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Abstract

In this paper we propose a pipeline for estimating 3D

room layout with object and material attribute prediction

using a spherical stereo image pair. We assume that the

room and objects can be represented as cuboids aligned to

the main axes of the room coordinate (Manhattan world).

A spherical stereo alignment algorithm is proposed to align

two spherical images to the global world coordinate sys-

tem. Depth information of the scene is estimated by stereo

matching between images. Cubic projection images of the

spherical RGB and estimated depth are used for object and

material attribute detection. A single Convolutional Neu-

ral Network is designed to assign object and attribute la-

bels to geometrical elements built from the spherical image.

Finally simplified room layout is reconstructed by cuboid

fitting. The reconstructed cuboid-based model shows the

structure of the scene with object information and material

attributes.

1. Introduction

Estimating semantic room geometry is a classic prob-

lem in computer vision with a wide range of applications.

There have been many studies into indoor scene geome-

try reconstruction from various sensors such as a photogra-

phy camera, video camcorder and RGBD camera [7, 27, 4].

Recently this 3D geometry reconstruction evolved into se-

mantic 3D scene reconstruction where the goal is not only

to build geometry in 3D, but also to identify and localise

known objects in the scene [26, 21]. Recognition of 3D

objects and material is one of the classic problems using

RGB [12, 1, 5] or RGB-D [10, 3] images. Survey of object

classification in 3D range scans by Zelener [29] concludes

that modelling contextual relations for structured prediction

provides significant benefits to various applications.

However, current approaches using normal or RGBD

cameras have the following limitations for complete indoor

semantic scene reconstruction. First, indoor scenes gener-

ally include various sources of error in depth and geometry

estimation. Textureless and non-Lambertian surfaces often

result in errors in feature detection and matching. Highly

reflective scenes with glass, mirrors or shiny surfaces can

induce false depth. Second, normal or RGBD cameras have

limited field-of-views (FOV) capturing only a part of the

whole environment. For a complete scene layout estima-

tion, multiple inputs and fusion technique are required.

In this paper, we propose a cuboid-based semantic room

layout estimation pipeline using an off-the-shelf spherical

360◦ camera. This produces a complete scene model with

semantic object and material attribute information. The ap-

proach assumes that room interiors are composed of piece-

wise planar surfaces aligned to the main axes (Manhattan

world) as proposed in [6, 9]. Piecewise-planar scene ele-

ments are detected and aligned to the main axes using stereo

matching, and their object classes and material attributes are

predicted with a multi-scale Convolutional Neural Network

(CNN). Finally simplified 3D scene structure with object

and material labels is recovered by fitting cuboids into the

reconstructed scene elements.

The main contributions of this paper are:

• A complete pipeline for approximate room geome-

try and object attribute estimation combining spherical

stereo and CNN.

• A spherical stereo camera alignment algorithm for ef-

ficient and accurate depth estimation for off-the-shelf

spherical cameras.

• Extension of the existing semantic labelling architec-

ture with a multi-scale CNN for multi-class classifica-

tion of object type and material attributes.

2. Related Work

2.1. Approximated room geometry reconstruction

Indoor 3D scene reconstruction has been a long-standing

area of research. Multi-view stereo and structure from mo-
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tion methods using multiple photos or videos have been

widely investigated [25, 7]. As low-cost RGBD cameras

have become readily available, various 3D reconstruction

methods have been proposed using colour and range data.

KinectFusion [20] made a great impact on real-time dense

scene reconstruction with a RGBD camera and has been ex-

tended for large scale scene modelling. Public RGBD in-

door datasets for the benchmark assessment have been also

presented including ICL-NUIM [11], SUN3D [28], NYU

[23, 24]. However, the limited FOV presents a challenging

problem to ensure complete scene coverage for reconstruc-

tion as mentioned.

Spherical imaging provides a solution to overcome this

coverage problem. Schoenbein et al. [22] proposed a

high-quality omnidirectional 3D reconstruction of Manhat-

tan worlds from catadioptric stereo video cameras. How-

ever, these catadioptric omnidirectional cameras have a

large number of systematic parameters including the cam-

era and mirror calibration. In order to get high resolution

spherical images with simple and accurate calibration and

matching, Point Grey developed an omnidirectional multi-

camera system, the Ladybug1. Spheron developed a line-

scan camera, Spheron VR2, with a fish-eye lens to capture

the full environment as an accurate high resolution / high

dynamic range latitude-longitude image. Kim and Hilton

used this Spheron VR for simplified scene modelling [15].

Li [17] has proposed a spherical image acquisition method

using two video cameras with fish-eye lenses pointing in

opposite directions. The biggest problem of the spherical

stereo imaging from fish-eye lenses is large errors around

epipoles and complex search along conic curves for stereo

matching. This problem has been solved with accurate cal-

ibration and rectification. Various inexpensive off-the-shelf

spherical cameras with two fish-eye lenses recently became

popular in our daily lives345. Our room geometry modelling

method used in this work is motivated from [15], but simpli-

fied for indoor room modelling and also extended to 3 DOF

(roll, pitch and yaw) alignment for a commodity spherical

camera.

2.2. Object and material attribute detection

Semantic segmentation methods aim to label every pixel

in the image into a set of known classes. Zhu et al. [32]

provide a good survey of semantic segmentation methods

using RGB images. The use of RGBD images has a shorter

history but a significant amount of works have already been

1Pointgrey, https://www.ptgrey.com/

360-degree-spherical-camera-systems
2Spheron, https://www.spheron.com/products.html
3LG 360, http://www.lg.com/uk/lg-friends/

lg-LGR105
4Samsung Gear 360, http://www.samsung.com/global/

galaxy/gear-360/
5Ricoh Theta S, https://theta360.com/en/

Figure 1. Block diagram of the proposed system

presented [13, 10, 26, 3]. RGBD images carry more infor-

mation but depth maps can be noisy and may contain large

areas with missing measurements.

After the breakthrough results on ImageNet [16], the tra-

ditional pipeline of semantic object classification has been

replaced by CNN [2]. CNNs are able to learn hierarchical

representations that are customised for target applications.

Recently CNNs have been used for semantic object detec-

tion and segmentation in various ways [31, 18, 8]. Eigen

and Fergus [5] proposed an hierarchical fully convolutional

networks (FCN) architecture composed of three scales. The

first scale is VGG-FCN [18], and its output is up-sampled,

concatenated with a higher resolution version of the input

images at the next scale. The same process occurs at the

interface between the second and third scales.

The problem of material attributes segmentation is sim-

ilar to semantic object segmentation, except that each pixel

can be assigned to multiple classes at the same time, e.g.,

the same surface can be wooden, hard, flat and be part of

an object labelled as table. Zheng et al. [30] introduced the

attributes NYU (aNYU) dataset which added 11 attribute

labels to those of the NYU Depth v2 dataset of [24].

3. Proposed Method

3.1. Overview of the proposed pipeline

Figure 1 shows a block diagram for the whole process

to build a structured room layout with object and material

labels using cuboid scene/object proxies estimated from a



spherical stereo image pair. A full surrounding scene is

captured by a spherical camera at two different heights as

a vertical stereo pair. The captured spherical images are

mapped to latitude-longitude (equirectangular) images and

aligned to the room coordinate axes. Depth information of

the scene is retrieved by stereo matching. Then the process

is split into two: object/material detection and 3D element

reconstruction. For input to the CNN in a standard perspec-

tive image format, the spherical image is projected onto a

cube centred on the camera giving perspective images, with

normal and depth. The predicted object and material labels

from the CNN are back-projected to the original equirectan-

gular format. In parallel, planar regions are detected from

the spherical colour and depth information, and initial axis-

aligned 3D planes are reconstructed. Finally object and ma-

terial information are assigned to each 3D plane by voting,

and cuboid proxies are fitted to the planes to generate a com-

plete cuboid-based room layout model.

3.2. Spherical camera system and stereo alignment

Two different types of spherical cameras are used in this

work. The first one is the Spheron VR, a mechanically tuned

line-scan camera shown in Fig. 2 (a). The camera rotates on

the axis passing through its optical centre, and a full spheri-

cal view is generated by mosaicing rays from its vertical slit.

The fish-eye lens is pre-calibrated so that the rays through

the vertical slit are evenly and accurately mapped from 0

to π on the image domain. Therefore the stitched image

is an equirectangular projection image illustrated in Fig. 2

(b). However, Spheron VR is a high-end industrial camera

which is expensive and takes a long time to scan a scene.

The second type is the Theta S camera by Ricoh shown in

Fig. 2 (c). Photos acquired from two pre-calibrated fish-eye

lenses are stitched to each other to generate an equirectan-

gular projection image as illustrated in Fig. 2 (d) (image

from the Ricoh Theta SDK document). Projection from the

Theta camera is less accurate than that from the Spheron

VR, but it requires simple set up and captures a spherical

photo or video in real-time.

To recover 3D information, the scene is captured with the

spherical camera at two different heights. We use a vertical

stereo system rather than typical horizontal stereo because

depth error induced from stereo matching errors increases

as the elevation angle to the baseline decreases as reported

in [14]. This error diverges to the infinity on the epipoles

(blind spot). The vertical stereo system makes these blind

spots on the ceiling and floor which are less important and

can be easily concealed by neighbouring information, while

the horizontal stereo system makes the blind spots on the

side which may include important scene information.

Even though the baseline of the vertical stereo camera

system is perpendicularly aligned to the ground, the spher-

ical coordinate of each spherical camera can be misaligned

(a) Spheron camera (b) Equirectangular projection image

(c) Theta camera (d) Projection of Theta camera

Figure 2. Camera system

(a) Spherical/cubic projection

(b) Cubic projection images before alignment

(c) Cubic projection images after alignment

Figure 3. Spherical and Cubic projection

either to each other or to the world (room) coordinate sys-

tem. For image alignment to the room coordinate, the

equirectangular image in the Spherical coordinate is pro-

jected to a unit cube in the Cartesian domain fitted to the

room coordinate as shown in Fig. 3 (a) and (b). If the

spherical coordinate in aligned to the room coordinate, the

horizontal and vertical lines in the scene are aligned to hori-

zontal and vertical directions in each cubic projection image

as shown in Fig. 3 (c). We utilise Hough line detection [19]

in the cubic projection images to find the optimal rotation

matrix for the coordinate alignment. The 3 DOF rotation



(a) Original stereo image pair (b) Aligned stereo image pair

(c) Hough lines detected in the cubic projection of the

aligned image

Figure 4. Result of spherical image alignment

matrix can be obtained by the multiplication of single rota-

tion matrices on x-axis (α), y-axis (β) and z-axis (γ) in Eq.

(1), and the optimal α , β and γ values are found by Eq.

(2), where k indexes the k-th face image in the cubic pro-

jection, H is lines detected by the Hough line detection, and

C is cubic projection of the spherical image I . The Hough

lines are categorised into general Hough line H , horizontal

Hough lines Hh and vertical Hough lines Hv , where hor-

izontal and vertical Hough lines represent detected Hough

lines parallel and perpendicular to the horizon within 1◦ of

angle difference.

R(α, β, γ) = Rx(α)Ry(β)Rz(γ) (1)

(αopt, βopt, γopt) = argmax
α,β,γ

6
∑

k=1

|Hh
k (α, β, γ) ∪Hv

k (α, β, γ)|

|Hk(α, β, γ)|

(2)

Hk(α, β, γ) = H(Ck(R(α, β, γ)I(x, y, z)))

Finally, alignment between two vertical stereo images

can be simply found by rotating one image by a multiple

of 90◦ on the z-axis because both images have been aligned

to the room coordinate.

Figure 4 shows an example of stereo alignment result.

Red and green lines in Fig. 4 (c) represent Hh and Hv

detected in the cubic projection images of the top image in

Fig. 4 (b).

(a) Spherical stereo geometry (b) Disparity (depth) map

Figure 5. Depth reconstruction

3.3. Depth estimation and plane reconstruction

3D geometry of the scene is reconstructed using corre-

spondence matching with spherical stereo geometry illus-

trated in Fig. 5 (a). Depth reconstruction from the aligned

vertical spherical stereo images requires only baseline dis-

tance B and displacement of corresponding points. When

disparity d(θ) as the angle difference between θb and θt,
the distance of a certain 3D point P from the top camera is

calculated as Eq. (3).

rt = B/

(

sin θt
tan(θt + d)

− cos θt

)

(3)

Any correspondence matching algorithm can be used,

but variational approaches are preferred rather than region-

based matching algorithms because region-based methods

suffer matching errors from spherical image distortion. We

use a hierarchical PDE-based disparity estimation method

[14] to produce smooth disparity fields with sharp depth

discontinuities. Figure 5 (b) shows the disparity field from

Fig. 4 (b). 0◦ ≤ θ < 5◦ and 175◦ < θ ≤ 180◦ regions have

been cropped because depth from disparity diverge near the

epipole areas (blind spots).

In order to build a piecewise planar elements in the

scene from the estimated depth information, we utilise the

block world reconstruction method proposed in [15]. One

of the input spherical image is segmented into regions by

the graph-based approach considering colour, surface nor-

mal and edge information, and optimised planes with fitted

bounding boxes for each region are reconstructed. Recon-

structed planes whose angles are not close to any of X-Y, Y-

Z or X-Z planes are eliminated (violating Manhattan world

assumption). Unreliable planes which are too distant from

the camera or whose angle to the camera is too big are also

eliminated. Close planes are merged into one plane to sim-

plify the scene. Generated planes are back-projected to the

original segmentation image to merge the segments for ob-

ject and material attribute labelling.

3.4. Objects and material attributes detection

Our CNN architecture for semantic labelling was built

on the design of [5]. It was modified for colour, depth and
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Figure 6. CNN architecture for multiple semantic labellings

surface normal inputs from stereo matching and adapted for

multiple tasks: object and material attribute labelling. Fig-

ure 6 shows the modified CNN architecture.

Cubic projection images from the image alignment are

used as the input of the CNN because the spherical image

is not appropriate for this architecture due to its distortion

from the spherical coordinate. Top and bottom images of

the cubic projection have very little information for object

recognition so they are forced to be labelled as “ceiling” and

“floor”, respectively.

In multiclass classification problems with neural net-

works, the loss function used for each prediction ŷ is usually

obtained using cross entropy:

L(y, ŷ) = −y · log ŷ , (4)

where ground truth labels y ∈ {0, 1}C are binary vectors in-

dicating the presence/abscence of each of the C classes and

ŷ ∈ [0, 1]C are class-based predictions, which are obtained

by computing the softmax of the network’s output.

For each batch of training samples, the losses are com-

bined by:

L(Y, Ŷ) =
1

N

N
∑

i=1

L(y(i), ŷ(i)) (5)

where N is the total number of pixels in the training batch.

In object detection and segmentation, each pixel is as-

sociated to a single class, i.e.,
∑C

c ŷc = 1. In material

attribute detection, each pixel can be assigned to multiple

labels, i.e.,
∑C

c ŷc ∈ [0, C]. Despite this difference, the

same loss function of Eq. (4) can be used, but the expected

value of loss of each task will be different, as that function

depends on the number of classes and on the number times

the ground truth y = 1 for each sample. Therefore, we pro-

pose to separately compute the loss Eq. (5) for each task t
and combine them as follows:

L(Y, Ŷ) =

T
∑

t=1

αtL(Y
(t), Ŷ

(t)
) , (6)

where αt ≥ 0 is the weight of each task such that
∑T

t αt =
1, and Y(t) are task-specific subparts of Y (the same goes for

Ŷ
(t)
).

In other words, we assume that in our dataset, each sam-

ple is associated to labels of multiple tasks (objects and at-

tributes) and that labels from all tasks are present for all

training samples.

The CNN shares all parameters for all tasks up until

the final layer, where task (and class) specific weights are

present, as illustrated in Fig. 6.

In material attribute detection, instead of using the index

of the maximum value of ŷc, a threshold τ is applied to the

output of the classifier ŷ and the resulting binary vector ȳc
is compared against y. To deal with the multiple labelling

problem, we propose to explicitly learn a model of back-

ground pixels. Our classifier is trained with C + 1 class

labels, where the first label is none/background/unlabelled

and the remaining labels are those provided with the dataset.

Therefore, instead of omitting unlabelled pixels from the

loss function (Eq. (5)), we treat them as a new class and use

their prediction value to set the attribute detection thresh-

old, i.e., τ = ŷbgr, and τ is set individually, for each pixel,

rather than fixed to a predefined parameter. Any class whose

probability is greater than that of the background is taken as

detected in ȳc.

3.5. Final 3D room layout reconstruction

Objects and material attributes from the CNN architec-

ture are used to vote to the corresponding regions of the

back-projection of the reconstructed plane to decide the fi-

nal labels for each plane. As a result, each plane has one

object label and multiple attribute labels. Final 3D layout of

the room is reconstructed by fitting cuboids into the plane

elements as proposed in [15]. Objects and material labels

are transferred to the cuboid elements.

In order to get a closed complete space of the room, the

largest and farthest planes in each direction are considered

as walls for the room layout and their surface normals are

set to the inside of the room. All other planes are used for

cuboid structure generation by the outward extrusion pro-

cess from the camera capture position and the face normals

are set outward of the cuboid.



(a) Usability room (b) Reception

Figure 7. Datasets

4. Experiments

4.1. System set up and datasets

We tested two different spherical cameras introduced in

Section 2: Spheron VR and Theta S. For the Spheron VR,

we attached a 16mm fisheye lens and captured a vertical

stereo pair with a baseline of 27cm. The resolution of spher-

ical images is 3144 × 1414. The Theta S camera has its own

built-in fisheye cameras which are internally calibrated. We

captured the scene with the baseline distance of 11cm and

resolution of 3000 × 1500.

We evaluated the proposed pipeline on three different in-

door scenes: Meeting room (Fig. 4 (a), captured with Theta

S), Usability room (Fig. 7 (a), captured with Spheron VR)

and Reception (Fig. 7 (b), captured with Spheron VR). The

Meeting room and Usability room are similar to normal liv-

ing room environments in our daily lives, including vari-

ous objects such as sofas, tables, bookcases, etc. The room

sizes are 5.6m × 4.2m × 2.3m, and 5.6m × 5.2m × 2.9m,

respectively. The Reception is not in a cuboid layout. The

main area covers an area of 10.4m × 4.2m × 2.5m and it is

connected to other corridors and rooms.

4.2. Room geometry modelling

Figure 8 (a) and (b) show the ground-truth models from

the actual measurements and the reconstructed cuboid-

based models from the spherical image pairs, respectively.

The ground-truth models for Meeting room and Usabil-

ity room were manually generated from the laser measure-

ments, and the ground-truth model for Reception was ac-

quired by a LIDAR scanner. The Meeting room data was

captured by the Theta S camera which is less accurately rec-

tified and aligned. Dimensions of the objects in the scene

are slightly different from the ground-truth but the cuboid

primitives represent the approximate structure of the scene

well. The estimated room size is 6.15m × 4.7m × 2.5m

which is slightly bigger than the ground-truth. In the re-

sult of the Usability room data, we can see that the room

geometry is similar to the ground-truth. However, the thin

monitor on the table which was neglected in the ground-

truth model was reconstructed as a thick cuboid because the

thickness could not be estimated from the images, and the

table in the corner was missing because it was occluded by

the monitor in the captured images. The estimated room

(a) Meeting room

(b) Usability room

(c) Reception

Figure 8. Room geometry estimation results (Left: Ground-truth,

Right: Reconstructed model

size is 6.1m × 5m × 2.9m which is close to the true size. In

the Reception dataset, furnitures and main area layout were

well-estimated though opened doors and corridors to other

rooms were missing. The estimated area size is 11.2m ×
4.8m × 2.6m which is slightly bigger than the actual size.

4.3. Object and material attribute labelling

In object labelling, we used the model of Eigen and Fer-

gus [5] trained for the version of NYUDepth v2 dataset

which was labelled with the 14 classes indexed in Fig. 9 (a).

The training set consists of a set of 795 RGBD images,

which was augmented using random transformations. The

first to third columns of Fig. 9 (b)-(d) show manually an-

notated ground-truth, predicted labels from the CNN archi-

tecture and the final labels by voting to the reconstructed

3D plane elements. We can observe that cluttered labels

due to lack of information or depth estimation error in the

CNN outputs are refined to more semantic labels in the fi-

nal results. To the best of our knowledge, this is the first

work for semantic object labelling of spherical images, so

it is difficult to compare its performance with other works.

Figure 10 shows a 12 × 12 confusion matrix (“Bed” and

“Unknown” labels were not considered). Most of the ob-

jects have been correctly classified but some false labels are

observed in Sofa/Chair, Object/Furniture, Object/Wall, Pic-

ture/Wall and Wall/Furniture. In manual object annotation

for the ground-truth generation, curtains and doors were an-

notated as “Object” because they are not in the original set

of class labels. However, they are predicted as “Furniture”

or “Wall” because they are located close to the wall. Pic-



(a) Object colour index

(b) Meeting room

(c) Usability room

(d) Reception

Figure 9. Object/material labelling results (First column: Object ground-truth, Second column: Object CNN output, Third column: Object

final labels to 3D elements, Fourth column: Example of material detection)

Figure 10. Confusion matrix (X:predicted, Y:Actual)

tures on the wall were also merged to “Wall” label in the

final output due to the merge process in the 3D plane recon-

struction.

In material attribute labelling, we initialised the CNN us-

ing the model that was pre-trained for object classification

described above and fine-tunned it for the 11-class aNYU

dataset6 generated by Zheng et al. [30]. This was done us-

ing our multi-task loss function described in Sec. 3.4 (Eq. 6)

iterating the learning process on the 724 RGBD samples of

the aNYU training set for 500 epochs. Backpropagation

and model updating was done in batches of 16 samples.

This is a multi-label problem with material attribute labels

of “‘wood”, “painted”, “paper”, “glass”, “brick”, “metal”,

“flat”, “plastic”, “textured”, “glossy” and “shiny”. We treat

each attribute as a binary switch in a 12-bit vector which

is “On” when its probability is higher than the probability

of “none”7. It is hard to efficiently visualise multi-label im-

ages. The fourth column of Fig 9 shows examples of two se-

lected material attributes represented in red and green chan-

nels. In the Meeting room set, many regions were labelled

as “wood” and the frame on the wall and books in the book-

case were labelled as “paper”. The bookcase region has

6aNYU dataset, http://kylezheng.org/densesegattobj/
7Pixels which did not have any label in the training set were labelled as

“none” and treated as a standard class to be learnt, as discussed in Sec. 3.4.



(a) Meeting room

(b) Usability room

(c) Reception

Figure 11. Predicted material attribute table for each object

both “wood” and “paper” labels. Lightings and some part

of the floor were labels as “shiny” in the Usability room set,

and the TV screen and plaque were labelled as “glass” in

the Reception set. Figure 11 shows material attribute labels

for the selected objects in the object ground-truth images.

There are some mislabelling such as tables and desks with

“brick”, and failed material detection such as curtains and

bookstand. However, most of the objects are labelled with

reasonable attributes.

4.4. 3D layout with object and material information

For simple representation of the scene, all reconstructed

cuboids with their object and material properties are saved

as a vector list:

P = {Pi} = {[Ti, Bx, By, Bz, Oi,Mi]} (7)

where Ti is the type of element (invalid, plane and cuboid),

Bx,y,z are ranges to each direction, Oi is the object label

and Mi is a 16 bit integer whose first 11 bits are used for

binary material labels.

Figure 12 shows final room layouts with their labels from

two different directions. The proposed method generated a

coarse approximation of the scene structure with their ob-

ject and material labels. A free-view rendering video of the

scenes is available as supplemental material.

Figure 12. Final 3D room layout with object labels

5. Conclusions

In this work, we proposed a cuboid-based room layout

and object/attribute estimation pipeline using a spherical

camera. In the geometry estimation, a vertical spherical

stereo capture generates texture with depth for the whole

environment without any depth sensor. The captured im-

ages are aligned to the principal axes of the room coordinate

and 3D plane elements are reconstructed. Semantic objects

and material attributes in the scene are predicted by a CNN

which was designed for multi-labelling problem with cubic

projection images. The final cuboid-based room layout is

reconstructed from the 3D planes labelled with object and

material attribute. Results show that the proposed system

generates compact representations of the room structures

with object and material information. This work is still in

progress and we believe this is a good step toward semantic

3D modelling with physical attributes.
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