the 2D grid of Vri . The weight WVr

i
(P) should

be proportional to the measure of similarity of pixel ray
direction from q to P to local surface normal at Vri (q) but
Newcombe et al. show that keeping the weight WVr

i
(P) = 1

works well for their filtering scheme of KinectFusion which
will be discussed next [4]. For filtering, KinectFusion follows
a scheme of weighted average of all TSDF volumes computed
for Vri resulting in one global filtered TSDF volume where
each voxel in the filtered volume is represented by St

Vf
i

(P)

and WVf
i

(P) such that:

StVf
i

(P) =
WVf

i−1
(P)St

Vf
i−1

(P) +WVr
i
(P)StVr

i
(P)

WVf
i

(P)
, (6)

where
WVf

i
(P) = WVf

i−1
(P) +WVr

i
(P). (7)

It is to be noted that WVf
i

(P) is reset to a default value after

a fixed number of iterations. The vertex map Vfi is computed
from the current filtered volume for the next iteration using
surface prediction via ray casting [4], [21]. The normal map
N f
i is also computed using the gradient of the TSDF values in

the filtered volume. The final extraction of the surface or the
point cloud in 3D from the filtered volume can be carried out
by using zero crossings or iso-surfaces in the TSDF volume
followed by linear interpolation of points.

Fig. 3: Detailed pipeline of the proposed KinectDeform. Di: in-
put depth map at time-step i, D′i: result of bilateral filter on Di,
(Vfi−1,N

f
i−1): filtered vertex map and corresponding normal

map at time-step i−1, Cri−1: unorganized point cloud which is
the result of non-rigid registration of Vfi−1 to D′i, Dri−1: depth
map corresponding to Cri−1, (StVi ,WVi), (StVr

i−1
,WVr

i−1
) and

(St
Vf

i−1

,WVf
i−1

) are TSDF volumes corresponding to vertex

maps Vi, Vri−1 and Vfi−1 respectively. For more details please
see Section II and Section III.

III. KINECTDEFORM

We propose to modify the KinectFusion to achieve 3D
tracking, and hence enhanced 3D reconstruction of not only
rigid but also non-rigidly deforming objects as well. One of
the main reasons for taking KinectFusion as a reference is
its ease of parallelization for real-time implementation. We
would like to maintain this feature in the proposed approach
that we refer to as KinectDeform and explore it further in
the future work. As depicted in the high-level descriptions
of Fig. 1, KinectDeform modifies KinectFusion at two main
levels; first, the registration which, from rigid, becomes non-
rigid, and second, the reference frame in the filtering process
changes where the newly acquired measurement is the one to
act as a reference for the current state of the object and to
which the resulting vertex map from the filtered TSDF from
the previous iteration should be aligned and fused with. More
details are provided in Fig. 3, and described in what follows.

A. Non-rigid registration

Similarly to KinectFusion, for an improved registration,
a bilateral filter is applied to the input depth map Di as a
first preprocessing step. We obtain a bilateral filtered depth
map D′i, and its corresponding vertex map V ′i . The next step
is to register the resulting vertex map of the previous iteration
i.e. Vfi−1with this new vertex map V ′i . Conversely to other clas-
sical reconstruction methods, our pipeline captures non-rigid
objects. As a consequence, this registration step aims to align
two vertex maps describing the non-rigid deformation hi in
(2). This deformation is unknown but can be estimated locally
by a patch-oriented method, describing the global non-rigid
deformation by a set of local rigid ones. As such, we propose to
apply a modified scene-flow based tracking method from [17].



(a) (b) (c)

Level 2 Level 4 Voxel Scene flow

Fig. 4: Outline of the non-rigid registration algorithm used by
our pipeline, from the first cloud (a) to the second one (b).
As a first step, both clouds are mapped rigidly by centering
their respective centroid (c). A common discrete space is then
built using two separate octrees for which the root cell is
the bounding box of the cloud couple. These octrees are then
subdivided regularly until a fixed level S is reached. Finally,
the algorithm described in [17] is used to create a voxel-to-
voxel 3D scene flow, describing a global non-rigid deformation
as a set of rigid ones.

As opposed to other well-known techniques [22]–[27], this
algorithm offers real-time capabilities, and can handle non-
rigidly deforming objects in a generic way without considering
a specific motion or shape model. The proposed scene-flow
tracking technique relies on several steps: the pair of vertex
maps Vfi−1 and V ′i are first centered by joining their respective
centroids. A double voxelization step then embeds each cloud
considering as a first cell the bounding box of the two point
clouds, i.e., sharing the same root cell. These octrees are aimed
to be subdivided in a regular way considering each cut point as
the cell center. Thus the subdivision of both clouds describes
the same discrete coordinate space, see Fig. 4. Then, a voxel-
to-voxel scene flow is created using a local neighborhood
relation among the voxels of the two octrees, several different
hierarchical relations, and finally a local and computationally
efficient algorithm to establish the relation from voxels of the
first octree to the second one. KinectDeform uses the obtained
voxel-to-voxel flow in order to register locally each point-
based patch from Vfi−1, embedded in the first octree, to V ′i ,
embedded in the second one. The result of the registration
is Cri−1, which is an unorganized 3D point cloud containing
(U × V ) 3D points.

B. TSDF volume creation and fusion

To create a TSDF volume using the approach explained in
Section II from the information in Cri−1, an organized point
cloud or depth map needs to be extracted from it. An idea
would be to simply back project points in Cri−1 to the image
plane using the camera matrix K. This would result in several
points in Cri−1 being projected to the same pixel location in the
image plane to which only one depth value is to be assigned.
Hence, a lot of valuable information would be lost. To get
a more accurate representation of Cri−1 with respect to the
camera, we perform surface reconstruction based on Delaunay
triangulation [28]. The resulting mesh, is used for generating

the depth map Dri−1 by simulating a noise-free camera with
the same pose and camera matrix K as the real camera used
for acquiring the initial raw data and by performing ray-
tracing [29]. Next step is to use the resultant depth map Dri−1
and input depth map Di to fuse them to get a filtered and
enhanced reconstruction of the object at time i. Here again we
use Di for fusion and filtering instead of D′i to avoid loss of
important information due to bilateral filtering. For data fusion
and filtering we also use the volumetric TSDF for surface
representation as done by KinectFusion [4], [20]. The reason
for choosing this representation scheme over other similar non-
parametric representations is ease of surface extraction and
parallelization of volumetric TSDF computation and fusion [4].
As mentioned in the begining of Section III, for handling
non-rigid deformations we cannot keep a globally consistent
surface representation as reference and keep fusing newly
acquired information to it. Instead we create TSDF volumes
for both Dri−1 and Di using their corresponding Vri−1 and
Vi using (4) and (5) to get StVr

i−1
and StVi , respectively. We

propose to modify the weighting scheme of KinecFusion in
order to take the following factors into account. On one hand
Vri−1, which is the deformed version of Vfi−1, brings valu-
able information due to temporal filtering and also improved
registration due to it being aligned to the filtered version of
Vi. On the other hand we also have to take into account
errors during registration and also loss of some details in V ′i
caused by bilateral filtering which in turn might cause loss of
some details in Vri−1. Similarly we should also consider the
sensor or acquisition noise introduced in each acquisition Vi.
Therefore, to reflect these factors the weights WVi and WVr

i−1

are initialized and updated as follows:

WVi(P) = Nσc(εni), (8)

and

WVr
i−1

(P) =

{
Nσc

(εti−1
) iff i = 1,

Nσp
(εti−1

) otherwise, (9)

where Nσ(x) = exp(−x2σ−2), and εni is a global estimate
of sensor noise in the current acquisition Di and εti−1 is the
root-mean-square error (RMSE) based on point-wise Euclidean
distances between Vi and Vri−1:

εti−1 =

√√√√ 1

M
(

M∑
p=1

‖Vi(p)− Vri−1(p)‖2), (10)

where M = (U × V ), and εti−1
is an estimate of the regis-

tration error and details lost during bilateral filtering, meshing
and back projection in Vri−1 with respect to Vi assuming that
bilateral filtering removes the sensor noise from V ′i and hence
from Vri−1. The parameters σc and σp are chosen empirically
for now, taking into account the factors mentioned above by
giving a higher weight to the temporally filtered deformed data
compared to the raw input with increasing time. The two newly
created volumes are fused by following (6) to get the filtered
TSDF volume St

Vf
i

which is used to extract the vertex map Vfi
and the normal map N f

i for the next iteration using the same
method as KinectFusion.



Fig. 5: RMSE of raw and filtered data with ground truth for
simulated “cloth” dataset

IV. EXPERIMENTS & RESULTS

To analyze the performance of KinectDeform both quan-
titatively and qualitatively, we test it on both simulated and
real non-rigidly deforming depth sequences. For quantitative
analysis, we use two different data sources, the first one is the
simulated deforming “cloth” dataset acquired using the ArcSim
simulator [30], [31]. The second one is the high quality“facial”
dataset which was provided courtesy of the research group
of Graphics, Vision & Video of the Max-Planck-Institute for
Informatics [32].
In order to create Kinect acquired raw data, we simulate a
realistic acquisition of the “cloth” sequence using Blensor by
placing the camera at a distance of 1.8m [29]. We have used
a sequence of 25 frames from this dataset. This noisy data
is then filtered in KinectDeform with σc = 0.0185m and
0.00225m ≤ σp ≤ 0.00655m. From Blensor we can get an
estimate of the sensor noise εn. The simulated noisy data and
results of KinectDeform are compared with the ground truth
data to compute RMSE based on Euclidean distances with
nearest neighbors using CloudCompare [33]. The quantitative
and qualitative improvements due to KinectDeform are shown
in Figure 5. For qualitative evaluation we compare the recon-
structions of frames 5 and 15 obtained using KinectDeform
with ground truth and raw acquisitions as shown in Fig. 6.
Fig. 6 (d) and 6 (h) show the results of applying a deblurring
filter on the results of KinectDeform to remove remaining
artifacts and get more refined reconstructions [34]. Results
show significant improvements in the 3D reconstructions as
a result of KinectDeform both qualitatively and quantitatively.

For the “facial” dataset we use a sequence of 21 frames,
simulate a laser scanner in V-REP with object placed at
0.5m away from the camera [35] and add depth noise to
the acquisitions based on Laplacian distribution with 0 mean
and standard deviation of 0.00025m. The standard deviation
parameters chosen for the weighting scheme of KinectDeform
are σc = 0.0004m and 0.0004m ≥ σp ≤ 0.000425m.
The results are shown in Fig. 7 and Fig. 8. Though similar
improvements in 3D reconstructions can be seen in this case as
well, an important factor apparent here is the effect of temporal
filtering due to which the error decreases gradually as shown
in the Fig. 7.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6: “Cloth” dataset. Top row: Frame 5 (a) Ground truth,
(b) raw data, (c) result of KinectDeform, (d) result of Kinect-
Deform after deblurring. Bottom row: Frame 20 (e) Ground
truth, (f) raw data, (g) result of KinectDeform, (h) result of
KinectDeform after deblurring.

Fig. 7: RMSE of raw and filtered data with ground truth for
“facial” dataset

To explain this difference in the temporal effect of filtering
between two sequences, a closer look at the deformations
introduced in both sequences is required. Fig. 9 (a) and
Fig. 9 (b) show a large amount of deformation between frame
10 and frame 15 of the “cloth” sequence. Large deformations
break the temporal effect of filtering because of factors such as
self occlusions and by significantly changing geometry of the
incoming reference frame thus reducing the value of important
details brought by the result of previous iterations. That is why
when the rate of deformation is small as in the sequence of
“facial” dataset as shown in Fig. 9 (c) and Fig. 9 (d) the effect
of temporal filtering is clearly visible as shown in Fig. 7.
We also tested KinectDeform on real data captured by Asus
Xtion Pro Live camera using a plain cloth being waved in front
of it. In this case we tested the empirical weighting scheme
similar to KinectFusion in which the weight of reference is
increased by 1 after every iteration until a threshold is reached.
KinectDeform was run over 25 frames from this dataset and
results for frames 10, 15 and 20 are shown in Fig. 10. It
shows that even using this empirical weighting scheme results
in smoother surfaces with well preserved details.



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8: “Facial” dataset. Top row: Frame 5 (a) Ground
truth, (b) raw data, (c) result of KinectDeform, (d) result of
KinectDeform after deblurring. Bottom row: Frame 15 (e)
Ground truth, (f) raw data, (g) result of KinectDeform, (h)
result of KinectDeform after deblurring.

(a) (b)

(c) (d)

Fig. 9: Top row: “Cloth” dataset, deformation between (a)
frame 10 and (b) frame 15. Bottom row: “Facial” dataset,
deformation between (c) frame 10 and (d) frame 15.

V. CONCLUSION

We have presented KinectDeform, a novel method for
enhanced 3D reconstruction based on tracking of dynamic
non-rigid objects. It has two main components, first is the
use of an efficient and effective pair-wise non-rigid tracking
which allows for tracking of non-rigid objects without any
constraints and without using a template. Second is the use
of a recursive filtering mechanism derived from KinectFusion
but with a change in the reference being used and a weighting

(a) (b) (c)

(d) (e) (f)

Fig. 10: Real moving cloth dataset. Top row: Raw acquisitions
for (a) frame 10, (b) frame 15, (c) frame 20. Bottom row:
Results of KinectDeform for (d) frame 10, (e) frame 15, (f)
frame 20.

scheme which takes into account different sources of noise
present in the input data. We have carried out both quantitative
and qualitative evaluation of our method and we show that
this algorithm is successfully able to filter noisy depth data
to give smoother and feature preserving reconstructions over
time. KinectDeform has been designed keeping in mind its
planned extension to a completely automated real-time system
which should enable us to analyze its performance over longer
sequences constituting hundreds of data frames. It should also
enable us to study further the domain of filtering based on non-
rigid tracking for data acquired from consumer depth cameras
which constitutes our future work.
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