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Abstract

Real-time marker-less hand tracking is of increasing im-
portance in human-computer interaction. Robust and ac-
curate tracking of arbitrary hand motion is a challenging
problem due to the many degrees of freedom, frequent self-
occlusions, fast motions, and uniform skin color. In this pa-
per, we propose a new approach that tracks the full skeleton
motion of the hand from multiple RGB cameras in real-time.
The main contributions include a new generative tracking
method which employs an implicit hand shape representa-
tion based on Sum of Anisotropic Gaussians (SAG), and a
pose fitting energy that is smooth and analytically differen-
tiable making fast gradient based pose optimization possi-
ble. This shape representation, together with a full perspec-
tive projection model, enables more accurate hand mod-
eling than a related baseline method from literature. Our
method achieves better accuracy than previous methods and
runs at 25 fps. We show these improvements both qualita-
tively and quantitatively on publicly available datasets.

1. Introduction
Marker-less articulated hand motion tracking has im-

portant applications in human–computer interaction (HCI).
Tracking all the degrees of freedom (DOF) of the hand
for such applications is hard because of frequent self-
occlusions, fast motions, limited field-of-view, uniform skin
color, and noisy data. In addition, these applications im-
pose constraints on tracking, including the need for real-
time performance, high accuracy, robustness, and low la-
tency. Most approaches from the literature thus frequently
fail on even moderately fast and complex hand motion.

Previous methods for hand tracking can be broadly clas-
sified into either generative methods [12, 20, 11] or dis-
criminative methods [1, 25, 24, 8]. Generative methods
usually employ a dedicated model of hand shape and ar-
ticulation whose pose parameters are optimized to fit image
data. While this yields temporally smooth solutions, real-

Figure 1. Qualitative tracking results from our SAG-based tracking
method. We achieve a framerate of 25 fps which is suitable for
interaction applications.

time performance necessitates fast local optimization strate-
gies which may converge to erroneous local pose optima.
In contrast, discriminative methods detect hand pose from
image features, e.g., by retrieving a plausible hand config-
uration from a learned space of poses, but the results are
usually temporally less stable.

Recently, a promising hybrid method has been proposed
that combines generative and discriminative pose estima-
tion for hand tracking from multi-view video and a sin-
gle depth camera [19]. In their work, generative tracking
is based on an implicit Sum of Gaussians (SoG) represen-
tation of the hand, and discriminative tracking uses a lin-
ear SVM classifier to detect fingertip locations. This ap-
proach showed increased tracking robustness compared to
prior work but was limited to using isotropic Gaussian prim-
itives to model the hand.

In this paper, we build on this previous method and fur-
ther develop it to enable fast, more accurate, and robust ar-
ticulated hand tracking at real-time rates of 25 fps. We con-
tribute a fundamentally extended generative tracking algo-
rithm based on an augmented implicit shape representation.

The original SoG model is based on the simplifying as-
sumption that all Gaussians in 3D have isotropic covari-
ance, facilitating simpler projection and energy computa-
tion. However, in the case of hand tracking this isotropic
3D SoG model reveals several disadvantages. Therefore we
introduce a new 3D Sum of Anisotropc Gaussians (SAG)
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representation (Figure 3) that uses anisotropic 3D Gaus-
sian primitives attached to a kinematic skeleton to approx-
imate the volumetric extent and motion of the hand. This
step towards a more general class of 3D functions compli-
cates the projection from 3D to 2D and thus the computation
of the pose fitting energy. However, it maintains important
smoothness properties and enables a better approximation
of the hand shape with less primitives (visualized as ellip-
soids in Figure 3). Our approach, in contrast to previous
methods [21, 19], models the full perspective projection of
3D Gaussians. To summarize, the primary contributions of
our paper are:

• An advancement of [19] that generalizes the SoG-
based tracking to one based on a new 3D Sum of
Anisotropic Gaussians (SAG) model, thus enabling
tracking using fewer primitives.
• Utilization of a full perspective projection model for

projection of 3D Gaussians to 2D in matrix-vector
form.
• Analytic derivation of the gradient of our pose fitting

energy, which is smooth and differentiable, to enable
real-time optimization.

We evaluate the improvements enabled by SAG-based
generative tracking over previous work. Our contributions
not only lead to more accurate and robust real-time tracking
but also allow tracking of objects in addition to the hand.

2. Previous Work
Following the survey of Erol et al. [5] we review pre-

vious work by categorizing them into either model-based
tracking methods or single frame pose estimation methods.
Model-based tracking methods use a hand model, usually a
kinematic skeleton with additional surface modeling, to es-
timate the parameters that best explain temporal image ob-
servations. Single frame methods are more diverse in their
algorithmic recipes, they make fewer assumptions about
temporal coherence and often use non-parametric models
of the hand. Hand poses are inferred by exploiting some
form of inverse mapping from image features to a space of
hand configurations.

Model-based Tracking: Rehg and Kanade [15] were
one of the first to present a kinematic model-based hand
tracking method. Lin et al. [10, 28] studied the constraints
of hand motion and proposed feasible base states to reduce
the search space size. Oikonomidis et al. [12] presented a
method based on particle swarm optimization for full DoF
hand tracking using a depth sensor and achieved a frame
rate of 15 fps with GPU acceleration. Other model-based
methods using global optimization for pose inference fail to
perform at real-time frame rates [20, 11].

Primitive shapes such as spheres and (super-)quadrics
have been explored for tracking objects [9], and, recently,

for tracking hands [14]. However, perspective projection
of complex shapes is hard to represent analytically and
therefore fast optimization is hard. In this work we use
anisotropic Gaussian primitives with analytical expression
for perspective projection. An overview of perspective
projection of spheroids, which are conceptually similar to
anisotropic Gaussians, can be found in [4].

Tracking hands with objects imposes additional con-
straints on hand motion. Methods proposed by Hamer et
al. [7, 6], and others [13, 16, 3] model these constraints.
However, these methods require offline computation and are
unsuitable for interaction applications.

Single Frame Pose Estimation: Single frame meth-
ods estimate hand pose in each frame of the input sequence
without taking temporal information into account. Some
methods build an exemplar pose database and formulate
pose estimation as a database indexing problem [1]. The
retrieval of the whole hand pose was explored by Wang and
Popović [25, 24]. However, the hand pose space is large
and it is difficult to sample it with sufficient granularity for
jitter-free pose estimation. Sridhar et al. [19] proposed a
part-based pose retrieval method to reduce the search space.
Decision and regression forests have been successfully used
in full body pose estimation to learn human pose from a
large synthetic dataset [18]. This approach has been re-
cently adopted for hands [8, 23, 29, 22]. These methods
generally lack temporal stability and recover only joint po-
sitions or part labels instead of a full kinematic skeleton.

Hybrid Tracking: Hybrid frameworks that combine
the advantages of model-based tracking and single frame
pose estimation can be found in full body pose estima-
tion [30, 2, 26] and early hand tracking [17]. A hybrid
method that uses color and depth data for hand tracking was
proposed [19]. However, this method is limited to studio
conditions and uses isotropic Gaussian primitives. In this
paper, we extend their method by introducing an improved
(model-based) generative tracker. This new tracker alone
leads to higher tracking accuracy and robustness than the
baseline method it extends.

3. Tracking Overview
Figure 2 shows an overview of our tracking framework.

The goal is to estimate hand pose robustly by maximizing
the similarity between the hand model and the input images.
The tracker developed in this paper extends the generative
pose estimation method of the tracking algorithm in [19].

The input to our method are a set of RGB images from 5
video cameras (Point Grey Flea 3) of resolution 320 × 240
(see Figure 2). The cameras are calibrated and run at 60 fps.
The hand is modeled as a full kinematic skeleton with 26
degrees-of-freedom (DOF), and unlike other methods that
deliver only joint locations or part labels in the images, our
approach computes full kinematic joint angles Θ∗ = {θ∗j }.
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Figure 2. Overview of the our tracking framework. We present a novel generative tracking method that models the hand as a Sum of
Anisotropic Gaussians. We obtain better accuracy and robustness than previous work.

Our method maximizes the similarity between the 3D
hand model projected into all RGB images, and the im-
ages themselves, by means of a fast iterative local opti-
mization algorithm. The main novelty and contribution of
this work is the new shape representation and pose opti-
mization framework used in the tracker (Section 4). Our
pose fitting energy is smooth, differentiable and allows fast
gradient-based optimization. This enables real-time hand
tracking with higher accuracy and robustness while using
fewer Gaussian primitives.

4. SAG-based Generative Tracking

The generative tracker from [19] is based on a represen-
tation called a Sum of Gaussians (SoG) model, that was
originally proposed in [21] for full body tracking. The basic
concept of the SoG model is to approximate the 3D volu-
metric extent of the hand by isotropic Gaussians attached
to the bones of the skeleton, with a color associated to each
Gaussian (Figure 3 (c)). Similarly, input images are seg-
mented to regions of coherent color, and each region is ap-
proximated by a 2D SoG (Figure 4 (b-c)). A SoG-based
pose fitting energy was defined by measuring the overlap
(in terms of spatial support and color) between the projected
3D Gaussians and all the image Gaussians. This energy is
maximized with respect to the degrees of freedom to find
the correct pose.

Unfortunately, a faithful approximation of the hand vol-
ume with a collection of isotropic 3D Gaussians often re-
quires many Gaussian primitives with small standard devi-
ation, a problem akin to packing a volume with spherical
primitives. With SoG, this leads to sub-optimal hand shape
approximation and increased computational complexity due
to a high number of primitives in 3D (Figure 3). In this
paper, we extend the SoG model and represent the hand
shape in 3D with anisotropic Gaussians, yielding a Sum of
Anisotropic Gaussians model (see Figure 1). This not only
enables a better approximation of the hand shape with less
3D primitives (Figure 3), but also leads to higher pose es-
timation accuracy and robustness. The move to anisotropic
3D Gaussians complicates their projection into 2D where

scaled orthographic projection [21, 19] cannot be used. But
we show that the numerical benefits of the SoG representa-
tion hold equally for the SAG model: 1) We derive a pose
fitting energy that is smooth and analytically differentiable
for the SAG model under perspective projection that allows
efficient optimization with a gradient-based iterative solver;
2) We show that occlusions can be efficiently approximated
with the SAG model within our energy formulation. This is
in contrast to many other generative trackers where occlu-
sion handling leads to discontinuous pose fitting energies.

4.1. Fundamentals of SAG Model

We represent both the volume of the hand in 3D, as well
as the RGB images with a collection of anisotropic Gaus-
sian functions. A Sum of Anisotropic Gaussians (SAG)
model thus takes the form:

C(x) =

n∑
i=1

Gi(µi,Σi), (1)

where Gi(.) denotes a un-normalized, anisotropic Gaussian

G(µi,Σi) := exp

[
−1

2
(x− µi)

TΣi
−1(x− µi)

]
, (2)

with mean µi and covariance matrix is Σi for the ith Gaus-
sian. Each Gaussian also has an associated average color
vector ci in HSV color space.

Using the above representation, we model the hand sur-
face as a sum of 3D anisotropic Gaussians (3D SAG), where
x ∈ R3. We also approximate the input RGB images as a
sum of 2D isotropic Gaussians (2D SoG), where x ∈ R2.
This is an extension of the SoG representation proposed ear-
lier in [21, 19], which was limited to isotropic Gaussians.

3D Hand Modeling: We model the volumetric extent of
the hand as a 3D sum of anisotropic Gaussians model (3D
SAG), where x ∈ R3. Each Gi in the 3D SAG is attached
to one bone of the skeleton, and thus moves with the lo-
cal frame of the bone (Figure 3). A linear mapping between
skeleton joint angles and a pose parameter space, Θ = {θj},
is constructed. The skeleton pose parameters are further
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Figure 3. (a) Our 3D SAG hand model with 17 anisotropic Gaus-
sians visualized as ellipsoids with radii equal to the standard de-
viation. (c) A 3D SoG hand model with 30 isotropic Gaussians
visualized as spheres. (b) Visualizes the SAG model density when
projected into 2D; with less primitives, the shape of the hand is
much better approximated than with the SoG model (d) [19].

constrained to a predefined range of motion reflecting hu-
man anatomy, θj ∈ [ljmin, l

j
max]. The use of anisotropic

Gaussians, whose spatial density is controlled by the co-
variances, enables us to approximate the general shape of
the hand with less primitives than needed with the original
isotropic SoG model (Figure 3). This is because we can cre-
ate a better packing of the hand volume with more generally
elongated Gaussians, particularly for approximating cylin-
drical structures like the fingers. The Gaussians in 3D have
infinite spatial support, which is an advantageous property
for pose fitting, as explained later, but also means that the
SAG does not represent a finite volume (C(x) > 0 every-
where). We therefore assume that the hand is well modeled
by a 3D SAG if the surface passes through each Gaussian at
a distance of 1 standard deviation from the mean.

Hand Model Initialization: The hand model for track-
ing requires initialization of the skeleton dimensions, Gaus-
sian covariances that control their shapes, and associated
colors for an actor before it can be used for tracking. Our
method accepts manually created hand models which could
be obtained from a laser scan. Alternatively, we also pro-
vide a fully automatic procedure to obtain a hand model to
fit each person. This method uses a greedy optimization
strategy to optimize for a total of 3 global hand shape pa-
rameters and 3 independent scaling parameters (along the
local principal axes) for each of the 17 Gaussians in the
hand model. We observed that starting with a manual model
and then using the greedy fitting algorithm works best.

2D RGB Image Modeling: We approximate the input
RGB images using 2D SoG, CI , by quad-tree clustering of
regions of similar color. While it would also be possible to
approximate the image as 2D SAG, the computational ex-
pense of the non-uniform region segmentation would pro-
hibit realtime performance. We found in our experiments
that around 500 2D image Gaussians were generated for
each camera image.

4.2. Projection of 3D SAG to 2D SAG

Pose optimization (Section 4.3) requires the comparison
of the projections of the 3D SAG into all camera views, with

Figure 4. Sketch of the perspective projection of an ellipsoids as
the intersection of the image plane with the cone formed by the
camera center and the ellipsoid.

the 2D SoG of each RGB image. Intuitively (for a moment
ignoring infinite support), SAG and SoG can be visualized
as ellipsoids and spheres, respectively.

The perspective projections of spheres and ellipsoids
both yield ellipses in 2D [4]. For the case of isotropic Gaus-
sians in 3D, like in the earlier SoG model, projection of a
3D Gaussian can be approximated as a 2D Gaussian with a
standard deviation that is a scaled orthographic projection
of the 3D standard deviation [19, 21]. This simple approxi-
mation does not hold for our anisotropic Gaussians.

Therefore, we utilize an exact perspective projection Π
of ellipsoids, in order to model the projection of the 3D SAG
hand model, CH , into its 2D SAG equivalent, CP . Given an
ellipsoid in R3 with associated mean, µh and covariance
matrix, Σh, its perspective projection can be visualized as
an ellipse in R2 with parameters Σp and mean µp. Fig-
ure 4 (a) sketches the perspective projection, intuitively, Π
can be thought of as the intersection of the elliptical cone
(formed by the ellipsoid and the camera center) with the im-
age plane. Without loss of generality, we assume the camera
to be at the origin with a camera matrix, P = K [ I |0 ]. The
parameters of the projected Gaussian are given by

µp =
1

|M33|
K33

[
|M31|
−|M23|

]
+

[
k13

k23

]
, (3)

Σp =− |M|
|M33|

K33 M−1
33 KT

33, (4)

where

M = Σ−1
h µhµ

T
hΣ−>h −

(
µ>h Σ−1

h µh − 1
)
Σ−1

h , (5)

|M| is the determinant of M, Aij is a matrix A with its ith

row and jth column removed, and kij is the element at the
ith row and jth column of K. Please see the supplementary
material for the derivation of M and the projection with ar-
bitrary camera matrices. This more general projection also
leads to a more involved pose fitting energy with more in-
volved derivatives than for the SoG model, as explained in
the next section.
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4.3. Pose Fitting Energy

We now define an energy that measures the quality of
overlap between the projected 3D SAG CP = Π(CH), and
the image SoG CI , and that is optimized with respect to the
pose parameters Θ of the hand model. Our overlap measure
is an extension of the SoG overlap measure [21] to a SAG.
Intuitively, we assume that two Gaussians in 2D match well
if their spatial support aligns, and their color matches. This
criterion can be expressed by the spatial integral over their
product, weighted by a color similarity term. The similarity
of any two sets, Ca and Cb, of SAG or SoG in 2D (including
combined models with both isotropic and anisotropic Gaus-
sians) can thus be defined as

E(Ca, Cb) =
∑
p∈Ca

∑
q∈Cb

d(cp, cq)

∫
Ω

Gp(x)Gq(x) dx

=
∑
p∈Ca

∑
q∈Cb

d(cp, cq)Dpq =
∑
p∈Ca

∑
q∈Cb

Epq (6)

where Epq is the integral overlap measure mentioned ear-
lier, d(cp, cq) measures color similarity using the Wend-
land function [27], and Epq = d(cp, cq)Dpq . Unlike the
SoG model, for the general case of potentially anisotropic
Gaussians, the term Dpq evaluates to

Dpq =

√
(2π)2|Σp Σq|√
|(Σp + Σq)|

e−
1
2 (µp−µq)T (Σp+Σq)−1(µp−µq).

(7)

Using this Gaussian similarity formulation allows us to
compute the similarity between the image SoG CI and the
projected hand SAG CP .

We also need to consider occlusions of Gaussians from a
camera view. Computing a function that indicates occlu-
sion analytically independent of pose parameters is gen-
erally difficult and may lead to a discontinuous similarity
function. Thus, we use a heuristic approximation of occlu-
sion [21] that yields a continuous fitting energy defined as
follows

Esim [CI , CH ] =
∑
q∈CI

min

 ∑
p∈Π(CH)

wh
p Epq, Eqq

 , (8)

where wh
p is a weighting factor for each projected 3D Gaus-

sian of the hand model. Eqq is the overlap of an image
Gaussian with itself. With this formulation, an image Gaus-
sian cannot contribute more to the overlap similarity than by
its own footprint in the image. To find the hand pose, Esim

is optimized with respect to Θ, as described in the follow-
ing section. Note that the infinite support of the Gaussians
is advantageous as it leads to an attracting force between
the projected model and the image of the hand, even if they
do not overlap in a camera view.

4.4. Pose Optimization

The final energy that we maximize to find the hand pose
takes the form

E(Θ) = Esim(Θ)− wlElim(Θ), (9)

whereElim(Θ) penalizes motions outside of parameter lim-
its quadratically, and weight wl is empirically set to 0.1.
With the SoG formulation, it was possible to express the
energy function (with a scaled orthographic projection) in a
closed form analytic expression, and to derive the analytic
gradient. We have found that Esim(Θ) in our SAG-based,
even with its full perspective projection model, can still be
written in closed form with analytic gradient.

We derive the analytical gradient ofEsim with respect to
the degrees of freedom Θ in three steps. For each Gaussian
pair (h, q) and parameter θj we compute(
∂Σh

∂θj
,
∂µh

∂θj

)
a)−→

(
dM

dθj

)
b)−→

(
dΣp

dθj
,
dµp

dθj

)
c)−→

(
dDpq

dθj

)
.

(10)

We exemplify the computation at hand of step a); the input
to a) is the change of the ellipsoid covariance matrix ∂Σ−1

h

and the change of position ∂µh with respect to the DOF θj .
In this step we are interested in the total derivative

dM

dθj
=

∑
i∈{1,2,3}

∂M

∂µhi

∂µhi

∂θj

+
∑

k∈{1,··· ,6}

∂M

∂Σh
−1
k

∂Σh
−1
k

∂θj
. (11)

Following matrix calculus, the partial derivatives of the
cone matrixM with respect to µh,Σh are

∂M

∂µhi

= Σ−1
h (eiµ>h + eiµ>h )>Σ−1

h

−
(

(ei>Σ−1
h µh) + (ei>Σ−1

h µh)>
)

Σ−1
h ,

∂M

∂Σh
−1
k

=H +H> − µh
>SkµhΣ−1

h

− (µ>h Σ−1
h µh − 1)Sk, (12)

with ei the ith unit vector, µhi the ith entry of µh, H =
Skµhµ

>
h Σ−>h , where k indexes the unique elements of the

symmetric matrix Σ−1
h , and Sk is the symmetric structure

matrix with the kth elements equal to one, and zero oth-
erwise. Steps b) and c) are derived in a similar manner
and can be found in the supplementary document. The total
similarity energy Esim is the weighted sum over all θj and
Dpq according to equation 8. Combined with the analytical
gradient of Elim(Θ) we obtain an analytic formulation for
∂
∂ΘE(Θ). As sums of independent terms, both E and ∂

∂ΘE
lend themselves to parallel implementation.
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Figure 5. This figure shows a comparison of tracking error for SAG
and SoG with 2 to 5 cameras. A total of 156 runs were required
for SAG and SoG with different camera combinations. The results
show that SAG outperforms SoG. Best viewed in color.

Even though evaluation of fitting energy and gradient is
much more involved than for the SoG model, both share
the same smoothness properties and can be evaluated effi-
ciently, and thus an optimal pose estimate can be computed
effectively using a standard gradient-based optimizer. The
optimizer is initiliazed with an extrapolation of the pose pa-
rameters from the two previous time steps. The SAG frame-
work leads to much better accuracy and robustness and re-
quires far fewer shape primitives to be compared, as vali-
dated in Section 5.

5. Experiments
We conducted extensive experiments to show that our

SAG-based tracker outperforms the SoG based method it
extends. We also compare with another state-of-the-art
method that uses a single depth camera [22]. We ran our
experiments on the publicly available Dexter 1 dataset [19]
which has ground truth annotations. This dataset contains
challenging, slow and fast motions. We processed all 7 se-
quences in the dataset and, while [19] evaluated their algo-
rithm only on the slow motions, we evaluated our method
on fast motions as well.

For all results we used 10 gradient ascent iterations. Our
method runs at a framerate of 25 fps on an Intel Xeon E5-
1620 running at 3.60 GHz with 16 GB RAM. Our imple-
mentation of the SoG-based tracker of [19] runs slightly
faster at 40 fps.

Accuracy: Figure 6 shows a plot of the average error for
each sequence in our dataset. Over all sequences, SAG had
an error of 24.1 mm, SoG had an error of 31.8 mm, and [22]
had an error of 42.4 mm (only 3 sequences). The mean stan-
dard deviations were 11.2 mm for SAG, 13.9 mm for SoG,
and 8.9 mm for [22] (3 sequences only). Our errors are
higher than those reported by [19] because we performed

our experiments on both the slow and fast motions as op-
posed to slow motions only. Additionally, we discarded the
palm center used by [19] since this is not clearly defined.
We would like to note that [22] perform their tracking on the
depth data in Dexter 1 , and use no temporal information. In
summary, SAG achieves the lowest error and is 7.7 mm bet-
ter than SoG. This improvement is nearly the width of a
finger thus making it a significant gain in accuracy.

Error Frequency: Table 1 shows an alternative view
of the accuracy and robustness improvement of SAG. We
calculated the percentage of frames of each sequence in
which the tracking error is less than x mm where x ∈
{15, 20, 25, 30, 45}. This experiment shows clearly that
SAG outperforms SoG in almost all sequences and error
bounds. In particular the improvement in accuracy is mea-
sured by the increased number of frames with error smaller
than 15 mm, and the robustness to fast motions by the
smaller number of dramatic failures of errors larger than
30 mm. For example, in the adbadd sequence 70.7% of
frames are better than 15 mm for SAG while only 34.5% of
frames for SoG. Note that when x = 100 mm, the percent-
age of frames < x mm is 100% for SAG.

Effect of Number of Cameras: To evaluate the scal-
ability of our method to the number of cameras we con-
ducted an experiment where each camera was progressively
disabled with total active cameras ranging from 2 to 5. This
leads to 26 possible camera combinations for each sequence
and a total of 156 runs for both the SAG and SoG methods.
We excluded the random sequence as it was too challeng-
ing for tracking with 3 or less cameras.

Figure 5 shows the average error over all runs for varying
cameras. Clearly, SAG produces lower errors and standard
deviations for all camera combinations. We also observe a
diverging trend and hypothesize that as the number of cam-
eras is increased the gap between SAG and SoG will also
increase. This may be important for applications requiring
very precise tracking such as motion capture for movies.
We associate the improvements in accuracy of SAG with
its ability to approximate the users’ hand better than SoG.
Figure 3 (b, d) visualizes the projected model density and
reveals a better approximation for SAG.

Qualitative Tracking Results: Finally, we show several
qualitative results of tracking in Figure 7 comparing SAG
and SoG. Since our tracking approach is flexible we are also
able to track additional simple objects such as a plate using
only a few primitives. These additional results, qualitative
comparison to [22], and failure cases can be found in the
supplementary video.

6. Discussion and Future Work
As demonstrated in the above experiments our method

advances state of the art methods in accuracy and is suitable
for real-time applications. However, the generative method
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Figure 6. Average errors for all sequences in the Dexter 1 dataset. Our method has the lowest average error of 24.1 mm compared to SoG
(31.8 mm) and [22] (42.4 mm). The dashed lines represent average errors over all sequences. Best viewed in color.

Error < x mm adbadd fingercount fingerwave flexex1 pinch random tigergrasp
SoG SAG SoG SAG SoG SAG SoG SAG SoG SAG SoG SAG SoG SAG

15 34.5 70.7 13.1 8.7 11.0 16.7 5.2 50.0 10.8 34.0 3.3 10.5 11.2 10.2
20 48.1 97.5 35.2 33.4 31.0 34.3 12.1 79.4 30.78 66.3 5.3 21.4 25.6 25.6
25 61.0 99.4 54.1 61.0 45.8 47.0 29.7 91.0 50.3 89.9 6.9 34.7 43.8 51.7
30 70.7 99.4 65.4 79.4 58.5 59.4 45.0 96.5 81.0 98.7 10.9 46.4 50.2 58.7
45 93.4 99.7 90.1 99.1 82.0 90.4 86.6 98.9 100.0 100.0 40.2 72.1 83.3 82.3

Table 1. Percentage of total frames in a sequence that have an error of less x mm. We observe that SAG outperforms SoG in all sequences
and error bounds. The values in bold face indicate the best values for a given error bound.

Figure 7. First Two Rows: Comparison of SAG (left) and SoG (right) for two frames in the Dexter 1 dataset. In the first row, SAG covers
the hand much better during a fast motion of the hand in spite of using fewer primitives. In the second row, a challenging motion is
performed for which SAG performs better. Bottom Row: Realtime tracking results for one hand with different actors, and two hands.
Please see supplementary video for results from hand + object tracking.

can lose tracking because of fast hand motions. Like other
hybrid methods, we could augment our method with a dis-
criminative tracking strategy. The generality of our method
allows easy integration into such a hybrid framework.

In terms of utility, we require the user to wear a black

sleeve and we use multiple calibrated cameras. These limi-
tations could be overcome if we would only rely the depth
data for our tracking. Since the SAG representation is data
agnostic, we could model the depth image as a SAG as well.
We intend to explore these improvements in the future.

7

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7035841


Accepted version of paper published at 3DV 2014
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7035841.

7. Conclusion

We presented a method for articulated hand tracking that
uses a novel Sum of Anisotropic Gaussians (SAG) repre-
sentation to track hand motion. Our SAG formulation uses
a full perspective projection model and uses only a few
Gaussians to model the hand. Because of our smooth and
differentiable pose fitting energy, we are able to perform
fast gradient-based pose optimization to achieve real-time
frame rates. Our approach produces more robust and ac-
curate tracking than previous methods while featuring ad-
vantageous numerical properties and comparable runtime.
We demonstrated our accuracy and robustness on standard
datasets by comparing with relevant work from literature.
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