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Figure 1. Given a 2D image, a few anchors and the silhouette, our method first selects a 3D model from a compact graph that best fits the
2D anchors. Second, the 3D model is refined by finding a linear combination (i.e. ’s) that best matches the image silhouette, e.g. node 1
is the selected one so we can perform linear combination with the nodes 3, 4, 5, 6, and 7 (blue arrows).

Abstract

3D reconstruction from 2D images is a central problem
in computer vision. Recent works have been focusing on re-
construction directly from a single image. It is well known
however that only one image cannot provide enough infor-
mation for such a reconstruction. A prior knowledge that
has been entertained are 3D CAD models due to its online
ubiquity. A fundamental question is how to compactly rep-
resent millions of CAD models while allowing generaliza-
tion to new unseen objects with fine-scaled geometry. We
introduce an approach to compactly represent a 3D mesh.
Our method first selects a 3D model from a graph structure
by using a novel free-form deformation (FFD) 3D-2D regis-
tration, and then the selected 3D model is refined to best fit
the image silhouette. We perform a comprehensive quanti-
tative and qualitative analysis that demonstrates impressive
dense and realistic 3D reconstruction from single images.

1. Introduction

A fundamental goal in computer vision is to infer from
optical images to objects in the 3D world that give rise to
them. This is often called the inverse problem [16]. An

obvious solution is to directly invert the optical transforma-
tions that occur during image formation. Unfortunately, this
is an “ill-defined” problem. Specifically, the inverse map-
ping from 2D to 3D is not unique.

Vision researchers have recently started to consider using
3D prior knowledge to make the problem of 3D reconstruc-
tion from a single image less ambiguous [24, 28, 29, 25, 15,
2,9, 13]. 3D reconstructions provided by these prior works
are, however, either an object skeleton or a messy, unreal-
istic surface. To handle this, deep learning techniques have
been investigated to tackle this problem [8, 20, 21, 17]. It
replaces the 2D pixel array by a dense and regular 3D voxel
grid to process 3D data using 3D convolution and pooling
operations. This implies that the computational and mem-
ory requirements scale cubically with the resolution [21],
restricting volumetric representation to low 3D resolution
and “legolized”, unrealistic 3D objects.

In this work we exploit the rich and detailed geome-
try of real 3D objects. We propose a graph embedding to
compactly represent 3D mesh objects that allow us to ob-
tain reconstructions with much higher resolution. We tackle
this challenge by revisiting the free-form deformation (FFD)
technique [19]. FFD is a classical, powerful and widely used
graphics technique for deforming a 3D mesh [18]. To com-



pactly model the intrinsic variation across a class of 3D ob-
jects, we use a low-dimensional FFD parametrization and
sparse linear representation in a dictionary. Our method first
selects a 3D model from a graph structure by using a FFD
3D-2D registration based on anchors, and then refines the
selected 3D model by finding a sparse linear combination
from the graph to fit the silhouette as shown in Figure 1.
Our core contributions are:

e We propose to compactly represent 3D mesh models
by using only a few parameters - the displacements of
the FFD control points and the weights of the sparse
linear combination;

e We develop a FFD 3D-2D registration algorithm to si-
multaneously select a 3D model from the graph that
best fits an image and estimate the displacements of
the FFD control points based on its anchors;

e Finally, we show empirically the utility of our frame-
work for dense and more realistic 3D reconstructions
from a single image.

1.1. Related Work

In this subsection we review recent progress on 3D re-
construction and representation. Kong et al. [14, 15] re-
cently proposed a method for learning a dictionary of 3D
models from an ensemble of 2D anchors of a specific object
category. Despite their work being able of handling highly
deformable objects, the non-convex nature of the group-
sparse dictionary learning proposed is sensitive to initializa-
tion and noise. Zhou et al. [28] learned a dictionary from
a 3D shape dataset and proposed a convex relaxation tech-
nique to estimate the camera pose and the 3D shape pa-
rameters simultaneously given a single image and anchors.
Deep learning techniques have also been entertained. Wu
et al. [25] trained a deep network to infer 3D points from
2D anchors. These works have achieved promising results,
however they are only able to reconstruct 3D skeletons, non-
detailed, and non-realistic 3D models mainly due to the dif-
ficulty of establishing dense correspondences between CAD
models of the same class.

Vicente et al. [23, 5] ambitiously obtained dense 3D re-
constructions of rigid objects from single images. They
used a set of images depicting different instances of the
same object class to learn a “generic” class-based 3D
model. A fundamental drawback of their approach is that
the inferred 3D reconstruction is rigid. Kar et al. [12] han-
dled such a drawback by employing a novel dense surface
model based on active shape models (ASM) to estimate a
deformable dense hull of a single image. However, the ap-
proach is limited as the process smooths over important fine
details in the reconstructed 3D object.

This paper builds upon the recent work of Kong et al.
[13] who proposed a novel graph embedding based on the
local dense correspondences between 3D models. They

showed that it is possible to perform sparse linear combi-
nation to deform a 3D model by using a dense shape dictio-
nary. Their method is able to reconstruct the geometry of a
single image given the anchors and silhouette. Despite their
impressive results for dense 3D reconstruction, it still lacks
of fine details and realism.

Another family of approaches related to our work are the
ones using volumetric representations learned through deep
neural networks [22, 7, 8, 11, 27, 20, 21, 17, 10]. Of spe-
cial interest is the recent work of Tatarchenko et al. [21]
where they presented a deep convolutional decoder archi-
tecture to generate volumetric 3D outputs by using an oc-
tree representation which allows for much higher resolution
outputs. Even though their method achieves high resolu-
tion and compact volumetric representations, their models
lack fine-scaled geometry. A major advantage of our pro-
posed method is that we have a compact representation of
3D models while keeping the finer geometry and object re-
alism by using 3D meshes.

1.2. Approach Overview

Given a single 2D image of an object (e.g. airplane, chair,
car, etc.), our method estimates the camera pose and the
3D mesh model using 2D anchors and silhouette informa-
tion. We assume we have the anchors and silhouette before-
hand. We compactly represent a class of 3D models through
a graph structure that allow us to perform 3D deformations
by FFD and linear combination. Once we build up the graph
we can perform 3D reconstruction from a single image by
first selecting a 3D model from the graph that best matches
the image. After that, we refine the 3D model based on the
image silhouette and the dense correspondences. Figure 1
shows an overview of the proposed method.

2. Compact Model Representation

Our compact representation of 3D mesh models involves
embedding all 3D models of a specific class into the FFD
space. By allowing FFD for every model we can establish
dense correspondences using nonrigid iterative closest point
(ICP) [1]. Once we find dense correspondences for every
pair in the class we build up a direct graph G(V, £) where V
are the vertices of the 3D models and £ are the edges repre-
senting the deformed models with dense correspondences.

2.1. Free-Form Deformation

FFD can be thought as a virtual sculpting tool where the
3D mesh we wish to deform is first embedded into a lattice
of control points. The object is then deformed by simply
free manipulating these control points.

Formally, the FFD method creates a parallelepiped-
shaped lattice of control points with axes defined by the
orthogonal vectors s,t and u [19]. The control points are
defined by [, m and n which “cut” the lattice in [ + 1, m +
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Figure 2. FFD lattice of control points with [, m,n=3: (a) The
local coordinate system (s, t, u) and the control points P; ; x; (b)
The Bunny’s head deformation by free pulling three control points.

1,7n + 1 planes in the s, t, u directions respectively. Then,
it is imposed a local coordinate for each object’s vertex. An
example is shown in Figure 2(a).

In our implementation, we perform the deformation (see
an example in Figure 2(b)) through a trivariate Bernstein
tensor product as in [19], which is basically a weighted sum
of the control points. It can also be formulated in terms of
other blending functions such as B-splines. The deformed
position, Xy, of any arbitrary point, is given by,
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where x4 contains the coordinates of the displaced point,
By n(z) is the Bernstein polynomial of degree n that sets
the influence of each control point on every object’s vertex,
and P; ; ;. is the ¢, j, k-th control point. Equation (1) is a
linear function of P and it is written in a matrix form as,
Xga = BP, (2)

where Xgq € RNV %3 are the vertices of the 3D mesh,
B € RVXM g the deformation matrix, P € RM*3 are
the control point coordinates, and N and M are the number
of vertices and control points respectively.

2.2. Dense Correspondences

The majority of 3D models available do not have the
same number of vertices or the same topology. Even so,
this knowledge does not allow us to create dictionaries to
deform a model by linear combination. To overcome this
issue we find dense correspondences from a source model
S to atarget 7 using nonrigid ICP as in [13] where for each
vertex of S is found a corresponding point on the surface
of 7. It uses a locally affine regularisation which assigns
an affine transformation to each vertex and minimises the
difference in the transformation of neighbouring vertices.

Consider we want to establish dense correspondences
from S(Vs,Es) to T(Vy,Er) where V, E are the ver-
tices and edges (i.e. connections) respectively, the source

S is warped to the target 7 by nonrigid ICP such that the
warped source model S’(V’,Eg) can represent the target.
The problem of nonrigid ICP is that if the source is not sim-
ilar to the target, the warped model will be of low quality.
This is the case when building up the graph with 3D models
with great variations. To surpass this drawback we propose
to first deform the source to fit the target using FFD and then
we apply nonrigid ICP to find the dense correspondences.
The following convex optimisation problem is proposed to
deform the source to the target in a free-form manner,
axg min Jly — (Ba®1)(p + 2Ap) 3 + 2 |[@Ap|3.
Ap

3
The first term is a free-form 3D-3D registration where
y € R3% is the vectorized form' of the target 3D anchors
vee([V]a)% [Vr)a € R3*F, Pis the number of anchors,
A is the set of 3D anchor indices, B4 are the Bernstein
basis of the set of 3D anchors, ® is the Kronecker prod-
uct, p € R3*M is the vectorized form of the control points
vec(PT), M is the number of control points, Ap € R3M
are the control point displacements to be optimized, and
& c R3M*3M i 4 matrix to impose symmetry in the FFD
grid along the x—direction. In other words, only half of the
control points are optimized while the other half is forced to
be symmetric. If ® is the identity matrix, all control points
can move freely. The second term is an L? regularization
and -y is the penalty weight. We penalize the L? norm of the
control points displacement Ap to avoid bigger and unreal-
istic deformations that can be caused by the displacement of
the grid far from the object. The problem can be efficiently
solved by steepest descent. After solving this problem to
make the source more similar to the target we can apply the
nonrigid ICP to find the dense correspondences as in [13].

2.3. Metrics to Create the Graph

To evaluate and define the similarity between the warped
source model and the target we propose the use of two met-
rics. The first is a symmetric surface distance metric, sq;s¢,
computed by densely sampling points on the faces and us-
ing normalized points distance to give us an estimate of the
model similarity. It is defined as,

Sdist = |V/| Z f Vl,STy Z fVUS 9

vieV’ ViEV
4)

where
1 if dist(v,S) > 0
0 otherwise.

f(v,8;0) :{ (%)

'We use the vectorized form since we want to control the symmetry
of the z—, y— and z—direction of the FFD grid P independently through
the permutation matrix ®.

2yec(-) is the vectorization operator.



The threshold 6 is chosen through cross-validation such that
consistent correspondences are found across object classes.
This metric works fine if we consider the vertices without
the edges. However, if we consider the edges the topology
of the object may look incorrect (more details in the exper-
iments section). To cope with that, we propose a second
metric which is the intersection over union (IoU) between
the voxel models defined as,
V' NnVr
V' UVr’
where V' and V7 are the voxel models of the warped and
target models respectively. We expect lower values for the
surface distance score and higher values for the voxel IoU
score. Once we find correspondences for every pair of 3D
models from a specific class we define if they will be edges
of the graph G according to both metrics, Sg;s¢ < 04;5¢ and
S1ou > O1ou, Where 04,5 and 05,y are predefined thresh-
olds. The case where the warped model (i.e. edge of G) is
poor we simply trim it off. Therefore, the graph is not fully
connected but sparse allowing us to perform linear com-
binations to deform a 3D object in every subgraph. More
specifically, denote €2 as an index set of the nodes in a cer-
tain subgraph with S.(V ., E..) as the main node. There will
always exist dense correspondences for all ¢ € € that allow
us to deform a 3D model S(V, E) by linear combination,
V:aCVC+€ZﬂaiVi, E =E., @

(6)

SIoU =

where V, E are matrices containing the vertices and edges
respectively and «’s are weights for the linear combination.

3. Single Image 3D Reconstruction

Once we build up the graph we can perform 3D recon-
struction from a single image given the 2D anchors and the
silhouette. The first step is the selection of a 3D model from
the graph that best matches the image, and then we can re-
fine the model using its correspondences which allows us to
deform it by linear combinations.

3.1. Selecting a 3D Model

If we are given a set of several 3D models and we are
asked to find the best 3D model that fits a natural image
we are likely to perform poorly. Humans can be good at
annotating image characteristics, for example, anchors and
silhouettes. However, when we have to look at a 3D model
an judge if it fits a 2D image by estimating its projection
within the scene, it turns out to be a hard task, especially
when we have many possible options for the 3D model. In
this work we propose to automatically select a 3D model
from the graph previously described that best fits a 2D im-
age given its anchors and silhouette.

Given the graph G and a single image I with correspond-
ing anchors W € R2*¥ where P is the number of anchors,

and silhouette S as a binary mask, we propose an optimiza-
tion problem to register the 3D model anchors to the 2D an-
chors by allowing FFD. Some anchors may be occluded so
we denote an index set £ to indicate the anchors’ visibility.
For simplicity we employ an orthographic projection. We
denote R € R2*3 3s the first two rows of a rotation matrix,
t € R2%1 a5 the translation vector, and s as the scale of the
camera model. The key idea is to simultaneously refine the
camera pose and register the 3D anchors by displacing the
control points of the FFD lattice. We formulate this problem
in the following way,

.1
arg min ~|lwz — (B2 ® sR)(p + ®Ap) + t)||§
Ap,R,s,t 2 (8)

+ %\|<I>Ap||§, subject to RR" = Is.

The first term is the reprojection error where w, are the
visible 2D anchors in the vectorized form, B are the Bern-
stein basis of the set of visible 2D anchors, p is the vec-
torized form of the control points, Ap are the control point
displacements, and ® is a matrix to impose symmetry in the
FFD grid. The second term is an L? regularization and + is
the penalty weight as in Equation (3). The objective func-
tion can be efficiently solved by the Alternating Direction
Method of Multipliers (ADMM) [4]. We first introduce an
auxiliary variable Z and rewrite the objective (8) as follows,

o1
arg min |lwz — (B ® Z)(p + ®Ap) +t)|3
Ap,M,Zt 2 )

+ %||<I>Ap\|§, subjectto MM | = s°I,, M = Z,

where M is the scaled rotation sR. The augmented La-
grangian of our proposed objective (9) is formed as,

1
L,(M,Z, Ap,t,A) = we — (B ®Z)(p+ ®Ap) +t)3

+ 2@ Ap|5 + (A, M - Z)r + £|M - 2|,

(10)
where A is the dual variable, p is a parameter controlling
the step size in the optimization, and (.,.) p is the Frobe-
nius product of two matrices. The ADMM alternates the
following steps until convergence:

M* = arg min L,(M, zZF Apkil,tkfl,Akfl), (11)
M

subject to MM ' = s’I,;

VARS argzmin L,(MF,Z, Ap*~" 771 AR, 12)
Ap" = argAII])ain L,(M",Z" Ap,t* 1 AP, 13)
th = argtmin L,(M",ZF ApF 6, A*71); (14)
AF = AR pF — ZF). (15)

The subproblem (11) is solved by,



arg min £,(M,Z*", Ap* 1 t" 71 AR =
M

(014 02)/2 T (16)

U Vv
(014 02)/2 ’

where Z — 2 = U[7,,] VT, U, V and ¢ denote the
left singular vectors, right singular vectors and the singular
values of Z — % respectively.
The subproblem (12) is solved by,
arg min llp(Mk7 Z, Apkil,tkfl,Akfl) =
z oY)
(We—t)ST + A+ pM)(SST +pD)T,

where S = unvec(p + ®Ap)B.* € R3*I£l and |£] is the
number of visible anchors.
The subproblem (13) is solved by,
arg min ﬁp(Mk, VAR Ap,tk_l,Ak_l) =
Ap

(" (B:®©2) (BLo2)®+12)" (18)
(" (Bc@2) (we = (BL@Z)p+1)).
The subproblem (14) is solved by,

arg min £,(M", Z", Ap" t, AF71) = —Z’“(ﬁl| — 28
' 19)
This problem optimizes the projection of the 3D anchors
to the 2D anchors by allowing FFD. It is analogous to the
Perspective-n-Point (PnP) algorithm but allowing free-form
deformation for a better 3D-2D fitting. We exhaustively
search over all 3D models in the graph and then select the
one with the highest IoU. The IoU is computed between the
input image silhouette and the silhouette generated from the

output deformed 3D model.

3.2. Refining the 3D Model

Once a 3D model candidate is selected (i.e. a node from
G) we can refine both the camera pose and the 3D model by
using its edges to perform linear combination. The idea is to
simultaneously refine the camera pose and the 3D anchors
while forcing the vertices of the 3D model to be projected
inside the image silhouette S by optimizing its combina-
tion weights a’s. Let S.(V, E.) denote the selected sub-
graph (i.e. the node/3D model) and €2 an index set of the
nodes in the subgraph. The deformable model S(V, E) is
represented by X = X + Y, cq i X%, where X, X!
are the 3D anchors of the selected 3D model S, and S, re-
spectively, 7 indicates the i-th node of the subgraph (i.e. the
dense correspondences), and «’s are the weights for the lin-
ear combination to be optimized. We propose the following
optimization problem as in [13],

3unwec(-) reshapes the argument to a matrix form.

arg min = Z ||w; — SR (ae[Xec] + ZaZ[X

21t i€Q
+MZC (sR(ae| C]H—Zaz +%Za?»
(20)

1€EQ 1€EQ

where w; is the 2D position of the [-th visible anchor, for
l=1,...,P, N is the number of vertices, C is the Cham-
fer distance map [3] of the image silhouette, and p, v are
penalty weights. The first term is the reprojection error
of the 3D anchors, the second term penalizes the vertices
projected outside the silhouette to ensure silhouette consis-
tency. The penalty is proportional to the Chamfer distance
to the silhouette. The third term is an L? regularization to
avoid larger deformations. The objective function can be
efficiently solved by steepest descent. The gradient V,, of
the objective function with respect to «; is,

)+ )13

Vo =3 ( (sR(cwe[Xels + > cu[XL]) + ) ) sRIXY),
lel i€Q
N .
+p1> VCTSRIVL + you,
- Q1)

where VC is the derivative of the Chamfer distance. To op-
timize the rotation R we use the exponential map to trans-
form the angle-axis rotation representation to a correspond-
ing rotation matrix. Let R be equal to Rel¢lx where [-] is
the skew-symmetric matrix. The gradient V¢ of the objec-
tive function with respect to £ is,

V§=Z( — sRoeC Z+ZO“ )T

leL i€Q
( 8[5] (e[Xe] + EO‘Z ) 22)
-HLZVC ( c]z+Zaz )
i€Q

The gradient V¢ with respect to the translation t is,

vt:Z( — (sR(ae[Xcli + Y ai[X, +t)+quc

lel 1€Q =1
(23)

The scale s is absorbed by the weights «’s.

4. Experiments

Experiments were performed to evaluate how general-
izable the graph structure is when compactly representing
new 3D models and how expressive the 3D reconstructed
models from single images are when using our method.

Datasets. For building up and evaluating the graph struc-
ture we used 3D models of eight classes from ShapeNet [6].
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Figure 3. Finding dense correspondences. In the first row the source aeroplane (red) is warped to fit the target (blue) by using nonrigid ICP
as proposed in [13]. In the second row it shows our method that first brings the two aeroplanes closer to each other by deforming the source
using FFD to fit the target. Then, we apply nonrigid ICP between the deformed source and the target to find dense correspondences.

We used 3D anchors that were manually annotated by [13].
For the evaluation of the 3D reconstruction from a single
image we used the PASCAL3D+ dataset [26] since we have
access to the camera pose and 3D model ground truths, 2D
anchors, and silhouettes for several natural images in the
eight classes chosen.

Metrics. To quantify the quality of the graph structure
we used the metrics described in Subsection 2.3 and for the
3D reconstruction task we used three metrics: (i) 2D an-
chor reprojection error, erp, (ii) camera pose eIror, €pose,
and (iii) 3D structure error, e3p. The 2D anchor reprojec-
tion error measures the accuracy of the reprojected anchors
by computing the mean Euclidean distance between the pro-
jected anchors of the estimated model and the ground truth
anchors. The camera pose error measures the accuracy of
the estimated pose by computing the Frobenius norm of the
difference between the estimated and the ground truth cam-
era pose. The 3D structure error measures the quality of the
reconstructed 3D model by comparing to its ground truth
using the surface distance metric shown in Equation (4).

4.1. Creating the Graph

To build up the graph structures we used eight classes:
Car, bicycle, motorbike, aeroplane, bus, chair, diningtable,
and sofa. We used 30 3D models from ShapeNet with man-
ually annotated 3D anchors. Figure 3 shows our proposed
method for learning dense correspondences to build up the
graph. In the first row the source aeroplane (red) is warped
to fit the target (blue) by using nonrigid ICP as proposed in
[13]. However, one can see that if the source has a different
topology from the target (e.g. different wings) the nonrigid
ICP is likely to fail as shown by the warped model (red). In
the second row our method first brings the two aeroplanes
closer to each other by deforming the source using FFD to

fit the target (see Figure 3(e)). One can note that the wings
of the source are deformed and are moved in to close align-
ment to the target wings. Then, we apply nonrigid ICP be-
tween the deformed source and the target to find dense cor-
respondences. One can see that the warped model proposed
by our method is significantly more similar to the target*.
We used a FFD lattice with [, m,n = 3 (i.e. 4 x 4 x 4 grid)
which gives 64 control points. Since we are performing a
3D-3D anchors registration with a few anchors we found
that 64 control points are sufficient to obtain the desired de-
formation resolution for all object classes used in this work.
Moreover, since we are imposing symmetry on the lattice
we only have to optimize over half of the grid which gives
us a low-dimensional parametrization.

To measure the quality of the warped model we used two
metrics, the surface distance metric, Sg;4:, and the intersec-
tion over union (IoU) between the voxel models, sj,i7, as
defined in Subsection 2.3 - sg;st < Oaist & Srou > 10U,
where 04;5; and 05,y are predefined thresholds. Figure 4
shows an example where a source bicycle S is deformed
to the target 7 using our method to find dense correspon-
dences. The sy;5; between the target 7 and the warped
model S’ is of 1e~* which is below 0y;s = le—3. If we
only use this metric the warped model S8’ would be consid-
ered in the graph as an edge. The drawback of this metric
is that it relies on the vertices ignoring its connections. One
can realize that the point cloud of S’ looks close to the point
cloud of 7. However, when considering its connections one
can realize it looks incorrect and messy (see S’). To handle
such cases we voxelize the target 7 and the warped model
S’ to compute the ToU. The ToU between the voxel mod-
els V7 and V' is 0.1694 which is below 67, = 0.25. So

4Videos can be found in the supplementary material.
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Figure 4. Example where the source bicycle S is deformed to the target 7 using our method to find dense correspondences. The point
cloud and the voxel model, V7, of T are shown in (c) and (d) respectively. The deformed model, S’, and its point cloud and voxel model,
V', are shown in (e), (f) and (g) respectively. One can realize that the point cloud of S’ looks close to the point cloud of 7. If we only use
the s4;5¢ metric the warped model S” would be considered in the graph as an edge. However, when considering its connections one can
realize it looks incorrect and messy (see (e)). So if we also use the s7,y metric we can avoid such false positive cases.

Kongetal. [13] AR Our FFD-AR Kong et al. [13] SF Our SF
€RP €pose €3D €RP €pose €3D €RP €pose €3D €RP €pose €3D
car 45  0.2484 0.2541 5.1529 0.3253  0.1401 40 0.2777 0.2004 9.6093 0.3825 0.1739
bicycle 3203216 03424 6.3982 0.4619  0.3007 41 0.3944 0.3314 9.9575 04723 0.2897
motorbike 33 0.8674 0.1954 6.5200 0.6164 0.1246 33 0.8037 0.1830 17.5707 0.6451 0.0838
aeroplane 39 04527 0.3709 5.2512  0.3296 0.2488 44 0.3507 0.3098 14.4116  0.3405  0.2620
bus 25 0.1699  0.0998 4.0323 0.2269 0.1120 38 0.2148 0.1197 18.9652 0.1807  0.0909
chair 21 0.1964 0.3316 3.7319  0.2053  0.3556 19 0.1858 0.3046 10.1102 0.2165 0.3087
diningtable 30 0.2227  1.2936 4.6158 0.1288  0.4485 23 0.1948  0.6441 12.4022 0.1305 0.3534
sofa 29 03430 0.4838 6.2794 0.2908 0.3830 22 0.2682 0.3872 14.0180 0.2926  0.3461

Table 1. Results of our method and [13] in terms of the 2D reprojection error, e g p, the camera pose error, epose, and the 3D structure error,
e3p. We evaluate the selection of a 3D model from the graph by the anchor registration (AR) and its refinement by the silhouette fitting

(SF) in eight classes.

the warped model is not considered as an edge in the graph
since the quality is low. 64;s; and 05,y were defined such
that we can avoid these false positive cases. By applying
both metrics we can increase the quality of the graph and
consequently the final 3D reconstruction. The resolution of
the voxel models is of 1283.

Figure 5 shows the graph structures learned for the bicy-
cle and car classes. Each node is a 3D model and its size
illustrates its connectivity density. The size is proportional
to the number of edges starting from the node. One can
clearly notice that both graphs built up by our method are
denser than the graphs in [13] which is obvious since we
have higher quality correspondences.

4.2. Single Image 3D Reconstruction

We evaluate the performance of our method on PAS-
CAL3D+ and we compared to the results presented by Kong
et al. in [13]. Table 1 summarizes the results of our method
and [13] in terms of the 2D reprojection error, epp, the
camera POSE EITOr, €pose, and the 3D structure error, e3p.
We evaluate the selection of a 3D model from the graph
by the anchor registration (AR) and its refinement by the
silhouette fitting (SF). Our method clearly outperforms the
method proposed in [13]. Moreover, one can see that the
model refinement by the SF plays an important role in the
final 3D reconstruction error.

Qualitative results are shown in Figure 6 for the eight

classes chosen’. Column (a) shows the input image. Col-
umn (b) shows the FFD anchor registration used for the se-
lection of a 3D model from the graph. The refinement of the
3D model by using the silhouette fitting is shown in column
(c). The selected 3D model is shown in column (d). The
final 3D model reconstructed through the silhouette fitting
is shown in column (e). We compare our results with the 3D
models reconstructed in [ 1 3] and the ground truth which are
shown in columns (f) and (g) respectively. One can see that
our method selects a proper model and its refinement by the
silhouette fitting step can be smooth. For instance, the 3D
model selected for the car image in the first row is a proper
choice. However, the car is still slightly deformed to bet-
ter fit the silhouette. The 3D model selected for the bicycle
in the second row had its handlebar grip bended down but

s N
(c) Car (d) Car [13]

Figure 5. Bicycle and car graphs: (a) and (c) show the graphs cre-
ated by our method, and (b) and (d) show the graphs in [13].

(a) Bicycle (b) Bicycle [13]

5Videos can be found in the supplementary material.



(d) FFpD-AR

Figure 6. Qualitative results for the eight classes chosen. Column (a) shows the input natural image. Column (b) shows the FFD anchor
registration used for the selection of a 3D model from the graph. It shows the ground truth anchors (blue dots), the ground truth silhouette
in black, the projection of the estimated anchors (red dots), and the silhouette of the estimated 3D model overlaid in red. The refinement
of the 3D model by using the silhouette fitting is shown in column (c). The selected 3D model is shown in column (d) and it also displays
the deformed FFD lattice. The final 3D model reconstructed through the silhouette fitting is shown in column (e). We compare our results
with the 3D models reconstructed in [13] and the ground truth which are shown in columns (f) and (g) respectively.

the refinement step managed to bring it up and it looks even
closer to the ground truth. One can notice that our method
looks more realistic and more detailed than the method pro-
posed by Kong et al. [13]. What is interesting is that our
method manages to reconstruct a 3D model from a single
image even better than the ground truth which were manu-
ally selected by humans. Car, motorbike and aeroplane are
good examples for showing that. Humans are not good in
choosing 3D models to fit an image. Our method can take
care of details that we humans can easily ignore.

(e) SF (f) Kong et al. [13]
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5. Conclusion

We demonstrated that a low-dimensional FFD
parametrization and sparse linear representation are
able to compactly model the intrinsics deformation across
a class of 3D CAD models. We showed that dense 3D
reconstruction from a single image can be performed using
our compact model representation given the 2D anchors
and the object silhouette. Experiments revealed that our
approach is able to reconstruct detailed and realistic 3D
meshs which extends the applicability of our method.
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