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Abstract—We propose an iterative method for detecting
closed surfaces in a volumetric data, where an optimal search
is performed in a graph build upon a triangular mesh. Our
approach is based on previous techniques for detecting an op-
timal terrain-like or tubular surface employing a regular grid.
Unlike similar adaptations for triangle meshes, our method is
capable of capturing complex geometries by iteratively refining
the surface, where we obtain a high level of robustness by
applying explicit mesh processing to intermediate results. Our
method uses on-surface data support, but it also exploits
data information about the region inside and outside the
surface. This provides additional robustness to the algorithm.
We demonstrate the capabilities of the approach by detecting
surfaces of CT scanned objects.
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I. INTRODUCTION

Volumetric surface detection is important for a range
of applications including computer assisted diagnosis in
medical image analysis and measuring structures in material
science. Surface detection techniques based on graph cut
have shown very good results by providing an optimal
solution and having low computational complexity. In this
paper we extend the optimal net surface detection originally
suggested by Wu and Chen [1]. We model the surface using
a triangular mesh and employ mesh processing techniques
to improve robustness of the approach.

Optimal net surface detection via a graph search was first
used for finding terrain-like and tubular surfaces [2]. Such
surfaces are well represented using a rectangular grid which
also naturally provides a necessary neighbourhood structure
for the search lines. In the case of terrain-like surfaces a
search is performed along vertical lines, and for tubular
surfaces the search is in radial direction. The graph is built
on a set of samples along the search lines in a way that
limits the roughness of the solution. The optimality of the
solution is defined in terms of a volumetric cost function
derived from the data.

A grid-based representation is however not suited for
modeling other geometries like spherical objects, because
the grid deforms when projected to a sphere. To detect
spherical objects a search can be performed along lines
from a single seed point through the vertices of a regular
polyhedron. Such an approach, suggested by Egger et al.

[3] and Wang and Beichel [4], allows for finding boundaries
of objects in the so-called star domain which might be
sufficient in many applications [5].

A mesh based technique that utilizes a rough initial
surface has been suggested in Li et al. [6] and similar
methods have been used in [7], [8], [9]. The search lines
in those approaches are inferred from the initial surface,
which might lead to problems in the case of noisy data.
To overcome this problem curved search lines have been
proposed in [10], [11], [12].

Net surface detection has seen a growing use within
medical image segmentation [13], [14] where it has been
further extended in a number of ways. This includes multiple
interrelated surfaces that can be detected simultaneously [2].
The cost function, originally defined only in terms of on-
surface costs, has also been extended to incorporate regional
information [15], [16], [7]. In addition, the roughness has
been allowed to vary across the surface [17], and soft shape
constraints have been introduced [18].

The Round Cut algorithm is a novel approach which
combines explicit mesh processing with a layered net surface
detection. Our approach incorporates the following steps:
(a) a polyhedron based initialization, (b) a layered surface
detection with on-surface and in-region cost functions, and
(c) an explicit mesh processing including mesh subdivision
and mesh smoothing. Explicit mesh processing makes it
possible to use our method for an iterative surface refinement
by repeating steps (b) and (c). Consequently, our method
differs from similar approaches in being able to detect details
and objects beyond the star domain (i.e. surfaces that cannot
be reached by rays from a seed point) even though the mesh
is initiated at a point and not close to the surface, see Fig. 1.

II. METHOD

Our method extends previous work on the optimal net
surface problem using graph search originally suggested by
Wu and Chen [1]. To make this paper self-contained we first
review the graph construction for finding an optimal solution
to the net surface problem and a few relevant extensions of
the original algorithm in Section II-A. Then in Section II-B
we describe how mesh-based surface search is performed
and we explain the elements of our proposed iterative search
refinement.



(a) (b) (c) (d)

Figure 1. Example of the iterative surface detection. (a) the mesh is initialized as a polyhedron and in (b-d) the boundary iteratively adapts to the data.

A. Optimal Surface Search

In the original formulation by Wu and Chen [1] the
optimal net surface problem in 3D is described as follows.
Given discrete volumetric data I(x, y, z), x ∈ X =
{1, . . . , xmax}, y ∈ Y = {1, . . . , ymax}, z ∈ Z =
{1, . . . , zmax} we consider terrain-like surfaces S : X×Y →
Z, i.e. surfaces which intersect each (x, y)-column of voxels
exactly once at a voxel of height S(x, y). To limit surface
roughness, a constraint is imposed such that the height at
neighbouring columns may not change more than a certain
inter column shift

|S(x, y)− S(x− 1, y)| ≤ ∆x, x 6= 1 (1)

and
|S(x, y)− S(x, y − 1)| ≤ ∆y y 6= 1 . (2)

Voxel intensities are used to define an on-surface cost
function con(x, y, z) which takes a small value where data
supports the surface. Hereby the total cost of the surface is
the cost of all its voxels

con(S) =
∑
x

∑
y

con(x, y, S(x, y)) , (3)

and an optimal net surface is the surface with the minimum-
cost among all terrain-like surfaces satisfying the shift con-
straint. The polynomial time solution presented in [1] trans-
forms the optimal net surface problem into that of finding a
minimum-cost closed set in a node-weighted directed graph1.
This is transformed into a problem of finding a minimum-
cost s-t cut in a related arc-weighted directed graph [19].
We start by describing the latter of the two transformations.

1) Minimum closed set to minimum graph cut: The
minimum-cost s-t cut algorithm of Boykov and Kolmogorov
[19] is a well known tool and has been used in many
image segmentation tasks. The optimal net surface problem
presented here is also ultimately solved using the minimum-
cost s-t cut algorithm, but with a very different graph
representation than that in [19]. In the following paragraph
we describe and exemplify how a minimum cost closed set

1We will use the term node and arc for the base entities of the graph,
and will reserve the terms vertex and edge for the entities of a triangle
mesh.

problem in a node-weighted graph can be transformed to
a minimum cost s-t graph cut problem. In the rest of this
paper we will explain the surface detection problem only in
terms of minimum-cost closed set, and will not look back
at the details of finding the ultimate solution using s-t cut.

A set of nodes in a directed graph with no arcs towards
the rest of a graph is called a closed set. In a node-weighted
graph G = (N,A) consisting of weighted nodes N and
directed arcs A, a cost of a set is the total cost of its nodes.
The minimum-cost closed set has minimal possible cost of
all closed sets [1]. To transform a minimum-cost closed
set problem to minimum-cost s-t cut problem, a related
arc-weighted graph G̃ = (Ñ , Ã) is constructed as follows.
Terminal nodes are added to G

Ñ = N ∪ {s, t} , (4)

and the arc set is extended with terminal arcs

Ã = A ∪Ast . (5)

The source is linked to all nodes with negative weight, while
all nodes with nonnegative weight are linked with the sink

Ast = {〈s, n〉 , w(n) < 0} ∪ {〈n, t〉 , w(n) ≥ 0} , (6)

where w is a weight of a node in n ∈ N . Each terminal arc is
assigned a weight which is an absolute value of the weight
of the involved node, while the internal arcs are assigned
infinite weight

w̃(a) =

{
∞ a ∈ A
|w(n)| a = 〈s, n〉 or a = 〈n, t〉 . (7)

It can be shown [1] that the source set of the solution for
the minimum-cost s-t problem in G̃ is a minimum closed
set of G.

2) Optimal surface to minimal closed set: When trans-
forming the optimal net surface problem into a minimum-
cost closed set problem, a graph is constructed on top of the
volumetric data. The feasibility of the surface is handled by
the graph arcs, while the optimality of the solution is ensured
by the node weights. The idea is to create a correspondence
between a surface and a voxel set below the surface. The
fundamentals of the approach are explained below while the
details can be found in [1], [2].



We will describe the construction of a graph G = (N,A)
containing weighted node set N and directed arc set A.
Graph nodes represent the volume voxels, so we write
N = {n(x, y, z)} for the nodes and w(x, y, z) for the
corresponding node weights. We assume x ∈ X, y ∈
Y, z ∈ Z, unless otherwise stated. An arc from the node
n to the node n′ is denoted as 〈n, n′〉.

The nodes of the lowest possible surface n(x, y, 1), called
the base set, are connected in a grid-like manner by arcs AB ,
running in both directions and drawn from each node to its
(up to) four neighbours

AB = {〈n(x, y, 1), n(x′, y′, 1)〉 , |x−x′|+ |y−y′| = 1} .
(8)

To guarantee that the base set always is included in a
minimum closed set, the cost of the base set should be
negative. This can be obtained by assigning an arbitrary
negative weight, e.g. w(x, y, 1) = −1, to all base nodes.

The nodes of each (x, y) column are linked by directed
arcs pointing downwards

AC = {〈n(x, y, z), n(x, y, z − 1)〉 , z 6= 1} . (9)

Those intra-column arcs, linking each column in a path
pointing at the base set, ensure that the surface found as
an upper envelope of a minimum closed set is a terrain-like
surface. The shift constraint is enforced by adding slanted
inter-column arcs

AS ={〈n(x, y, z), n(x′, y, z −∆x)〉 ,
|x− x′| = 1, z > ∆x} ∪

{〈n(x, y, z), n(x, y′, z −∆y)〉 ,
|y − y′| = 1, z > ∆y} , (10)

which completes the arc set A = AB ∪ AC ∪ AS .
Finally, a cost

w(x, y, z) = con(x, y, z)− con(x, y, z − 1), z 6= 1 (11)

is assigned to all nodes outside the base set. Due to cance-
lations, the w-cost of each closed set in a graph is equal (up
to a constant, because of the arbitrary weight of the base
set) to the c-cost of its upper envelope.

3) Layered surfaces: The optimal net surface approach is
readily extended to multiple interrelated surfaces [2], allow-
ing the detection of layered surfaces. The problem is now
to find kmax surfaces Sk(x, y), k ∈ K = {1, . . . kmax}
where, for example, the overlap between surface 2 and
surface 3 is constrained by

δl ≤ S3(x, y)− S2(x, y) ≤ δu . (12)

Each of the kmax surfaces to be detected contributes with a
sub-graph dedicated to a single surface, and constructed as
described above. When put together, this results in a node
set N = {n(x, y, z, k), k ∈ K}. The input to a layered
surface detection problem is a 4D cost con(x, y, z, k), taking

small values where a volume data I(x, y, z) supports the
surface k.

To incorporate overlap constraints, sub-graphs are then
connected by inter-surface arcs in such a way that the de-
sired distance between the surfaces is ensured. For example,
if an overlap between surface 2 and surface 3 is constrained
by (12) the following set is needed

AL23 = {〈n(x, y, z − δl, 2), n(x, y, z, 3)〉 , z > δl} ∪
{〈n(x, y, z, 3), n(x, y, z − δu, 2)〉 , z > δu} . (13)

Inter surface constraints can be used to prevent surface
overlap, or to limit the distance between surfaces.

4) Tubular surfaces: Tubular surfaces can also be de-
tected by unfolding the volume using cylindrical coordinate
transform. In this case the graph columns correspond to the
rays of radial samples in a volumetric data where each radial
ray has four neighbours, two axial and two tangential. The
inter column shift constraint is defined for both directions,
and additional intra-column arcs have to be placed in a graph
between the first and the last radial plane. So again, the base
surface is a regular grid wrapped around the cylinder, and
the optimal surface is found by adjusting the position of the
grid vertices along the radial ray.

5) In-region cost: The cost function, originally pertaining
only to where the data supports the surface, has been
extended to incorporate in-region cost, i.e. knowledge about
the region above, under or between the surfaces to be de-
tected [15], [16]. This applies to kmax non-overlapping and
ordered surfaces dividing the volume in (kmax + 1) regions,
with the volume boundaries defining the first and the last
region. The in-region cost is given by cin(x, y, z, k), k ∈
{1, . . . , kmax + 1} taking a small value where the volume
data I(x, y, z) supports the region above k − 1 and below
k. The bottom and the top of the volume are used here as
the 0-th and the (kmax + 1)-th surface.

Using in-region costs only affects weights of the graph
nodes, which are now win(x, y, z, k) = cin(x, y, z, k) −
cin(x, y, z, k+1). To verify that this construction guarantees
optimality consider a specific solution Sk(x, y). Moving
one surface k̂ in one column (x̂, ŷ) from its position ẑ =
Sk̂(x̂, ŷ) to a one voxel higher position ẑ + 1 would move
the voxel at position (x̂, ŷ, ẑ + 1) from a region k̂ + 1 to a
region k̂. This move would change the in-region cost of the
entire solution with cin(x̂, ŷ, ẑ+1, k̂)−cin(x̂, ŷ, ẑ+1, k̂+1)
which is only favorable (i.e. negative) if the data supports
the moved voxel being in region k̂ stronger than in region
k̂+1. On-surface and in-region costs can be used separately
or combined as a weighted sum.

B. Mesh Based Surface Search

It would be possible to detect surfaces of spherically
or elliptically shaped objects, using a spherical transform.
However, choosing suitable inter column shift constraints
would be problematic, due to the big distortion of the grid



in polar regions. Instead, a mesh defining a more regular
tiling of a sphere should be used as a base surface in this
case. In [3] and [4] a polyhedron to set up a graph and
surface is detected in a single optimization step.

Essentially, the detection of terrain-like, tubular or spher-
ical surfaces are special cases of a general framework based
on any type of meshed surface. The search for the optimal
surface is performed along the graph columns, which cor-
respond to rays trough mesh vertices. Mesh edges provide
a neighborhood structure when drawing intra-column edges
needed to enforce the shift constraint. Not only does this
allow us to initialize the algorithm for terrain-like, tubular or
spherical surfaces, but it enables taking an arbitrary meshed
surface, for example an initial rough object segmentation,
as an input. The approach with pre-segmentation has been
pursued in a number of applications [6], [8].

Still, this more general framework allows for another
extension, which has not been reported before. Having
triangle mesh as both input and output of an optimization
step we can iteratively refine the surface. Refinement can
be both in terms of mesh connectivity (inserting additional
vertices to the mesh) or in terms of mesh geometry (moving
mesh vertices closer to the surface). In particular, iterative
approach allows us to detect objects beyond the star domain.

The method we implemented can detect layered closed
surfaces while incorporating in-region costs. For this we use
polyhedra based initialization from a given seed point. As
an original approach, we can iteratively refine the optimal
search, which allows us to detect surfaces beyond the star
domain. A number of issues needs to be considered when
using the iterative method since the lack of smoothness and
the irregularity of the triangle mesh might compromise the
robustness of the method. To circumvent those issues we,
as another novel contribution, incorporate mesh processing
steps in the iterative approach.

1) Polyhedron construction: The base surface for our
algorithm is a triangle mesh on the unit sphere placed at
the desired seed point. To define the base surface mesh we
mimic the construction of a geodesic dome, starting with the
regular icosahedron, a polyhedron with F0 = 20 equilateral
triangular faces and V0 = 12 vertices. Finer resolution is
obtained by dividing icosahedron faces in a desired geodesic
dome frequency ν. This frequency represents a number of
equal-length segments into which each icosahedron edge is
divided, resulting in a division of each icosahedron face into
ν2 smaller equilateral triangular faces. Vertices added in the
process are then projected out on the sphere. This produces
a high quality triangle mesh on the unit sphere with all the
faces being roughly equilateral. It is also a very regular
mesh, with only 12 extraordinary points, since all but the
original icosahedron vertices have valency 6. The resulting
number of mesh vertices is V = V0 + F0

2 (ν+1)(ν−1), and
even though V grows quadratically with ν, this allows us to
choose suitable polyhedra resolution, unlike e.g. [3], where

only two resolution settings are used.
2) Mesh based graph construction: In its general form, a

graph search algorithm is described as follows. The input to
the algorithm is an arbitrary meshed surface M = (V, F ),
with a set of vertices V = {vi, i ∈ {1, . . . , n}} and a set
of faces F . Faces imply a neighborhood relation for vertices,
and we write i ∼ i′ if vertices vi and vi′ belong to a face
from F . A sequence of numbers q = (q1, . . . , qm) defining
sampling distances in the normal direction, typically equally
spaced and symmetric around zero, is also required. Further-
more, an inter column shift constraint for each surface, and
the overlap constraint between surfaces are needed.

Spatial sampling is performed along the vertex normals
at the distances q

U(i, j) = I(vi + qjni) , (14)

where vi are spatial coordinates of mesh vertices, and ni are
normals of mesh vertices. Typically a trilinear interpolation
is used to obtain voxel values outside the lattice points. The
resulting column-image is a collection of normal samples,
and each mesh vertex contributes with one image column.

In general we are not directly interested in voxel intensi-
ties I(x, y, z) but will use them to calculate the on-surface
and in-region cost functions. Depending on the problem at
hand two approaches are possible. We can sample in the
volumetric data and compute the costs based on the column
image U . Alternatively, we can pre-calculate volumetric
on-surface and/or in-region costs from data, and preform
sampling similar to (14) in the cost volumes. The former
approach is preferable when defining a cost function in terms
of the gradient in the normal direction.

A graph G = (N,A) needs to be constructed on top of
the column-image U . We describe graph construction for a
single surface. Graph nodes represent column-image pixels,
so now we write N = {n(i, j)}, i ∈ {1, . . . , n}, j ∈
{1, . . . ,m}. Intra-column arcs are drawn pointing down-
wards in U (inwards in I)

AC = {〈n(i, j), n(i, j − 1)〉 , j 6= 1} (15)

ultimately pointing at the base surface which consists of
the nodes corresponding to the lowest (innermost) sample
in each column. When drawing arcs between the columns,
we utilize mesh vertex neighborhoods, so base surface nodes
are connected by

AB = {〈n(i, 1), n(i′, 1)〉 , i ∼ i′} . (16)

In a similar manner, inter-column arcs are drawn by utilizing
the neighborhood information

AS = {〈n(i, j), n(i′, j −∆)〉 , i ∼ i′, j > ∆} , (17)

where ∆ is the inter column shift constant. Unlike the
regular grid setting where we distinguish between ∆x and
∆y , a meshed surface has no intrinsic directions so now we
have a single shift constraint.



The optimal graph search is now performed in the same
manner as described before, and the output of the algorithm
defines a normal displacement of mesh vertices.

3) Iterative approach: When starting from a certain seed
point we will sample in outgoing rays so the distances
are usually defined as q = (1, 2, . . . , qmax). However, the
algorithm may take any meshed surface as an input and
preform the optimal search along the normals. In particular,
we might refine any rough surface by (re-)sampling only in
a certain layer around the surface, e.g. by using sampling
distances q = (qmin, . . . ,−1, 0, 1, . . . , qmax). Furthermore,
since both the input and the output of the algorithm are
triangle meshes, we may use the algorithm in an iterative
manner where we increase the number of sampling rays
while reducing their length.

4) Challenges: There are a number of issues that should
be considered when using an arbitrary meshed surface as
the input to the algorithm. The first issue is an applicability
of the inter column shift constraint. Mesh edges are the
basis for limiting the shift and in order for this constraint
to be intuitive and applied equally across the surface, edge
length should be roughly uniform. Furthermore, the shift is
defined relative to the input mesh, so parameter ∆ pertains to
how much additional inter-column displacement is allowed
and does not directly relate to the roughness of the final
result. The second important issue is a sampling along the
normal direction which can lead to serious problems. If
the input mesh is not smooth, vertex normals may overlap
within the sample distance leading to folding of the surface.
To alleviate the problem [11] suggests sampling along the
curved gradient vector flow lines. Instead, and to address
both mentioned issues we decided to ensure that the input
mesh is of a fair quality by incorporating mesh processing
steps in our algorithm.

5) Mesh subdivision: Maintaining a smooth triangle mesh
is essential for the performance of our algorithm. It is
therefore important that the mesh subdivision increases the
number of mesh vertices while preserving smoothness. In
order to achieve that, two mesh subdivisions schemes have
been used, butterfly [20] and Loop [21] subdivision. In
both butterfly and Loop a triangle face is quadrisected by
splitting its edges in two and connecting the three inserted
vertices. Butterfly subdivision is an interpolating scheme.
The positions of the inserted vertices are computed as linear
combinations of existing vertices resulting in a smooth
surface. The limit surface, obtained by repeated butterfly
subdivision, is C1 continuous everywhere but in the extraor-
dinary points where it is C0 continuous. Loop subdivision is
an approximating scheme. Besides computing the positions
of inserted vertices, the position of the original mesh vertices
are updated in order to achieve higher smoothness. Loop
subdivision generates a limit surface which is C2 continuous
everywhere but in the extraordinary points where it is C1

continuous.

Figure 2. A photograph of hamster objects used for testing the Round
Cut algorithm.

6) Mesh smoothing: The intermediate result of our it-
erative algorithm is smoothed in every step. This is to
prevent mesh normals from overlapping while preparing for
the next graph cut detection step. It is appropriate for the
mesh smoothing to be rather aggressive, as it is essential
for the robustness of the method and it only affects the
temporary result. Still, we would like to avoid mesh shrink-
age, which accompanies e.g. Laplacian smoothing. This is
particulary important when detecting a surface beyond the
star domain by growing the mesh from a seed point, where
pulling the protrusions inwards would delay the algorithm.
Taubin smoothing [22], which we employ, attenuates only
high frequencies and may even boost the low frequencies,
resulting in less shrinkage.

7) Pipeline: The Round Cut algorithm pipeline includes
an initialization, a few refinement steps, and a final surface
detection. Prior to the surface detection, volumetric data
must be processed. This involves defining the transformation
of the data into on-surface and/or in-region costs, e.g. by
computing the spatial gradients or the probabilities of the
voxels belonging to a region. During the initialization a
polyhedron is set up at a seed point, which is either the
center of the volume or user defined. The first graph cut
surface detection is then performed, typically sampling over
the entire volume. Each iterative steps consists of mesh
subdivision followed by graph cut surface refinement which
in turn is completed by mesh smoothing. The number of
vertices grows exponentially when subdividing a mesh, so
in general we need to preform only a few subdivision
steps before reaching the desired mesh resolution. On the
contrary, the number of required graph cut refinement steps
might be large when the surface needs to evolve extensively
from the seed point. We therefore allow for a number of
refinement steps following each subdivision. Mesh smooth-
ing is performed in each of the refinement steps. During



(a) (b) (c) (d) (e)

Figure 3. Detecting a surface of a hollow hamster object consisting of four parts fitted together. The top row shows surfaces, while the bottom row shows
a slice of the volumetric CT data displaying coronal plane together with the segmentation contours. The blue dot is the initialization point, (a) shows initial
rough surfaces defining outer and inner object boundary, (b-d) are three iterations of subdivision and surface refinement followed by smoothing, and (e)
shows the result after the final graph cut surface refinement.

(a) (b) (c) (d) (e)

Figure 4. Detecting a surface of another hamster object, with the same five steps as in Fig. 3. Only the outer object boundary is detected and a sagittal
plane is shown.

refinements the sampling depth is reduced as we do not
consider positions far from the current surface. Likewise,
the shift constraint is reduced as we get closer to the desired
surface. Finally, the algorithm ends with a single graph cut
surface detection which carries out the final adjustment of
the surface.

8) Source code: Round Cut is written in MATLAB and
relies on a publicly available implementation of the graph
cut algorithm developed by Boykov and Kolmogorov [19].

Round Cut source code, together with the volumetric data
and the MATLAB scripts for producing the results shown in
this paper are available at http://people.compute.dtu.dk/vand.

III. RESULTS

We tested the Round Cut algorithm by segmenting micro-
CT scans of two hamster objects shown in Fig. 2. These
were chosen because they feature challenging geometry with
small details like ears and tails. To make a surface detection



task more challenging, we added 2.5% additive Gaussian
noise to the volumetric data.

Fig. 3 shows a segmentation of a hollow object, where
a layered surface model was applied to initially locate
the inner and the outer boundary. Fig. 4 shows a similar
segmentation of a taller hamster object. The segmentation
results illustrate the geometric flexibility of the Round Cut
algorithm. Our approach detects surfaces outside the star
domain with high precision. Detailed features like the ears
or eyes of the hamster objects are well recovered as well,
despite the single point initialization.

We have compared our algorithm with a single-step ap-
proach, similar to [3], [4], by initializing the Round Cut
algorithm with high resolution, but without refinement. In
our comparison we made sure that the number of vertices
in both resulting meshes is the same. The noisy data was
challenging for a single-step approach, so in comparison we
used noise-free data from higher quality scans. As shown
in Fig. 5 and Fig. 6 the single step approach is not able
to handle parts outside the star domain due to the straight
search lines, and only part of the object are segmented
correctly. Furthermore, a large column shift is needed to
reach an elongated object, which results in a higher degree
of noise in the final segmentation compared to Round Cut.

A few parameters need to be chosen to obtain an optimal
performance. This includes an initial polyhedron frequency
which governs the resolution of the final mesh. We have
chose to set the initial polyhedron frequency to ν = 4.
Together with three subdivision steps this results in a mesh
with 10242 vertices. Initially the inter-column shift is set to
20 and is reduced to 10, 5 and 2 after each subdivision to
reflect the reduction in vertex distances when new vertices
are added. The third subdivision step is followed by three re-
finements without subdivision. Each graph cut is completed
by 5 iterations of Taubin smoothing, with a scale factor 0.5
and a band pass frequency 0.2. The final surface refinement
step also allows for a shift of 2 voxels.

The cost function used for all shown results is an in-
region cost calculated from the volume V using a Gaussian
probability distribution f(v, µ, σ) evaluated at each voxel
with voxel intensity v. The cost is

cin =
1− f(V (x, y, z), µk, σk)∑2

k′=1(1− f(V (x, y, z), µk′ , σk′))
(18)

where mean µk and standard deviation σk of inside (k=1)
and outside (k=2) were estimated beforehand.

IV. CONCLUSION

In this paper we have presented the Round Cut surface
detection algorithm. This algorithm extends the optimal net
surface detection method for meshes. We apply an iterative
mesh refinement which allows us to detect objects beyond
the star domain. Each surface detection step is solved by
an efficient graph cut based algorithm which guarantees the

(a) (b)

Figure 5. Comparing Round Cut (a) with a single step approach (b) by
detecting a surface of a hamster object from a noise-free scan.

(a) (b)

Figure 6. Another comparison of the Round Cut (a) and a single-step
approach (b).

optimal solution within the search lines. We have experimen-
tally tested the algorithm on micro-CT scanned test objects,
and we show how high precision segmentation is obtained,
also in regions not reachable from the initial seed point.

Explicit mesh processing is crucial for the performance
of our method. While it improves robustness of our method,
self intersections might still occur if the displacement in
the normal direction is big with respect to the curvature
of the mesh. This leads to the following drawback of our
method. Aggressive smoothing required by the method will



in each step pull the surface away from the data, especially
at protuberances. As a result, to detect an elongated surface,
quite a few iterations might be required – in each iteration
a surface approaches the data in the graph cut surface
refinement step, but is immediately after pulled back by
smoothing.

9) Future work: To alleviate the convergence problem,
we plan to incorporate mesh optimization in each iterative
step of Round Cut. Having a mesh of a higher quality,
with well shaped triangles, will make a calculations of
normals less sensitive to noise. This will reduce the need for
aggressive smoothing and will allow a faster convergence.

We also plan to extend the Round Cut algorithm with
an adaptive mesh subdivision, only in areas where the
resolution is small and/or where curvature is high. As a
result, the protrusions will not suffer from the lack of
vertices and the inter-column shift will have a uniform effect
across the surface.
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