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Abstract

In this paper, we present an object categorization system
capable of assigning multiple and related categories for
novel objects using multi-label learning. In this system,
objects are described using global geometric relations of
3D features. We propose using the Joint SVM method for
learning and we investigate the extraction of hierarchical
clusters as a higher-level description of objects to assist
the learning. We make comparisons with other multi-label
learning approaches as well as single-label approaches
(including a state-of-the-art methods using different object
descriptors).

The experiments are carried out on a dataset of 100 ob-
jects belonging to 13 visual and action-related categories.
The results indicate that multi-label methods are able to
identify the relation between the dependent categories and
hence perform categorization accordingly. It is also found
that extracting hierarchical clusters does not lead to gain
in the system’s performance. The results also show that
using histograms of global relations to describe objects
leads to fast learning in terms of the number of samples
required for training.

I.. Introduction

Object categorization is important for a variety of tasks,
especially when systems are expected to deal with novel
objects according to prior knowledge. Categorizing novel
objects is useful in several applications such as driver
assistance [16] and video surveillance [11]. In robotic
applications in particular, categories can be linked to
manipulation actions allowing for performing predefined
actions on novel objects (see e.g., [19]).

Existing object categorization methods assume that ob-
jects belong to single and distinct categories (e.g., ‘cup’
and ‘car’) [2], [25] and thus employ single-label learning.

box like

container, has rim, has handle, pour

cylinder like, rollable

bowl like, container, has rim

stirring tool

hammer, stirring tool

insert, rollable

spray

Fig. 1. Examples of labeled objects.

In this work, we consider scenarios in which objects can
belong to multiple and related (by overlapping or nesting)
categories (Fig. I) associated with, potentially, different
levels of abstraction. Such scenarios are very common
in everyday objects. The ability to learn categories of
different abstraction levels allows for, e.g., associating ma-
nipulation actions to visual patterns rather than designing
actions for specific object instances. In the context of
robotic manipulation actions, this means that multiple and
dependent actions may be proposed as “affordances” for a
novel object. For this learning problem, we utilize multi-
label classification [32], which is intrinsically able to learn
to assign multiple labels per data sample while considering
the interdependence of the labels. In contrast, single-label
methods—even when configured in 1-versus-all fashion—
are expected to perform poorly on dependent categories.

In this work, objects are encoded using global de-
scriptors composed of histograms of relative geometric
attributes computed between full 3D features (Fig. 2).
The 3D features are extracted using three RGB-D sensors
(the three views are fused in 3D space) capturing object
shapes rather completely. This description of objects is
rich and highly invariant to viewpoint, leading to high
performance and fast learning in terms of the number of
samples required to train the system.

http://dx.doi.org/10.1109/3DV.2015.42


In this paper, we propose using Joint Support Vec-
tor Machines (Joint SVM) as a multi-label classification
method [31] exploiting the global 3D description. The Joint
SVM, besides being computationally-efficient, was shown
to outperform other state-of-the-art methods in image
annotation datasets [31]. In addition, we investigate the
extraction of higher-level descriptors based on hierarchical
clustering as a way of assisting the Joint SVM. This is
because the categorization problem addressed in this paper
(i.e., the categorization of multiple and related categories)
exhibits also a hierarchical nature. The hierarchical clusters
are also used to provide categorical-valued descriptors
needed for another multi-label method, which is based
on homogeneity analysis [29] and used for comparison.
Moreover, we make comparisons with a naive classifier
introduced in [21] for validation purposes. The compar-
isons also include single-label approaches operated in 1-
versus-all modes. Namely, we include Random Forests,
which a state-of-the-art classifier, and Hierarchical Match-
ing Pursuit (HMP) [7] framework, which is a state-of-the-
art object categorization method for RGB-D data and it
employs SVM as a classifier. The experiments are carried
out on a dataset of 100 objects showing the performance
of each method on visual and action-related categories.

The work presented in this paper has two main ac-
complishments. First, we show that multi-label learning
methods are able to identify the relation between the de-
pendent categories and hence perform object categorization
accordingly. In this regard, Joint SVM is shown to outper-
form the other methods. However, no gain in performance
is obtained by encoding objects in terms of hierarchical
clusters. Second, we show that using histograms of global
relations as object descriptors leads to learning that is
at least as fast as using the HMP method (measured in
number of samples required for training).

This paper is structured as follows. Related work is
described in Sect. II. Next, we give a description of
the visual representation of objects we use including the
hierarchical cluster extraction in Sect. III. In Sect. IV,
we give a brief description of the Joint SVM method. In
Sect. V, we present the methods used for comparison. The
experiment and the results are presented and discussed in
Sect. VI. Finally, we conclude in Sect. VII.

II.. Related Work
Early research on object categorization focused on

generic representations that capture object shapes at high
levels of abstraction (such as generalized cylinders [6],
superquadrics [24], or geons [5]). The difficulty involved in
reconstructing such abstractions from real objects has led
to the development of solutions that could recognize only
exemplar objects (i.e., object recognition) requiring little
or no abstraction [9]. Over the years, the gap between

the low-level and the high-level abstractions has been
narrowed by introducing representations that are invariant
to a number of geometrical properties such as view-point,
rotation, and scaling. Such representations often make use
of local descriptors such as the popular SIFT features [18]
and various recently developed 3D features (refer to [1]
for an overview).

Belongie et al. [3] proposed representing objects using
‘shape contexts’, which uses relative geometric informa-
tion within a local neighborhood. Shape contexts were later
extended to 3D in [10]. In this paper, we use geometric
relations of 3D features introduced by Mustafa et al. in
[23], which are similar to shape context but are defined in
a global context. They are also similar to the global relative
features introduced in [27] but with different underlying set
of geometric attributes.

Recently, hierarchical approaches for object represen-
tation have shown high performance on large dataset [4].
Notably, Bo et al. [7] introduced a multi-layer network that
builds feature hierarchies layer by layer with an increasing
receptive field size to capture abstract representations.
They show that their method achieves state-of-the-art per-
formance in a large-scale RGB-D dataset of objects [15].
It is worth noting that these results are based on very large
training data sets with significant computational cost.

Existing systems typically recognize only one category
per object, i.e. single-label learning [7], [19]. In [21], a
method that extracts visual clusters based on hierarchical
agglomerative clustering [28] was introduced. Building
such a hierarchy can be seen as a way to obtain candidates
categories of different levels of abstraction where more
generic categories are formed at the top of the hierarchy.
Moreover, the hierarchy naturally group nested categories
(i.e. in category/subcategory fashion). In this work, we
investigate the extraction of these categories for assisting
the multi-label learning algorithm to recognize multiple
and related categorizes of objects.

Recently, multi-label learning has been used in several
applications such as text processing, protein function clas-
sification and image annotation [32]. In [31], a multi-label
classification method, which is based on Support Victor
Machines (SVM), was introduced. This classifier, referred
to as Joint SVM, was applied in an image annotation
benchmark and shown to outperform other state-of-the-
art methods. A practical merit of the Joint SVM is that
it shares the same computational complexity as one single
conventional SVM. In this paper, we use Joint SVM to
learn object categories and compare it with other methods.
One of the methods used for comparison is an approach
based on homogeneity analysis [20]. The approach has
shown to learn object-action relations exhibiting a multi-
label learning problem [29].
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Fig. 2. Object representation using histograms of pair-wise geo-
metric relations.

III.. Visual representation of objects

In this section, we present the visual feature extrac-
tion and processing for objects (Subsect. III-A). In Sub-
sect. III-B, we describe the extraction process of hi-
erarchical clusters. In Subsect. III-C, we introduce the
coding schemes applied to describe objects in terms of
the extracted clusters (when used).

A.. Histograms of global multi-view 3D relations

In this paper, object shapes are described using his-
tograms of relations between pairs of 3D features. From
RGB-D data (Kinect sensor), planar 3D surface features,
i.e. texlets [14], are extracted. Prior to this, we apply object
segmentation. The 3D texlet contains both position and
orientation, and provides absolute information (relative to
an external reference frame) of objects in 3D space. In
this system, we fuse 3D texlets from three Kinect sensors
observing the workspace in which objects occur. This
fusion allows for a rather complete object information. To
describe an object, we compute a set of pairwise relations
from all pairs of texlets belonging to the object. One
important aspect of relations is that they transform an
absolute pose-variant representation into a relative pose-
invariant one. The multi-view description of objects allows
these global relations to become richer and more invariant
to viewpoint. Such properties account potentially for high
recognition performance and fast learning.

In this paper, geometric relations were defined by two
attributes: angle and scale-invariant distance (i.e, normal-
ized relative to the object size) computed between 3D
texlets. The scale invariance of the distance relation is cru-
cial for categorization because what defines a category is
usually independent of scale. The final object descriptor is
obtained by binning these two relations in 2D histograms,
which model the distributions of the relations in fixed-sized
feature vectors while considering their co-occurrence. The
binning size is set to 12 in both dimensions resulting in a
features vector of 144 dimensions. The binning size was
chosen according to previous investigations conducted in
[22]. Fig. 2 shows an example of an object described with
a 2D histogram of angle and scaled distance.

B.. Hierarchical clustering extraction
In order to test if the recognition performance improves

by describing objects in terms hierarchical clusters, we
apply the method introduced in [21]. The method is based
on hierarchical clustering analysis [28]. The hierarchical
clustering algorithm takes the histogram description of
objects discussed above (Subsect. III-A) as an input and
builds a hierarchy of clusters (representing candidate cat-
egories) in an unsupervised way. Hierarchical clustering
naturally allows clusters to overlap and that makes it
possible to explicitly extract nested categories (at different
levels of abstraction).

The hierarchy is built from the data provided during the
training phase (Fig. 3). Objects are then encoded according
to the extracted clusters. In the experiments, for adequacy
to the classification method, we consider two schemes
of coding objects: branch-point coding or level coding.
The two schemes provide binary or categorical values,
respectively (Subsect. III-C).

In the prediction phase, we use a method, developed
also in [21], that assigns clusters (among the clusters
extracted previously during training) to novel objects. Es-
sentially, the method identifies where the novel objects fall
in the previously-built hierarchy. The novel objects are then
encoded in the same way as for the training objects. The
procedure involving these two steps (i.e., generating and
predicting clusters) is referred to as hierarchical cluster
extraction.

To build the hierarchy, the hierarchical clustering algo-
rithm starts by assigning each data sample (object instance
in our case) to its own ‘atomic’ cluster. These atomic
clusters are then merged into larger and larger clusters
until all clusters are contained in a single cluster at the
top of hierarchy (agglomerative approach). The decision
on how to merge object samples to form a cluster is
based on a dissimilarity measure. We use the Euclidean
distance (between pairs of object samples) as dissimilarity
measure. Non-atomic clusters (i.e., clusters formed by
merging object samples) are merged based on a linkage
metric. As a linkage metric, we use Ward’s criterion, which
aims at minimizing the total within-cluster variance [28].
These two metrics are chosen because they yielded the best
results as reported in [21].

C.. Encoding Objects using the extracted clusters
From the extracted clusters presented above, objects

are encoded according to their associations with these
clusters. This coding forms the feature vector fed to the
learning algorithm, when the hierarchical clusters are used
to describe objects. In the following, we present the two
coding schemes: branch-point and level codings.

1) Branch-point coding: In this scheme, the branch
points in the hierarchy are regarded as candidate categories.
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(a) Branch-point coding. Objects are encoded with binary values corresponding to the branch points they fall under (1: belong, 0: does not
belong). The red numbers indicate the branch points chosen to encode objects.
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Fig. 3. Hierarchical clustering extraction. An illustrative example on a limited set of objects showing the two schemes used to encode
objects.

Hence, objects are encoded with binary digits according
to their associations with each point (see Fig. 3a). In
the branch-point coding, the structure of the hierarchy
is explicitly encoded. Starting from the top, we describe
objects using a certain number of branch points. The more
points we include the deeper down in the hierarchy we go.
The depth of the hierarchy reflects the level of abstraction
incorporated in the candidate categories. We found empir-
ically that with about 100 branch points, we reach a non-
increasing (steady-state) performance value. In addition,
the depth (height) value of the branch points are stored
allowing for weighing the feature vectors accordingly.

2) Level coding: This coding scheme was developed
particularly to provide a valid input format for the homo-
geneity analysis approach. This approach works with cate-

gorical (discrete and multiple values) features. If we regard
each level in the hierarchy as an attribute (Fig. 3b), then
the branches within a particular level provide categorical
values corresponding to the attribute. Note that at level n,
there are n branches (level 1: the top of the hierarchy has
1 branch, level 2 has 2 branches, etc.). In the experiments,
we use 100 levels (from level 5 to level 105) resulting in
a feature vector of 100 categorical values.

IV.. Joint SVM
During the past two decades, support vector machines

(SVM) have been popularly employed in various appli-
cation domains. The successes of SVM mainly originate
from its two advantageous components: maximum margin
and input kernels. On one hand, the maximum-margin



concept in SVM is an application of the theory of sta-
tistical learning [26] on linear binary classification. On
the other hand, kernels’ role can be considered from two
perspectives: (i) kernels are designed to capture intrinsic
similarities between complex-structured inputs; (ii) kernels
enable the linear classifier to separate highly non-linear
data by mapping them into a reproducing Hilbert space
(RKHS). Structural SVM (SSVM) [12] is an extension
of SVM for predicting structured outputs. The maximum
margin in structural SVM is interpreted as maximizing the
score gap between the desired output and the first runner-
up. Meanwhile, this results in exponential complexity in
solving structural SVM, which limits its applicability to
only small scale problems.

Joint SVM was developed with a special focus on the
interdependencies within outputs. Essentially, Joint SVM
is equivalent to SSVM with a linear output kernel plus
a regularization term on the kernel [30]. Therefore, a
linear kernel on outputs is automatically learned to capture
the interdependencies within outputs. Furthermore, if prior
knowledge about the interdependencies is available, a user-
specified output kernel can be straightforwardly mounted
in Joint SVM as well. In both cases, the computation
complexity of Joint SVM is almost the same as a single
SVM, in contrary to the exponential complexity in struc-
tural SVM.

In the experiments, the Joint SVM takes the histogram
descriptors, discussed in Subsect. III-A, as input. More-
over, we investigate the use of the hierarchical clus-
ters (Subsect. III-B) as object descriptors. In this case,
objects are encoded using the branch-point scheme see
Subsect. III-C and Fig. 3a. As input kernels, we chose
polynomial kernels based on initial tests. In addition, we
introduce a ‘weighted’ polynomial kernel to weigh the
object according to the depth of the hierarchical clusters.
The depth corresponds to the similarity (or the level of
abstraction in this case). The estimation of the kernel
parameters is embedded in a cross-validation step (which
also includes the estimation of the internal parameters of
the Joint SVM) performed prior to training.

V.. Comparison methods
In this section, we briefly describe the methods used for

comparison with Joint SVM in the conducted experiments.

A.. Homogeneity analysis
Homogeneity analysis [20] is a multivariate technique

for categorical data. Basically, it provides a mapping
from multivariate categorical data into a lower-dimensional
homogeneous Euclidean space. Based on this method, an
approach for learning object action relationship was de-
veloped in [29]. The approach performs further reasoning
to find the dependencies between objects and categories.

In [29], homogeneity analysis was used in a synthetic
database in which categories of the test subset are partially
known and the goal is to retrieve the missing categories. In
this work however, to make it comparable, all categories
in the test subset are set to be unknown. When testing this
approach, objects are described in terms of the extracted
clusters using the level coding scheme (Fig. 3b). Note that
these clusters exhibit dependencies between each other due
to their hierarchical nature. This may pose a challenge
to this approach especially given it is based on linear
optimization.

B.. Hierarchical cluster matching

Hierarchical cluster matching was introduced in [21]
based on the hierarchical cluster extraction. The method
performs object category recognition in a supervised fash-
ion (i.e., using labeled data). In [21], this method was
shown to outperform other methods (namely, RFs and
HMP [7]). The method finds the branches in the hierarchy
that best match the categories in the labeled data. The
matching is performed using Jaccard’s index [17] as a sim-
ilarity metric. The Jaccard’s index rewards the existence
of the object in the prospective cluster and also punishes
for the absence thereof. This prohibits assigning categories
to very specific (at the bottom of the hierarchy) or very
generic clusters (at the top of the hierarchy).

C.. Random Forests

Random forests (RF) [8] learn a collection of random-
ized decision trees from different random subsets of the
available training data, in a manner similar to Bagging.
They have been found to be efficient because they com-
bine the simplicity of decision trees with the stability of
voting methods. Random Forests is a single-label method,
therefore, we apply the method in N-classifier mode (i.e.
1-versus-all) where N refers to the number of categories.

D.. Hierarchical Matching Pursuit (HMP)

HMP [7] is a multi-layer sparse coding network that
builds feature hierarchies layer by layer with an increasing
receptive field size to capture abstract representations from
raw RGB-D data. The visual features extracted by the
network are used as input to SVM classifiers. In the
experiment, the HMP serves a state-of-the-art base-line
method, particularly for the visual representation we use.
Note that HMP was not designed to combine features
from different views in 3D space. Therefore, to make it
comparable to the multi-view system used here, we provide
all three views to HMP in the training phase. This method
is also operated in N-classifier mode (1-versus-all) by
training N SVM classifiers corresponding to N categories.
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VI.. Experiments

In the following experiments, we study the performance
of each method for categorizing novel objects. The ex-
periments were performed on a large multi-view object
dataset1 [22]. The dataset contains 100 objects with 30
different samples (random poses) per object (i.e. 3000
object samples from 9000 RGB-D data samples). Object
samples are captured using three different Kinect sensors
mounted in a close to equilateral triangular configuration
(the relative transformations of the calibrated sensors are
also provided, allowing for fusing the views in 3D space).
The selection of objects covers a wide range including
industrial and household objects, some of them taken from
the KIT dataset [13].

Object are labeled with human-defined labels with one
or multiple (potentially nested) categories (see Fig. I for
examples). In all experiments, the dataset is divided into
training and test subsets where sampling is performed in
a way that prohibits the presence of samples from the
same object in both subsets. This prohibition is necessary
to ensure the novelty of the test objects. The size of the
test subset is set to 100 samples per category whereas the
size of the training subset is allowed to vary from two to
100—all samples are randomly chosen. Each experiment
is executed 20 times from which the average F1 score and
the standard deviation are computed. Note that the same
training and test subsets are passed to each method.

1 http://caro.sdu.dk/sdu-dataset/

A.. Methodology for comparison

Fig. 4 shows the different test cases carried out in
the experiments. The labels on the far right of the figure
represent the following test cases:

• JointSVM Hist: In this case, objects are described
with histograms. For learning, the Joint SVM method
is used with polynomial input kernels.

• JointSVM HC: Objects are described in terms of the
extracted hierarchical clusters using the branch-point
coding scheme (Fig. 3a). Similar to the case above,
polynomial kernels are used as input kernels for the
Joint SVM.

• JointSVM HC Weighted: In this case, objects are
also described using branch-point coding, however,
the clusters are weighted according to their depth in
the hierarchy. For this, we use weighted polynomial
kernels as input kernels for the Joint SVM.

• Homogeneity Analysis: In this case, objects are de-
scribed in terms of the extracted clusters but using
the level coding scheme (Fig. 3b). For learning, the
method based on the homogeneity analysis is used
(Subsect. V-A)

• Best Matching Search: In this case, we use the hi-
erarchical cluster matching method in which objects
are described in terms of the hierarchical clusters
(Subsect. V-B).

• RFs: Using the Random Forests method (as 1-versus-
all) in which objects are described with histograms.

• HMP: In this case, we use the HMP method (see Sub-
sect. V-D) in which the SVM classifiers are trained
in 1-versus-all fashion. The method takes the RGB-D



data as input and extracts its own visual features.
• Dummy K Classifiers: These classifiers generate

uniformly-distributed random categories. These clas-
sifiers are useful as baseline for good performance.
This is important given that the definition of the cate-
gories involves human judgment and that, presumably,
no distinctive features exist for some categories.

B.. Result and Discussion

Fig. 5 shows the performance of object categorization
on 13 categories. Each sub-figure shows the average F1
score and the standard deviation for a varying number of
training samples. The average performance on all cate-
gories is also shown in a separate sub-figure.

The results show that using the Joint SVM method
(whether objects are described with histograms or with
hierarchical clusters) leads to achieving the best perfor-
mance in all of the test categories. Another observation is
that using histograms of global relations leads generally
to learning that is at least as fast as using the features
extracted by the HMP method. Indeed for the “box like”
category, it is obvious that the use of histogram yields
faster learning.

Regarding categorizing nested (depended) categories,
e.g., “has rim” and “container”, we observe that using
multi-label leaning approaches (Joint SVM, Homogene-
ity Analysis, Hierarchical Clustering Matching) leads to
success (largely outperform the dummy classifier) whereas
other methods (HMP, RandomForests) fail. In certain cat-
egories however, namely, “pour” and “grasp-open”, we
observe relatively low performance (comparable with the
dummy classifiers) for all methods. This indicates that no
distinctive visual features could be found.

The results also show that using Joint SVM with
the histograms descriptors (i.e. the JointSVM Hist case)
leads to marginally higher performance than the cases in
which objects are described with the hierarchical clus-
ters (i.e. JointSVM HC, JointSVM HC Weighted). This
means that no improvement is gained by extracting hi-
erarchical clusters. In addition, the homogeneity analysis
approach performs poorly (in terms of F1 score and
stability) compared to the Joint SVM. This may be because
the homogeneity analysis approach involves linear trans-
formations and thus doesn’t, as opposed to Joint SVM,
deal with the high dimensionality of the representation

VII.. Conclusion
In this paper, we presented multiple object categoriza-

tion methods capable of assigning multiple and nested
categories using multi-label learning approaches exploiting
descriptors derived from global 3D features. Specifically,
the paper introduced and investigated the use of the Joint

SVM method to learn visual categories. We evaluated the
advantage of extracting hierarchical clusters to describe
objects. Comparisons with other multi-label learning ap-
proaches as well as single-label approaches (including a
state-of-the-art methods using different object descriptors)
were also performed.

The results show that using multi-label learning, we
are able to recognize multiple and dependent categories.
This indicates that multi-label learning is able to identify
and exploit the relations between the dependent categories
whereas single-label approaches try to learn discrimina-
tively the individual categories. Another aspect indicated
by the results is that using histograms of global relations
leads to fast learning in terms of the number of samples
required for training. This is important when the training
data is limited or hard to obtain.

The results presented in this paper showed a promising
approach for categorizing objects belonging to a wide
range of categories that may exhibit dependencies between
them. One limitation of this work is that the evaluation
process involves human subjectivity in defining the cat-
egories and labeling the data accordingly. However, this
work and the results obtained can be used to establish
a foundation for building a system in which objects are
labeled automatically according to their everyday function-
ality. Such labels may be derived from actual robot actions.
For example, if a robot is able to roll an arbitrary object,
then this object is labeled as “rollable”, and so forth. In
such kind of scenarios, using the approach proposed in this
paper, multiple and dependent actions may be learned by
experience allowing for proposing acute actions on novel
objects.
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nition using view-point invariant shape relations and appearance
information. In IEEE International Conference on Robotics and
Automation (ICRA), 2013. 2

[24] A. P. Pentland. Perceptual organization and the representation of
natural form. Artificial Intelligence, 28(3):293–331, 1986. 2

[25] D. K. Prasad. Survey of the problem of object detection in real
images. International Journal of Image Processing (IJIP), 6(6):441,
2012. 1

[26] V. Vapnik. The nature of statistical learning theory. Springer
Science & Business Media, 2000. 5

[27] E. Wahl, U. Hillenbrand, and G. Hirzinger. Surflet-pair-relation
histograms: a statistical 3d-shape representation for rapid classifi-
cation. In 3-D Digital Imaging and Modeling, 2003. 3DIM 2003.
Proceedings. Fourth International Conference on, pages 474–481.
IEEE, 2003. 2

[28] J. H. Ward. Hierarchical grouping to optimize an objective function.
Journal of the American Statistical Association, 58(301):236–244,
1963. 2, 3

[29] H. Xiong, S. Szedmak, and J. Piater. Homogeneity analysis for
object-action relation reasoning in kitchen scenarios. In Proceedings
of the 2Nd Workshop on Machine Learning for Interactive Systems:

Bridging the Gap Between Perception, Action and Communication,
MLIS ’13, pages 37–44, New York, NY, USA, 2013. ACM. 2, 5

[30] H. Xiong, S. Szedmak, and J. Piater. Implicit Learning of Simpler
Output Kernels for Multi-Label Prediction. In NIPS workshop on
Representation and Learning for Complex Outputs, 2014. 5

[31] H. Xiong, S. Szedmak, and J. Piater. Scalable, accurate image
annotation with joint {SVMs} and output kernels. Neurocomputing,
169:205 – 214, 2015. Learning for Visual Semantic Understanding
in Big Data. Industrial Data Processing and Analysis. Selected
papers from the 22nd European Symposium on Artificial Neu-
ral Networks, Computational Intelligence and Machine Learning
(ESANN 2014). Selected papers from the 11th World Congress on
Intelligent Control and Automation (WCICA2014). 2

[32] M.-L. Zhang and Z.-H. Zhou. A review on multi-label learning
algorithms. Knowledge and Data Engineering, IEEE Transactions
on, 26(8):1819–1837, Aug 2014. 1, 2


