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Abstract

This paper proposes a robust method to solve the ab-

solute rotation estimation problem, which arises in global

registration of 3D point sets and in structure-from-motion.

A novel cost function is formulated which inherently copes

with outliers. In particular, the proposed algorithm handles

both outlier and missing relative rotations, by casting the

problem as a “low-rank & sparse” matrix decomposition.

As a side effect, this solution can be seen as a valid and cost-

effective detector of inconsistent pairwise rotations. Com-

putational efficiency and numerical accuracy, are demon-

strated by simulated and real experiments.

1. Introduction

In this paper we deal with the Absolute Rotation Estima-
tion (ARE) problem, i.e, the problem of recovering the ab-

solute attitudes (rotations) – with respect to a global frame
of reference – of a set of local reference frames, given
their relative attitudes. These local frames can be cam-
era reference frames, in which case we are in the context
of structure-from-motion, or local coordinates where 3D
points are represented, in which case we are dealing with
a 3D point set registration problem. This problem is an-
alyzed in depth in [12], under the name “rotation averag-
ing”. Given a redundant number of relative rotations Rij

between image pairs, the goal is to compute N absolute

rotations R1, . . . , RN (in a given absolute frame) by aver-
aging the Rij in order to satisfy the compatibility constraint
Rij = RiR

T
j

. This task finds application in the (global)
structure-from-motion problem, and in the global registra-
tion problem.

Global registration (a.k.a. N-view point set registration

problem) consists in finding the rigid transformation that
brings multiple (N > 2) 3-D point sets into alignment. We
are interested here only in the rotation component of the

transformation. Global registration can be solved in point
(correspondences) space or in frame space. In the former
case [20, 15], all the rotations are simultaneously optimized
with respect to a cost function that depends on the distance
of corresponding points. In the latter case [9, 21], the opti-
mization criterion is related to the internal coherence of the
network of rotations (and translations) applied to the local
coordinates frame.

The Structure-from-motion (SfM) problem (or block

orientation, in Photogrammetry) consists in recovering both
scene structure, i.e. 3D scene points, and camera motion,
i.e. absolute positions and attitudes of the cameras. SfM
methods can be divided into three categories: structure-first,
structure-and-motion, and motion-first. Structure-first ap-
proaches (e.g. independent models block adjustment [7]),
first build stereo-models and then co-register them, simi-
larly to the 3D registration problem. Structure-and-motion
techniques (e.g. bundle block adjustment [26], resection-
intersection methods [22], hierarchical methods [10]) –
which are the most common – solve simultaneously for
“structure” and “motion”. Finally, motion-first methods
[17, 8, 19, 1, 18] first recover the “motion” and then com-
pute the “structure”. These motion-first methods are global,
as they take into account simultaneously the entire epipolar
graph, whose vertices represent the cameras and edges link
images having consistent matching points. Most of them
solve the SfM optimization problem in two steps. In the
first step, the absolute rotation of each image is computed,
and in the second step camera translations are recovered:
we are concerned here with the first step.

Several approaches for the ARE problem have been pro-
posed. Sharp [21] distributes the error along all cycles in a
cycle basis while [9] casts the problem as the optimization
of an objective function where rotations are parameterized
as quaternions. Martinec in [17] computes an approximate
solution to the ARE problem based on Frobenius minimiza-
tion, and this approach is extended in [1] using spectral de-
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composition or semi-definite programming. A gradient de-
scent method based on matrix completion is presented in
[2]. The main drawback of such global techniques is that
they suffer the presence of inconsistent/outlier relative ro-
tations, and thus they need a preliminary step to detect and
remove such outliers before computing the absolute rota-
tions. A wide overview of methods aimed to the identifi-
cation of outlier epipolar geometries can be found in [18].
These approaches [8, 18, 19] check for cycle consistency,
i.e. the deviation from identity, within the epipolar graph.
These strategies are computationally demanding and speed
is always traded-off with accuracy (in terms of outliers clas-
sification). In particular, RANSAC-based approaches (e.g.
[19]) suffer from the limitation of increased computational
complexity for large-scale datasets. This is confirmed by re-
sults in [19], which show that outlier removal is the most ex-
pensive step (after feature extraction and matching) within
the entire SfM pipeline.

Recently, a few approaches have been developed to ro-
bustly solve the ARE problem without detecting outlier ro-
tations explicitly. Techniques in [11, 6], together with the
approach presented in this paper, come under this category.
In [11] a cost function based on the �1 norm is used to av-
erage relative rotations, exploiting the fact that the �1 norm
is more robust to outliers than the �2 norm. More precisely,
each absolute rotation is updated in turn by applying the
Weiszfeld algorithm to its neighbors. The method proposed
in [6] works on the Lie group structure of 3D rotations, and
combines an �1 solution with an iteratively reweighted least
squares approach.

A related approach [25] employs rank minimization for
simultaneous alignment of range images, without comput-
ing matching points.

Our solution to the ARE problem is inspired by recent
advances in the research fields of low-rank & sparse matrix

decomposition and matrix completion. The main contribu-
tion of this paper is the formulation of a novel cost func-
tion that naturally includes the outliers in its definition and
a minimization scheme that leverages on the GODEC algo-
rithm [28]. This results in a robust method which copes
with outliers and missing data simultaneously. These two
entangled problems of matrix completion and low-rank re-
covery in the presence of outliers have been addressed only
by a few, recent works [29].

The paper is organized as follows. Section 2 gives an
overview of the theoretical background required to define
our algorithm, i.e. low-rank & sparse matrix decomposition
and matrix completion. Section 3 provides a detailed de-
scription of our robust solution to the ARE problem. The
method proposed in this section is supported by experimen-
tal results on both synthetic and real data, shown in Sec-
tion 4. The conclusions along with possible further devel-
opments are presented in Section 5.

2. Low-rank & sparse matrix decomposition

We will show in the next section that the rotation averag-
ing problem can be reduced to a problem of recovering the
entries of a matrix X which is known to admit an approxi-
mate decomposition as the sum of a low-rank term L and a
sparse term S starting from an incomplete set of measure-
ments of its entries.

The goal of low-rank & sparse matrix decomposition is
to find an approximate decomposition of a data matrix X

into a low-rank matrix L and a sparse matrix S such that
X = L + S +N , with N an additive noise. Generally the
sparse term S represents gross errors affecting the measure-
ments, while the low-rank part represents some meaningful
low-dimensional structure contained into the data. An ex-
ample of such decomposition techniques is Robust Principal
Component Analysis (RPCA) [4] which computes a blind
separation of low-rank data and sparse errors by solving the
minimization problem

�
min
L,S

�L�∗ + λ �S�1
s.t. �X − L− S�

F
≤ �

(1)

where �·�∗ denotes the nuclear norm and �·�
F

the Frobe-
nius norm. A faster alternative to RPCA is represented by
the GODEC algorithm described in [28]. This method re-
quires to know approximately both the rank r of the low-
rank term L and the cardinality k of the sparse term S, and
solves the following minimization problem

�
min
L,S

�X − L− S�2
F

s.t. rank(L) ≤ r, card(S) ≤ k.

(2)

GODEC alternatively forces L to the rank−r approxima-
tion of X − S, and forces S to the sparse approximation
with cardinality k of X−L. The rank−r projection is com-
puted using Bilateral Random Projections (BRP) instead of
Singular Value Decomposition (SVD) in order to speed up
the computation. The updating of S is obtained via entry-
wise hard thresholding, keeping the first k largest elements
of X − L only. It can be shown that the value of the cost
function monotonically decreases and converges to a local
minimum, while L and S linearly converge to local optima.
The method is described in Algorithm 1. More details can
be found in [28].

Low-rank & sparse matrix decomposition methods gen-
erally assume that the data matrix X is fully available; how-
ever, in practical scenarios, one has to face the problem
of missing data. Matrix completion theory [5] is the most
natural instrument to manage low-rank matrices containing
missing entries. Actually, the goal of matrix completion
techniques is to complete a low-rank data matrix X starting
from a random subset of its entries PΩ(X) eventually cor-
rupted with a small amount of noise. Here Ω denotes the



Algorithm 1 GODEC

Input: X , r, k, �
Output: L, S

Initialize: L0 = X , S0 = 0, t = 0
while �X − Lt − St�2F / �X�2

F
> � do

1. t = t+ 1

2. Assign the rank−r approximation of X−St−1 to
Lt using BRP

3. Assign the projection onto K of X − Lt to St,
where K is the nonzero subset of the first k largest
entries of |X − Lt|

end while

Return L = Lt, S = St

sampling index matrix of X , i.e. Ωij = 1 if Xij is avail-
able, Ωij = 0 otherwise, and PΩ(·) denotes the projection
onto Ω. The matrix completion minimization problem can
be formulated as

�
min
L

�PΩ(X)− PΩ(L)�2F
s.t. rank(L) ≤ r.

(3)

Conventional solvers for this problem include Grassmann
manifold solvers such as OPTSPACE [14], and convex
solvers such as Augmented Lagrangian Multiplier [16]. The
matrix completion problem can also be solved by slightly
modifying the GODEC Algorithm, as explained in [28]. The
minimization problem (3) is reformulated by introducing a
sparse term S which approximates −PΩC (L), where ΩC

represents the complementary of Ω
�
min
L,S

�X − L− S�2
F

s.t. rank(L) ≤ r, supp(S) = ΩC .

(4)

Note that here S does not represent the outliers, but the
completion of missing entries. In the GODEC algorithm
for matrix completion, the updating of the sparse term is
obtained by assigning PΩC (X − L) = −PΩC (L) to S.
Note that the two versions of the GODEC algorithm, i.e.
Algorithm 1 and its modification for matrix completion, are
rather orthogonal. On one hand Algorithm 1 handles the
presence of outliers but it does not deal with missing data,
on the other hand the matrix completion modification can
fill missing entries, but it is not robust to outliers.

Here we propose a novel version of the GODEC algo-
rithm (called R-GODEC, where “R” stands for “robust”)
which manages at the same time both the presence of out-
liers and missing entries in the data matrix X . To the best of
our knowledge, we are among the first to address the prob-
lem at the intersection between low-rank & sparse matrix
decomposition and matrix completion. A seminal work is

presented in [27], where authors combine a greedy pursuit
for the updating of the sparse term, with an SVD-based ap-
proximation for the low-rank term. Similarly to GODEC,
this method requires to know in advance the cardinality of
the sparse term. Instead of following this approach, we
leverage on the GODEC algorithm for two main reasons.
First of all, using a BRP-based instead of an SVD-based
approximation for the low-rank term, the GODEC compu-
tational efficiency is inherited; secondly, minimizing a cost
function which is not explicitly dependent from the pro-
jection onto Ω, it results in a very flexible structure which
can be easily modified in order to automatically manage the
sparse term cardinality. The next section is devoted to in-
troduce our solution.

3. Our method

The ARE problem consists in recovering the absolute
rotations R1, . . . , RN in order to satisfy the compatibility
constraints Rij = RiR

T
j

, where Rij denotes the relative
rotation of the pair (j, i). Suppose that estimates �Rij of the
theoretical relative rotations are available for some index
pairs (i, j) in a set N ⊂ {1, . . . , N} × {1, . . . , N} (here-
after we denote estimates inferred from the input data with
the hat accent). These relative rotations will in general not
be compatible, thus the goal is to find the absolute rotations
such that �Rij ≈ RiR

T
j

, resulting in the following minimiza-
tion problem

min
Ri∈SO(3)

�

(i,j)∈N

��� �Rij −RiR
T

j

���
2

F

. (5)

In order to cast the ARE problem in terms of “low-rank
& sparse” matrix decomposition, we observe that problem
(5) can be reformulated in a useful equivalent form in the
following way. We first consider the case where estimates
R̂ij of the theoretical relative rotations Rij are available for
all i, j = 1, . . . , N (we will deal with the case of missing
relative rotations in Section 3.2). Let R be the 3N×3 block-
matrix containing the absolute rotations and let X be the
3N × 3N block-matrix containing the pairwise rotations:

R =





R1

R2

. . .

RN



 , X =





I R12 . . . R1N

R21 I . . . R2N

. . . . . .

RN1 RN2 . . . I



 . (6)

It is shown in [1] that X admits the decomposition X =
RRT and hence it is symmetric, positive semidefinite and of
rank 3. Thus the optimization problem (5) becomes equiva-
lent to minimize the error between the observed �X and the
underlying ground truth X , i.e. (5) coincides with





min
X

��� �X −X

���
2

F

s.t. X = RRT , Ri ∈ SO(3).
(7)



This formulation implicitly assumes that the data matrix
�X satisfies the properties mentioned above except from an

additive noise N , that is

�X = X +N. (8)

In other terms, problem (7) aims at minimizing the noise N .
As observed in [12], this is a complex multi-variable non-
convex optimization problem, thus a reasonable approach
is to relax some constraints over the variable X to make
the computation tractable. Two examples of relaxations,
i.e. spectral and semidefinite programming relaxations, are
described in [1]. The former forces the entire columns of
R to be orthonormal, instead of imposing the orthonormal-
ity constraints on each 3 × 3 block Ri. The latter guar-
antees that the optimization variable X is symmetric posi-
tive semidefinite, and covered by identity blocks along its
diagonal. Although these solutions can efficiently average
noisy orientations, it is well known that they are highly non-
robust and that they can give incorrect results in presence of
even a single outlier. Such outliers are very frequent when
dealing with real data. In the SfM context, for example,
repetitive structures in the images cause mismatches which
skew the epipolar geometry. In the global registration of 3D
point sets, outliers are caused by faulty pairwise registra-
tion, which in turn may be originated by insufficient overlap
and/or poor initialization.

Here we introduce a new model for the ARE problem
that naturally copes with the presence of outliers. More
precisely, we add a new term S in Equation (8), with the
property that S is nonzero in correspondence of the incon-
sistent relative rotations only. Moreover, we consider the
rank relaxation in which the matrix X is enforced to have
rank (at most) 3. This results in the following model

�X = L+ S +N (9)

where L is a rank−3 matrix, S is a sparse matrix contain-
ing the outliers and N is the noise. We use the notation L

instead of X to underline that L will not coincide with X

in general, due to the rank relaxation. Equation (9) is the
approximated low-rank & sparse matrix decomposition of
�X . The associated minimization problem is





min
L,S

��� �X − L− S

���
2

F

s.t. rank(L) ≤ 3, S sparse.
(10)

It is worth noting that here the outliers are intrinsically in-
cluded in the cost function. With respect to non robust so-
lutions that rely on a preliminary outlier rejection step, our
approach has the great advantage of being intrinsically ro-
bust against outliers.

3.1. Decomposition with Soft Thresholding

The approximated low-rank and sparse decomposition of
the matrix �X can be computed using Algorithm 1. In our
case the rank r is known and it is equal to 3, while the value
of k is unknown. Rather than estimating the cardinality of
the sparse term, which could fall into a thorny outlier re-
jection problem, we prefer to explore an alternative strategy
which does not involve the parameter k. This implies to
modify Step 3 in Algorithm 1 by considering the following
minimization problem instead of (10)





min
L,S

1

2

��� �X − L− S

���
2

F

+ λ �S�1
s.t. rank(L) ≤ 3

(11)

where λ is a regularization parameter and ||S||1 denotes the
�1−norm of S viewed as a vector. It is well known from
sparse representation theory that minimizing the �1−norm
will in general yield a sparse vector, and hence the solution
of the above problem is expected to recover the sparse pat-
tern of the outlier rotations. In this case, the updating of the
sparse part is obtained by minimizing the cost function in
(11) with respect to S, keeping L constant. Such a problem
is known to have an analytical solution called soft thresh-

olding or shrinkage [3], expressed as

Sλ( �X − L) = sign( �X − L) ·max(0, | �X − L|− λ) (12)

where scalar operations are applied element-wise.

3.2. Dealing with missing data

We now consider the case of missing relative rotations,
which frequently occurs in practice, because many local ref-
erence frames are not directly related one to each other by
a relative rotation. In other words, referring to the SfM ter-
minology, the epipolar graph is not complete.

To handle this situation, the data matrix �X is modified
by introducing zero blocks in correspondence of the miss-
ing pairwise rotations. When noise with a small variance
is added to the given data, the matrix �X can be completed
by exploiting conventional matrix completion methods, as
shown in [2], or by modifying the GODEC Algorithm, as
explained in Section 2. However, in the presence of outliers,
these methods offer no guarantees on a correct recovery of
the low-rank matrix.

We propose to fill this gap by extending the model in (9)
in order to cope with both outliers and missing data. More
in detail, we express the sparse term in (9) as the sum of two
terms S1 and S2 resulting in the following model

�X = L+ S1 + S2 +N. (13)

S1 is a sparse matrix over the sampling set Ω representing
the outliers in the measurements. S2 has support on ΩC and



it is an approximation of −PΩC (L), representing the com-
pletion of the missing entries. In other words, equation (13)
reduces to (9) over the sampling set, since S2 is zero in Ω;
on the contrary, out of the sampling set, equation (13) turns
to L+S2+N = 0, since both S1 and �X are zero in ΩC , and
thus S2 can be updated according to the modified GODEC
algorithm for matrix completion, as explained in Section 2.
Starting from (13) we solve the following problem






min
L,S1,S2

��� �X − L− S1 − S2

���
2

F

s.t. rank(L) ≤ 3,

supp(S1) ⊆ Ω, S1 sparse over Ω,
supp(S2) = ΩC

(14)

by modifying Algorithm 1 according to a block-coordinate
minimization scheme. The sparse terms S1, S2 are consid-
ered separately: S1 is updated by applying soft thresholding
to the matrix PΩ( �X − L), while −PΩC (L) is assigned to
S2. This method, called R-GODEC, is summarized in Algo-
rithm 2. As a matter of fact, a formal proof of convergence
of the algorithm is out of the scope of this paper. However,
the fact that each step does not increase the objective func-
tion is a property shared with any block-relaxation tech-
nique (modulo the approximation induced by BRP). Once
the optimal L is found, we proceed as follows to compute
the absolute rotations. Since the solution is defined up to a
global rotation, corresponding to a change in the orientation
of the world coordinate frame, any block-column of L can
be used as an estimate of R. Due to the rank relaxation,
each 3× 3 block is not guaranteed to belong to SO(3), thus
we find the nearest rotation matrix (in the Frobenius norm
sense) by using SVD [13].

Algorithm 2 R-GODEC

Input: �X , r, �, λ
Output: L, S1, S2

Initialize: L0 = �X , S0
1 = 0, S0

2 = 0, t = 0

while

��� �X − Lt − St
1 − St

2

���
2

F

/

��� �X
���
2

F

> � do

1. t = t+ 1

2. Assign the rank-r projection of �X−S
t−1
1 −S

t−1
2

to Lt using BRP

3. Assign Sλ(PΩ( �X − Lt)) to St
1

4. Assign −PΩC (Lt) to St
2

end while

Return L = Lt, S1 = St
1, S2 = St

2

3.3. Outlier Detection

Although the absolute rotations computed by our algo-
rithm are intrinsically insensitive to outliers, it might be

beneficial for the subsequent steps (e.g., computing trans-
lations in SfM) to single out bad relative rotations from
the data matrix �X , which are indicators that the whole
rigid transformation is probably faulty. As a matter of fact,
outliers can be identified by analyzing the optimal S1 re-
turned by R-GODEC (Algorithm 2), which, however, oper-
ates element-wise on �X . Thus, we will deem the rotation
�Rij as outlier whenever the number of non-zero entries of
the 3 × 3 block in S1 associated with �Rij is greater than a
threshold θ, with θ ∈ {1, 2, . . . , 9}.

4. Experiments

To assess our method – R-GODEC, we consider both
synthetic and real scenarios. All the experiments are car-
ried out in MATLAB on a dual-core 1.3 GHz PC. We com-
pare R-GODEC with the techniques introduced in [1], i.e.
spectral decomposition (EIG) and semidefinite program-

ming (SDP). To implement such techniques, we use the
MATLAB command eigs for the former and the SeDuMi
toolbox [24] for the latter. We also insert in the compar-
ison the matrix completion algorithm OPTSPACE, whose
code is available online [14], and our implementation of
the Weiszfeld algorithm [11]. We evaluate the accuracy
of rotation recovery by using the angular distance between
ground truth and estimated absolute rotations. The angu-
lar distance between two rotations A and B is defined as
d∠(A,B) = d∠(BAT , I) = 1/

√
2
��log(BAT )

��
2
. Other

distances in SO(3) can be considered with comparable re-
sults. As for the validation of outlier detection (which is not
strictly part of R-GODEC, though), we consider the custom-
ary receiver operating characteristic (ROC) curve, where the
parameter is the threshold θ.

4.1. Simulated Data

In this section we show experimental results on synthetic
data by analyzing the performances of R-GODEC in the
presence of outliers among the relative rotations.

Following the experiments described in [1], we consider
N = 100 rotation matrices representing the ground truth
absolute orientations, and we perturb the relative rotations
with Gaussian noise with SNR of 30dB, corresponding to
a mean angular error of 2 degrees. These noisy matrices
are then projected onto SO(3). We consider a realistic
case in which a fraction p of the relative rotations is miss-
ing (drawn randomly with the constraint that the resulting
epipolar graph remains connected). The rest of the pair-
wise orientations are either true rotations corrupted by noise
or drawn uniformly from SO(3), simulating outliers. We
analyze the cases p = 0 (no missing pairwise rotations),
p = 0.5, p = 0.7 and p = 0.9. In the first case we also
insert in the comparison the original GODEC (Algorithm
1), which only works with the full data matrix and assumes
that the parameter k is given. The value of λ is set equal to



0.05 in the cases p = 0, p = 0.5, equal to 0.1 in the case
p = 0.7, and equal to 0.15 in the case p = 0.9. Indeed, if the
data matrix is highly incomplete, it is preferable to choose a
higher value for λ, in order to give more importance to the
outlier term S1 rather than the completion term S2.

Figure 1 shows the results, averaged over 30 trials. R-
GODEC performs significantly better than the other an-
alyzed state-of-the-art techniques. In the cases p =
0, 0.5, 0.7, when outliers do not exceed inliers (the second
last value corresponds to 50% of effective outliers), the er-
ror of R-GODEC remains almost constant, showing no sen-
sitivity to outliers. When the percentage of outliers exceeds
that of inliers, the error starts to grow, which suggest empiri-
cally that R-GODEC might have a 0.5 breakdown point. On
the contrary, the Weiszfeld algorithm, which belong to the
category of robust methods together with R-GODEC, has
a 0.3 breakdown point. Indeed, by using the �1−norm in
(5) in place of the �2−norm, the influence of outliers is re-
duced but not canceled. Our approach, on the contrary, uses
the �1−norm as a sparsity promoter. The standard deviation
of R-GODEC is also very small, compared with the other
methods. In particular, note that in the case p = 0 there
are no significant differences between R-GODEC and the
original GODEC algorithm with known k, which demon-
strates the effectiveness of the soft thresholding strategy
for computing the sparse term. It is worth noting that R-
GODEC outperforms all the analyzed techniques also in
the challenging situation of a highly incomplete data ma-
trix (p = 0.9).
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Figure 1. Mean angular errors [deg] and standard deviations of
absolute rotations as a function of the fraction of outliers, for dif-
ferent percentages of missing relative rotations. The fraction of
outliers in the abscissae is always referred to the total number of
rotations, including the missing ones, so as the right extremum
corresponds to 60% of effective outliers.

In this experiment we also evaluate the outlier detection
performances of our method. With reference to Figure 2, up

to 50% of missing data (first row of the figure), our outlier
detector gives a perfect classification, as confirmed by the
area under the ROC curve which is equal to 1. This does not
hold for the black curves marked with triangles, which refer
to the extreme case of 60% of outliers, which is beyond the
breakdown point of R-GODEC. However, also in this case a
fairly good classification can be appreciated. In the case of
a highly incomplete data matrix (second row of Figure 2),
although our detector becomes less accurate as the fraction
of outliers increases, it maintains quite good performances.
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Figure 2. Outlier detection: ROC curves of the classification, for
different percentages of missing relative rotations. The fraction
of outliers is always referred to the number of available relative
rotations.

We conclude this analysis by discussing the perfor-
mances of R-GODEC in terms of computational time. Fig-
ure 3 reports the running time of several algorithms, includ-
ing R-GODEC, for different values of N . The execution
cost includes both operations on the data matrix and the
subsequent projection onto SO(3). Our method is compa-
rable to spectral decomposition and OPTSPACE algorithms,
which however are not robust, and significantly faster than
semidefinite programming and Weiszfeld algorithms. Con-
sidering that EIG is the fastest solution to the ARE problem
known in the literature, one can see how R-GODEC buys
robustness at a very little computational cost. The reason
why Weiszfeld curve is not so regular in Figure 3 is as fol-
lows. As for the initialization, Weiszfeld algorithm propa-
gates the compatibility constraint along a random spanning
tree, starting from the node with the maximum number of
incident edges. Thus, the number of iterations required to
yield convergence is dependent on the accuracy of such ini-
tial guess.

4.2. Real data

In this section we apply R-GODEC to the ARE of real
cameras. More precisely, to assess our method, we use the
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Figure 3. Execution times (in seconds) of ARE as a function of the
number of absolute rotations. The parameters defining the stop-
ping criterion (maximum number of iterations and tolerance) are
the same for all methods. The right figure is a zoom of the left one.

benchmark in [23] which provides ground-truth rotations.
The datasets consist in 8 to 30 images of dimensions 3072×
2048 pixels.

To compute the relative rotations we follow a standard
SfM pipeline. First, reliable matching points across the in-
put images are computed by using SIFT key-points. Then,
each essential matrix is computed through the RANSAC
procedure, and it is factorized to obtain a unique �Rij , which
is considered missing if less than m inlier correspondences
are found. In our simulations, we consider the cases m =
100, 250, 500. As m increases, the percentage of missing
data becomes larger and the fraction of outliers decreases.
The value of λ is set equal to 0.05.

Results are shown in Table 1. In all the analyzed datasets,
R-GODEC outperforms EIG, SDP and OPTSPACE, which
are not robust to outliers. Our method gives better results
than the Weiszfeld algorithm when contamination of out-
liers is particularly evident. This is clear in the Castle se-
quences which contain repetitive structures, such as doors
and windows, that generate outliers. When there are no
(or few) outliers, R-GODEC and Weiszfeld are compara-
ble, our method is significantly faster, though. In few cases,
Weiszfeld yields more accurate results than R-GODEC,
probably due to the fact that R-GODEC uses a binary cri-
terion to identify gross errors in the data matrix, causing
possible ambiguity between outliers and noise, when out-
liers are actually absent. Note that the errors in Table 1
are obtained without applying bundle adjustment, i.e. the
final refinement required in any SfM method. Given the
high dimensional optimization involved, successful conver-
gence of bundle adjustment heavily depends on a good ini-
tial guess: R-GODEC provides an excellent initial guess to
such optimization.

5. Conclusion

In this paper we have presented a robust method to solve
the ARE problem. We have formulated a novel cost func-
tion for such a problem which naturally includes the outliers
in its definition. In particular, we have developed an algo-
rithm which successfully handles both outlier and missing

relative rotations by casting the problem as a “low-rank &
sparse” matrix decomposition. R-GODEC, obtained by ex-
tending the GODEC algorithm, is efficient and highly ac-
curate, as demonstrated by simulated and real experiments.
As a side effect, our solution can be seen as a valid and cost-
effective detector of the inconsistent pairwise rotations. As
regards possible future work, two directions could be inves-
tigated. From one side, one could enforce that the output
matrix, beside having a given rank, must also be positive
semidefinite, by devising specific techniques for updating
the low-rank term. On the other side, one could substitute
the �1 norm in (11) with some mixed norm in order to pro-
mote group sparsity and to better highlight the block struc-
ture of the data matrix.
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