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Figure 1: SEGCloud: A 3D point cloud is voxelized and fed through a 3D fully convolutional neural network to produce coarse down-
sampled voxel labels. A trilinear interpolation layer transfers this coarse output from voxels back to the original 3D Points representation.
The obtained 3D point scores are used for inference in the 3D fully connected CRF to produce the final results. Our framework is trained

end-to-end.

Abstract

3D semantic scene labeling is fundamental to agents op-
erating in the real world. In particular, labeling raw 3D
point sets from sensors provides fine-grained semantics. Re-
cent works leverage the capabilities of Neural Networks
(NNs), but are limited to coarse voxel predictions and do
not explicitly enforce global consistency. We present SEG-
Cloud, an end-to-end framework to obtain 3D point-level
segmentation that combines the advantages of NN, trilin-
ear interpolation(TI) and fully connected Conditional Ran-
dom Fields (FC-CRF). Coarse voxel predictions from a 3D
Fully Convolutional NN are transferred back to the raw
3D points via trilinear interpolation. Then the FC-CRF
enforces global consistency and provides fine-grained se-
mantics on the points. We implement the latter as a dif-
ferentiable Recurrent NN to allow joint optimization. We
evaluate the framework on two indoor and two outdoor
3D datasets (NYU V2, S3DIS, KITTI, Semantic3D.net), and
show performance comparable or superior to the state-of-
the-art on all datasets.

1. Introduction

Scene understanding is a core problem in Computer Vi-
sion and is fundamental to applications such as robotics,
autonomous driving, augmented reality, and the construc-
tion industry. Among various scene understanding prob-
lems, 3D semantic segmentation allows finding accurate ob-
ject boundaries along with their labels in 3D space, which
is useful for fine-grained tasks such as object manipulation,
detailed scene modeling, etc.

Semantic segmentation of 3D point sets or point clouds
has been addressed through a variety of methods lever-
aging the representational power of graphical models [36,
44, 3, 48, 30, 35]. A common paradigm is to com-
bine a classifier stage and a Conditional Random Field
(CRF) [39] to predict spatially consistent labels for each
data point [68, 69, 45, 66, 69]. Random Forests classi-
fiers [7, 15] have shown great performance on this task,
however the Random Forests classifier and CRF stage are
often optimized independently and put together as separate
modules, which limits the information flow between them.

3D Fully Convolutional Neural Networks (3D-
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FCNN) [42] are a strong candidate for the classifier
stage in 3D Point Cloud Segmentation. However, since
they require a regular grid as input, their predictions are
limited to a coarse output at the voxel (grid unit) level.
The final segmentation is coarse since all 3D points within
a voxel are assigned the same semantic label, making
the voxel size a factor limiting the overall accuracy. To
obtain a fine-grained segmentation from 3D-FCNN, an
additional processing of the coarse 3D-FCNN output is
needed. We tackle this issue in our framework which is
able to leverage the coarse output of a 3D-FCNN and still
provide a fine-grained labeling of 3D points using trilinear
interpolation (TI) and CRF.

We propose an end-to-end framework that leverages the
advantages of 3D-FCNN, trilinear interpolation [47], and
fully connected Conditional Random Fields(FC-CRF) [39,

] to obtain fine-grained 3D Segmentation. In detail, the
3D-FCNN provides class probabilities at the voxel level,
which are transferred back to the raw 3D points using tri-
linear interpolation. We then use a Fully Connected Con-
ditional Random Field (FC-CRF) to infer 3D point labels
while ensuring spatial consistency. Transferring class prob-
abilities to points before the CRF step, allows the CRF to
use point level modalities (color, intensity, etc.) to learn
a fine-grained labeling over the points, which can improve
the initial coarse 3D-FCNN predictions. We use an efficient
CRF implementation to perform the final inference. Given
that each stage of our pipeline is differentiable, we are able
to train the framework end-to-end using standard stochastic
gradient descent.

The contributions of this work are:

* We propose to combine the inference capabilities of Fully
Convolutional Neural Networks with the fine-grained
representation of 3D Point Clouds using TI and CRF.

* We train the voxel-level 3D-FCNN and point-level CRF
jointly and end-to-end by connecting them via Trilinear
interpolation enabling segmentation in the original 3D
points space.

Our framework can handle 3D point clouds from var-
ious sources (laser scanners, RGB-D sensors, etc.), and
we demonstrate state-of-the art performance on indoor
and outdoor, partial and fully reconstructed 3D scenes,
namely on NYU V2[52], Stanford Large-Scale 3D Indoor
Spaces Dataset (S3DIS)[5], KITTI[23, 22], and the Seman-
tic3D.net benchmark for outdoor scenes[26].

2. Related Work

In this section, we present related works with respect to
three main aspects of our framework: neural networks for
3D data, graphical models for 3D Segmentation and works
that explore the combination of Convolutional Neural Net-

works (CNN) and CRF. Other techniques have been em-
ployed for 3D Scene Segmentation [ 13, 2, 40] but we focus
mainly on the ones related to the above topics.

Neural Networks for 3D Data: 3D Neural Networks
have been extensively used for 3D object and parts recog-
nition [060, 54, 46, 25, 53, 21], understanding object shape
priors, as well as generating and reconstructing objects [73,

, 19, 70, 12].  Recent works have started exploring
the use of Neural Networks for 3D Semantic Segmenta-
tion [53, 16, 32]. Qi et al. [53] propose a Multilayer Percep-
tron (MLP) architecture that extracts a global feature vec-
tor from a 3D point cloud of 1m? physical size and pro-
cesses each point using the extracted feature vector and ad-
ditional point level transformations. Their method operates
at the point level and thus inherently provides a fine-grained
segmentation. It works well for indoor semantic scene un-
derstanding, although there is no evidence that it scales to
larger input dimensions without additional training or adap-
tation required. Huang et al. [32] present a 3D-FCNN for
3D semantic segmentation which produces coarse voxel-
level segmentation. Dai et al. [16] also propose a fully con-
volutional architecture, but they make a single prediction
for all voxels in the same voxel grid column. This makes
the wrong assumption that a voxel grid column contains 3D
points with the same object label. All the aforementioned
methods are limited by the fact that they do not explicitly
enforce spatial consistency between neighboring points pre-
dictions and/or provide a coarse labeling of the 3D data.
In contrast, our method makes fine-grained predictions for
each point in the 3D input, explicitly enforces spatial con-
sistency and models class interactions through a CRF. Also,
in contrast to [53], we readily scale to larger and arbitrarily
sized inputs, since our classifier stage is fully convolutional.

Graphical Models for 3D Segmentation: Our frame-
work builds on top of a long line of works combining
graphical models( [61, 62, 39, 20, 38]) and highly engi-
neered classifiers. Early works on 3D Semantic Segmen-
tation formulate the problem as a graphical model built on
top of a set of features. Such models have been used in
several works to capture contextual relationships based on
various features and cues such as appearance, shape, and
geometry. These models are shown to work well for this
task [50, 49, 36, 58, 44, 3, 48].

A common paradigm in 3D semantic segmentation com-
bines a classifier stage and a Conditional Random Field to
impose smoothness and consistency [08, 69, 45, 66, 69].
Random Forests [7, 15] are a popular choice of classi-
fier in this paradigm and in 3D Segmentation in gen-
eral [75, 17,9, 8, 51, 67]; they use hand-crafted features
to robustly provide class scores for voxels, oversegments
or 3D Points. In [45], the spin image descriptor is used as
a feature, while [68] uses a 14-dimensional feature vector
based on geometry and appearance. Hackel et al. [27] also
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Figure 2: Network architecture: The 3D-FCNN is made of 3 residual layers sandwiched between 2 convolutional layers. Max Pooling

in the early stages of the network yields a 4X downsampling.

define a custom set of features aimed at capturing geome-
try, appearance and location. In these works, the Random
Forests output is used as unary potentials (class scores) for
a CRF whose parameters are learned independently. The
CRF then leverages the confidence provided by the classi-
fier, as well as similarity between an additional set of fea-
tures, to perform the final inference. In contrast to these
methods, our framework uses a 3D-FCNN which can learn
higher dimensional features and provide strong unaries for
each data point. Moreover, our CRF is implemented as a
fully differentiable Recurrent Neural Network, similar to
[76]. This allows the 3D-FCNN and CRF to be trained end-
to-end, and enables information flow from the CRF to the
CNN classification stage.

Joint CNN + CRF: Combining 3D CNN and 3D CRF
has been previously proposed for the task of lesion segmen-
tation in 3D medical scans. Kamnitsas ef al. [34] propose a
multi-scale 3D CNN with a CREF to classify 4 types of le-
sions from healthy brain tissues. The method consists of
two modules that are not trained end-to-end: a 2-stream
architecture operating at 2 different scan resolutions and a
CRF. In the CRF training stage, the authors reduce the prob-
lem to a 2-class segmentation task in order to find parame-
ters for the CRF that can improve segmentation accuracy.

Joint end-to-end training of CNN and CRF was first
demonstrated by [76] in the context of image semantic seg-
mentation, where the CRF is implemented as a differen-
tiable Recurrent Neural Network (RNN). The combination
of CNN and CRF trained in an end-to-end fashion demon-
strated state-of-the-art accuracy for semantic segmentation
in images. In [76] and other related works [42, 10], the
CNN has a final upsampling layer with learned weights
which allows to obtain pixel level unaries before the CRF
stage. Our work follows a similar thrust by defining the
CRF as an RNN and using a trilinear interpolation layer to
transfer the coarse output of the 3D-FCNN to individual 3D
points before the CRF stage. In contrast to [34], our frame-
work is a single stream architecture which jointly optimizes
the 3D CNN and CREF, targets the domain of 3D Scene Point
Clouds, and is able to handle a large number of classes both
at the CNN and CRF stage. Unlike [76, 42, 10], we choose

to use deterministic interpolation weights that take into ac-
count the metric distance between a 3D point and its neigh-
boring voxel centers (Section 3.2). Our approach reduces
the number of parameters to be learned, and we find it to
work well in practice. We show that the combination of
jointly trained 3D-FCNN and CRF with TI consistently per-
forms better than a stand alone 3D-FCNN.

In summary, our work differs from previous works in
the design of an end-to-end deep learning framework for
fine-grained 3D semantic segmentation, the use of deter-
ministic trilinear interpolation to obtain point-level segmen-
tation, and the use of a jointly trained CRF to enforce spatial
consistency. The rest of the paper is organized as follows.
Sections 3 and 4 present the components of our end-to-end
framework and Section 5 provides implementation details.
Section 6 presents our experiments including datasets (6.1),
benchmark results (6.2), and system analysis (6.3). Section
7 concludes with a summary of the presented results.

3. SEGCloud Framework

An overview of the SEGCloud pipeline is shown in Fig-
ure 1. In the first stage of our pipeline, the 3D data is
voxelized and the resulting 3D grid is processed by a 3D
fully convolutional neural network (3D-FCNN)'. The 3D-
FCNN down-samples the input volume and produces prob-
ability distributions over the set of classes for each down-
sampled voxel (Section 3.1). The next stage is a trilinear in-
terpolation layer which interpolates class scores from down-
sampled voxels to 3D points (Section 3.2). Finally, infer-
ence is performed using a CRF which combines the original
3D points features with interpolated scores to produce fine-
grained class distributions over the point set (Section 3.3).
Our entire pipeline is jointly optimized and the CRF infer-
ence and joint optimization processes are presented in Sec-
tion 4.

'Depending on the type of 3D data a pre-processing step of converting
it to a 3D point cloud representation might be necessary.



3.1. 3D Fully Convolutional Neural Network

Our framework uses a 3D-FCNN to learn a representa-
tion suitable for semantic segmentation. Moreover, the fully
convolutional network reduces the computational overhead
needed to generate predictions for each voxel by sharing
computations [43]. In the next section, we describe how we
represent 3D point clouds as an input to the 3D-FCNN.
3D-FCNN data representation: Given that the 3D-FCNN
input should be in the form of a voxel grid, we convert 3D
point clouds as follows. Each data point is a 3D observation
0;, that consists of the 3D position p; and other available
modalities, such as the color intensity I; and sensor inten-
sity S;. We place the 3D observations O = {o0;} in a metric
space so that the convolution kernels can learn the scale of
objects. This process is usually handled in most 3D sen-
sors. Then we define a regular 3D grid that encompasses
the 3D observations. We denote each cell in the 3D grid as
a voxel v; and for simplicity, each cell is a cube with length
V' = 5cm. Most of the space in the 3D input is empty and
has no associated features. To characterize this, we use a
channel to denote the occupancy as a binary value (zero or
one). We use additional channels to represent other modal-
ities. For instance, three channels are used for RGB color,
and one channel is used for sensor intensity when available.
Architecture: Our 3D-FCNN architecture is illustrated in
Figure 2. We use 3 residual modules [28] sandwiched be-
tween 2 convolutional layers, as well as 2 destructive pool-
ing layers in the early stages of the architecture to down-
sample the grid, and 2 non-destructive ones towards the end.
The early down-sampling gives us less memory footprint.
The entire framework is fully convolutional and can handle
arbitrarily sized inputs. For each voxel v;, the 3D-FCNN
outputs scores(logits) L; associated with a probability dis-
tribution g; over labels. The resulting scores are transferred
to the raw 3D points via trilinear interpolation.

3.2. 3D Trilinear Interpolation

The process of voxelization and subsequent down-
sampling in the 3D-FCNN converts our data representa-
tion to a coarse 3D grid which limits the resolution of se-
mantic labeling at the CRF stage (to 20 cm in our case).
Running the CRF on such coarse voxels results in a coarse
segmentation. One option to avoid this information loss is
to increase the resolution of the voxel grid (i.e. decrease
the voxel size) and/or remove the destructive pooling lay-
ers, and run the CRF directly on the fine-grained voxels.
However, this quickly runs into computational and memory
constraints, since for given 3D data dimensions, the mem-
ory requirement of the 3D-FCNN grows cubically with the
resolution of the grid. Also, for a given 3D-FCNN archi-
tecture, the receptive field decreases as the resolution of the
grid increases, which can reduce performance due to having
less context available during inference(see [63]).
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Figure 3: Trilinear interpolation of class scores from voxels to
points: Each point’s score is computed as the weighted sum of the
scores from its 8 spatially closest voxel centers.

We therefore dismiss a voxel-based CRF approach and
resort to running CRF inference using the raw 3D points
as nodes. In this way, the CRF can leverage both the 3D-
FCNN output and the fine-grained modalities of the in-
put 3D points to generate accurate predictions that capture
scene and object boundaries in detail. We achieve this using
trilinear interpolation to transfer the voxel-level predictions
from the 3D-FCNN to the raw 3D points as illustrated in
Figure 3. Specifically, for each point, o; = {p;, I;, S; }, we
define a random variable z; that denotes the semantic class,
and the scores(logits) L; associated with the distribution of
x; are defined as a weighted sum of scores L; ,,(z; ) of its
8 spatially closest voxels v; ,, n € {1, ...,8} whose centers
are (pf,,, ) ,» P ) as follows:

8
Yu(x; =1) = Li(x; = 1) = szann(xzn =1) (1)

n=1

(1= Ip; = p5.l/V)
se{x,y,z}

g
3
I

where V' is the voxel size. During back propagation, we
use the same trilinear interpolation weights w; ,, to splat
the gradients from the CRF to the 3D-FCNN. The obtained
point level scores are then used as unaries in the CRF.

3.3.3D Fully Connected Conditional Random Field

The energy function of a CRF consists of a set of unary
and pairwise potential energy terms. The unary potentials
are a proxy for the initial probability distribution across se-
mantic classes and the pairwise potentials enforce smooth-
ness and consistency between predictions. The energy of
the CRF is defined as,

E(z) = Z¢u($i) +) (i, ;) 2

i<j



where 1),, denotes the unary potential which is defined in
Equation 3.2 and 1), denotes the pairwise potential. Note
that all nodes in the CRF are connected with each other
through the pairwise potentials. We use the Gaussian ker-
nels from [37] for the pairwise potentials,
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where wy, and w, are the weights of the bilateral and spa-
tial kernel respectively, pu is the label compatibility score,
and 6, 63, 0, are the kernels’ bandwidth parameters. When
RGB information is not available, we only use the spatial
kernel. Using Gaussian kernels enables fast variational in-
ference and learning through a series of convolutions on a
permutohedral lattice [ 1] (Section 4).

4. CRF Inference and Joint Optimization

Exact energy minimization in CRF is intractable, there-
fore we rely on a variational inference method which allows
us to jointly optimize both the CRF and 3D-FCNN [76, 37].
The output after the CRF energy minimization gives us fine-
grained predictions for each 3D point that takes smooth-
ness and consistency into account. Given the final output
of the CRF, we follow the convention and use the distance
between the prediction and ground truth semantic labels as
a loss function and minimize it.

CRF Inference: The CRF with Gaussian potential has a

special structure that allows fast and efficient inference.

Krihenbiihl et al. [37] presented an approximate inference

method which assumes independence between semantic la-

bel distributions Q(X) = [] Q:(x;), and derived the update
2

equation:
1
Qf (e =1) = 7 exp { —tulx:)
K )
= 3y YD WSROI, )00 }
rec m=1 j#i

The above update equation can be implemented us-
ing simple convolutions, sums and softmax as shown by
Zheng et al. [76], who implemented CRF inference and
learning as a Recurrent Neural Network (RNN), named
CRF-RNN. CRF-RNN can be trained within a standard
CNN framework, so we follow the same procedure to de-
fine our 3D CRF as an RNN for inference and learning.
This formulation allows us to integrate the CRF within our
3D-FCNN framework for joint training.

Loss: Once we minimize the energy of the CRF in Equa-
tion 2, we obtain the final prediction distribution of the
semantic class x; on each 3D observation o,. Denoting

the ground truth discrete label of the observation o; as y;,
we follow the convention and define our loss function as
the distance between a final prediction distribution and the
ground truth distribution using KL divergence:

1 N
L(x,y) = 3 > By l-logp(w:)] 5)
i=1

where IV is the number of observations. Since the en-
tropy of y; is a constant with respect to all parameters, we
do not include it in the loss function equation.

5. Implementation Details

We implemented the SEGCloud framework using the
Caffe neural network library [ 7. Within theCaf fe frame-
work, we adapted the bilinear interpolation of [ 1] and im-
plemented trilinear interpolation as a neural network layer.
All computations within the 3D-FCNN, trilinear interpola-
tion layer, and CRF are done on a Graphical Processing Unit
(GPU). For CRF inference, we adapt the RNN implementa-
tion of Zheng et al. [76] to 3D point clouds.

To address the lack of data in some datasets and make the
network robust, we applied various data augmentation tech-
niques such as random color augmentation, rotation along
the upright direction, and points sub-sampling. The above
random transformations and sub-sampling allow to increase
the effective size of each dataset by at least an order of
magnitude, and can help the network build invariance to ro-
tation/viewpoint changes, as well as reduced and varying
context (see [63]).

Training is performed in a 2-step process, similar to [76]
(see Figure 7). In the first stage, we train the 3D-FCNN in
isolation via trilinear interpolation for 200 epochs.

In the second stage, we jointly train the 3D-FCNN and
the CRF end-to-end (both modules connected through the
trilinear interpolation layer). The approximate variational
inference method we used for the CRF [37] approximates
convolution in a permutohedral grid whose size depends on
the bandwidth parameters 6,03, 6,. We fixed 6, at Scm,
63 at 11 and used a grid search with small perturbation on a
validation set to find the optimal 6, (see [63]).

6. Experiments

In this section, we evaluate our framework on various 3D
datasets and analyze the performance of key components.

6.1. Datasets

Several 3D Scene datasets have been made available to
the research community [56, 4, 5, 31, 59, 72, 52, 16, 24,
]. We chose four of them so that they cover indoor and

2We use [64] that supports 3D convolution.



Table 1: Results on the Semantic3D.net Benchmark (reduced-8 challenge)

Method man—m.ade natur.al high. low' buildings hard  scanning cars mIOU  mAcc?
terrain terrain  vegetation  vegetation scape  artefacts

TMLC-MSR [27] 89.80 74.50 53.70 26.80 88.80 18.90 3640 44.70 | 5420 68.95

DeePr3SS [41] 85.60 83.20 74.20 32.40 89.70 1850  25.10 59.20 | 58.50 88.90

SnapNet [6] 82.00 77.30 79.70 22.90 91.10 1840 3730 64.40 | 59.10 70.80

3D-FCNN-TI(Ours) 84.00 71.10 77.00 31.80 89.90 2770 2520 59.00 | 58.20 69.86

SEGCloud (Ours) 83.90 66.00 86.00 40.50 91.10 3090 2750 64.30 | 61.30 73.08

Table 2: Results on the Large-Scale 3D Indoor Spaces Dataset (S3DIS)

Method‘ceiling floor wall beam column window door chair table bookcase sofa

board clutter ‘ mIOU mAcc

PointNet [53] | 88.80 97.33 69.80 0.05 3.92

46.26

10.76 52.61 58.93 40.28

5.85 26.38 33.22|41.09 48.98

3D-FCNN-TI(Ours) | 90.17 96.48 70.16 0.00 11.40 33.36 21.12 76.12 70.07 57.89 37.46 11.16 41.61|47.46 54.91
SEGCloud (Ours) | 90.06 96.05 69.86 0.00 18.37 38.35 23.12 75.89 70.40 58.42 40.88 12.96 41.60|48.92 57.35
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Figure 4: We follow a 2-stage training by first optimizing over
the point-level unary potentials (no CRF) and then over the joint
framework for point-level fine-grained labeling.

outdoor, partial and fully reconstructed, as well as small,
medium and large scale point clouds. For our evaluation,
we favor those for which previous 3D Semantic Segmen-
tation works exist, with replicable experimental setups for
comparison. We choose baselines so that they are repre-
sentative of the main research thrusts and topics related to
our method (i.e., Neural Networks, Random Forests, and
CRFs). The datasets we chose for evaluation are the Se-
mantic3D.net Benchmark [26], the Stanford Large-Scale
3D Indoor Spaces Dataset (S3DIS) [5], KITTI [23, 22], and
NYU V2 [52]. The datasets showcase a wide range of sizes
from the smallest KITTI dataset with 12 million training
points, to the largest Semantic3D.net with 1.9 billion train-
ing points “(details in [63]). We evaluate our method on
each dataset and provide a comparison against the state-of-
the-art.

6.2. Results

We present quantitative and qualitative results for each
of the datasets introduced above. We compare against the
state-of-the-art, and perform an ablation study to showcase
the benefits of the CRF. The metrics reported are mean

4This excludes the validation set in our data split

IOU and mean Accuracy across classes unless otherwise
stated.

Semantic3D.net benchmark: We evaluate our ar-
chitecture on the recent Semantic3D.net benchmark [26],
which is currently the largest labeled 3D point cloud dataset
for outdoor scenes. It contains over 3 billion points and
covers a range of urban scenes. We provide results on the
reduced-8 challenge of the benchmark in Table 1. Our
method outperforms [6] by 2.2 mIOU points and 2.28%
accuracy and sets a new state-of-the-art on that challenge.
When compared against the best method that does not
leverage extra data through ImageNet [57] pretrained
networks, our method outperforms [27] by 7.1 mIOU
points, 4.1% accuracy. Note that we also do not leverage
extra data or ImageNet [57] pretrained networks. Our base
3D-FCNN trained with Trilinear Interpolation (3D-FCNN-
TI) already achieves state-of-the-art performance, and an
additional improvement of 3.1 mIOU points and 3.22%
can be attributed to the CRF. An example segmentation
of our method is shown in Figure 5. The 3D-FCNN-TI
produces a segmentation which contains some noise on
the cars highlighted in the figure. However, the combina-
tion with the CRF in the SEGCloud is able to remove the
noise and provide a cleaner segmentation of the point cloud.

Stanford Large-Scale 3D Indoor Spaces Dataset
(S3DIS): The S3DIS dataset [5] provides 3D point clouds
for six fully reconstructed large-scale areas, originating
from three different buildings. We train our architecture
on two of the buildings and test on the third. We compare
our method against the MLP architecture of Qi et al.,
(PointNet) [53]. Qi er al. [53] perform a six-fold cross
validation across areas rather than buildings. However, with
this experimental setup, areas from the same building end
up in both the training and test set resulting in increased
performance and do not measure generalizability. For
a more principled evaluation, we choose our test set to
match their fifth fold (ie. we test on Area 5 and train
on the rest). We obtain the results from the authors for



Table 3: Results on the NYUV2 dataset

Method

Bed Objects Chair Furniture Ceiling Floor Deco. Sofa Table Wall Window Booksh. TV |mIOU mAcc glob Acc

Couprieetal. [14] |38.1 8.7 34.1 424

Hermans et al. [29] | 684 8.6 419 37.1

Wolf et al. [69]

62.6 873 404 246 102 86.1 159 13.7 6.0 - 36.2 524
Wangetal. [65] [47.6 124 235 167 68.1 84.1 264 39.1 354 659 522
834 915 358 285 277 71.8 46.1
74.56 17.62 62.16 47.85 82.42 98.72 26.36 69.38 48.57 83.65 25.56 54.92 31.05|39.51 55.6+0.2 64.9£0.3

450 324 - 42.2
454 384 - 48.0 542

3D-FCNN-TI(Ours)| 69.3 40.26 64.34 64.41 73.05 95.5521.15 55.51 45.09 84.96 20.76 42.24 23.95/42.13 539 67.38

SEGCloud (Ours) |75.06 39.28 62.92 61.8

69.16 95.21 34.38 62.78 45.78 78.89 26.35 53.46 28.5|43.45 5643 66.82

Table 4: Results on the KITTI dataset.

Method‘building sky road vegetation sidewalk car pedestrian cyclist signage fence | mIOU mAcc

Zhang etal. [75]] 86.90 - 89.20 55.00
3D-FCNN-TI(Ours) | 85.83 - 90.57 70.50
SEGCloud (Ours) | 85.86 - 88.84 68.73

comparison shown in Table 2. We outperform the MLP
architeture of [53] by 7.83 mIOU points and 8.37% in
mean accuracy. Our base 3D-FCNN-TI also outper-
forms their architecture and the effect of our system’s
design choices on the performance of the 3D-FCNN and
3D-FCNN-TI are analyzed in Section 6.3. Qualitative
results on this dataset (Figure 5) show an example of how
detailed boundaries are captured and refined by our method.

NYU V2: The NYU V2 dataset [52] contains 1149
labeled RGB-D images. Camera parameters are available
and are used to obtain a 3D point cloud for each RGB-D
frame. In robotics and navigation applications, agents do
not have access to fully reconstructed scenes and labeling
single frame 3D point clouds becomes invaluable. We
compare against 2D and 3D-based methods except for those
that leverage additional large scale image datasets (e.g.
[35], [18]), or do not use the official split or the 13-class
labeling defined in [14] (e.g. [35], [68]). We obtain a
confusion matrix for the highest performing method of [69]
to compute mean IOU in addition to the mean accuracy
numbers they report. Wolf et al. [69] evaluate their method
by aggregating results of 10 random forests. Similarly, we
use 10 different random initializations of network weights,
and use a validation set to select our final trained model for
evaluation. Results are shown in Table 3. We outperform
the 3D Entangled Forests method of [69] by 3.94 mIOU
points and 0.83% mean accuracy.

KITTI: The KITTI dataset [23, 22] provides 6 hours of
traffic recording using various sensors including a 3D laser
scanner. Zhang et al. [75] annotated a subset of the KITTI
tracking dataset with 3D point cloud and corresponding 2D
image annotations for use in sensor fusion for 2D semantic
segmentation. As part of their sensor fusion process, they
train a unimodal 3D point cloud classifier using Random

26.20 50.0
25.56 65.68 46.35
29.74 67.51

49.00 193 517 211 - 49.80
7.78 28.40 4.51|35.65 47.24

53.52 7.27 39.62 4.05]|36.78 49.46

Forests. We use this classifier as a baseline for evaluating
our framework's performance. The comparison on the
labeled KITTI subset is reported in Table 4. We demon-
strate performance on par with [75] where a Random
Forests classifier is used for segmentation. Note that for
this dataset, we train on the laser point cloud with no RGB
information.

Analysis of results: In all datasets presented, our per-
formance is on par with or better than previous methods.
As expected, we also observe that the addition of a CRF
improves the 3D-FCNN-TI output and the qualitative re-
sults showcase its ability to recover clear object boundaries
by smoothing out incorrect regions in the bilateral space
(e.g. cars in Semantic3D.net or chairs in S3DIS). Quanti-
tatively, it offers a relative improvement of 3.0-5.3% mIOU
and 4.4-4.7% mAcc for all datasets. Specifically, we see
the largest relative improvement on Semantic3D.net - 5.3%
mlIOU. Since Semantic3D.net is by far the largest dataset
(at least 8X times larger), we believe that such character-
istic might be representative for large scale datasets as the
base networks are less prone to overfitting. We notice how-
ever that several classes in the S3DIS dataset, such as board,
column and beam are often incorrectly classified as walls.
These elements are often found in close proximity to walls
and have similar colors, which can present a challenge to
both the 3D-FCNN-TT and the CRF.

6.3. System Analysis

We analyze two additional components of our frame-
work: geometric data augmentation and trilinear interpo-
lation. The experiments presented in this section are per-
formed on the S3DIS dataset. We also analyzed the effect
of joint training versus separate CRF initialization (details
and results in supplementary material [63]).



Figure 5: Qualitative results of our framework on Semantic3D.net and S3DIS. Additional results provided in suppl. [63].

Table 5: Effect of Geometric Augmentation

Method | mIOU

PointNet [53] | 41.09

Ours- no augm. (3D-FCNN-TI) | 43.67
Ours (3D-FCNN-TI) | 47.46

Effect of Geometric Data Augmentation: Our
framework uses several types of data augmentation.
Our geometric data augmentation methods in particular
(random 360° rotation along the z-axis and scaling) are
non-standard. Qi et al. [53] use different augmentation,
including random rotation along the z-axis, and jittering of
x,y, z coordinates to augment object 3D point clouds, but
it is not specified whether the same augmentation is used on
3D scenes. We want to determine the role of our proposed
geometric augmentation methods on the performance of
our base 3D-FCNN-TI architecture. We therefore train the
3D-FCNN-TI without any geometric augmentation and
report the performance in Table 5. We observe that the
geometric augmentation does play a significant role in the
final performance and is responsible for an improvement of
3.79 mIOU points. However, even without any geometric
augmentation, our base 3D-FCNN-TI outperforms the
MLP architecture of [53] by 2.58 mIOU points.

Trilinear interpolation analysis: We now present a
study on the effect of trilinear interpolation on our frame-
work. For simplicity, we perform this analysis on the com-
bination of 3D-FCNN and interpolation layer only (no CRF
module). We want to study the advantage of our proposed 8-
neighbours trilinear interpolation scheme (Section 3.2) over
simply assigning labels of points according to the voxel they
belong to (see Figure 6 for a schematic explanation of the
two methods). The results of the two interpolation schemes
are shown in Table 6. We observe that trilinear interpolation
helps improve the 3D-FCNN performance by 2.62 mIOU
points over simply transferring the voxel label to the points
within the voxel. This shows that considering the metric
distance between points and voxels, as well a larger neigh-
borhood of voxels can help improve accuracy in predictions.

Table 6: Effect of trilinear interpolation

Method | mIOU

PointNet [53] | 41.09

Ours-NN (3D-FCNN-NN) | 44.84
Ours (3D-FCNN-TI) | 47.46
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Figure 6: Assigning voxel labels to 3D points (top view):
Trilinear interpolation (a) versus the conventional approach of the
nearest voxel center (b).

7. Conclusion

We presented an end-to-end 3D Semantic Segmentation
framework that combines 3D-FCNN, trilinear interpolation
and CRF to provide class labels for 3D point clouds.
Our approach achieves performance on par or better
than state-of-the-art methods based on neural networks,
randoms forests and graphical models. We show that
several of its components such as geometric 3D data
augmentation and trilinear interpolation play a key role
in the final performance. Although we demonstrate a
clear advantage over some Random Forests methods and
a point-based MLP method, our implementation uses a
standard voxel-based 3D-FCNN and could still adapt to
the sparsity of the voxel grid using sparse convolutions
(e.g. [55]) which could add an extra boost in performance,
and set a new state-of-the-art in 3D Semantic Segmentation.
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Appendix

This document presents additional details and qualitative
results for the framework presented in our main paper. Sec-
tion A reports the particulars of our framework’s implemen-
tation. The following section B offers details and results on
the effect of using end-to-end training versus separate CRF
intialization. The remaining of the document focuses on ad-
ditional aspects of the evaluation and experiments. The ex-
perimental setup is detailed in Section C. The characteristics
of the datasets used in our evaluation are outlined in Section
C.1. Section C.2 defines the metrics used in evaluating our
framework. Finally, qualitative results of our framework on
all four datasets are illustrated in Section C.3.

A. Implementation

This section provides additional implementation details,
including procedures for 3D data augmentation, data prepa-
ration, training, as well as the programming framework.

A.1. Augmentation Procedures for 3D data

Most of the datasets we used are small to medium in
scale. To make up for the lack of data, we perform a se-
ries of augmentations for 3D data. We apply the following
data augmentations on-the-fly to increase randomness in the
data and save storage space.

Color Augmentation: Color augmentation is a popular
data augmentation technique for image datasets. We lever-
age it in our work by randomly varying the R, G and B
channels of each observation within the range £2.5 for each
channel.

Geometric augmentation: We also leverage 2 simple
geometric augmentations: random rotation and scaling. We
randomly rotate 3D observations around the axis along the
gravity direction to mimic a change of viewpoints in a
scene. During training, we sample rotation angles in the
continuous range of [0°,360°] and rotate the point cloud
on-the-fly. We also scale the data by a small factor that is
uniformly sampled in the range [0.9,1.1] to make the net-
work invariant to small changes in scale.

Points Subsampling: We also use a random sub-
sampling of points in highly dense datasets, specifi-
cally, the Stanford Large-Scale 3D Indoor Spaces Dataset
(S3DIS) [5] and the Semantic3D.net [26]. During train-
ing, we sample points in a scene by a factor empirically
chosen based on the number of points in the given point
cloud crop (see Table 7). For point clouds having more than
1e® points, the sub-sampling factor for S3DIS is kept at 10
since the density of the point cloud is relatively constant
in this dataset. The Semantic3D.net dataset on the other
hand has varying density and we use three values of the sub-

sampling factor (10, 50 and 100), as shown in Table 7. This
sub-sampling process aims at building invariance to miss-
ing points, and increasing the speed of the training process.
At test time, the algorithm is evaluated on all input points
without sub-sampling.

The above random transformations and sub-sampling al-
low us to increase the effective size of each dataset and
can help the network build invariance to rotation/viewpoint
changes, as well as reduced and varying context.

Table 7: Cloud Sub-sampling Factor (For training-only)

Threshold
#points) 1e° | 1€8 | 1€7
Dataset
S3DIS 10 | 10 10
Semantic3D.net 10 | 50 | 100

A.2. Input Preparation

The large scale 3D observations are split into areas of at
most bm in the X, Y and Z dimensions, where Z is the
gravity axis. One notable exception is the S3DIS dataset,
which provides fully reconstructed 3D point clouds of in-
door buildings spaces. For this dataset, we limit the X and
Y dimensions to 5m like rest of the datasets, but keep the
entire Z extent, which allows to include both the ceiling and
floor in every crop. During training, such 5m cropped sub-
area overlap with adjacent sub-areas by 0.5m. There is no
overlap at test time in order to obtain a single prediction per
point. Sub-areas are then voxelized with a 5¢m resolution
to obtain a maximum input volume of 100 x 100 x 100.
This granularity provides a balance between memory re-
quirements and an adequate representation of the 3D space
without information loss. Each voxel has one to five as-
sociated channels that correspond to its binary occupancy
(1-occupied, 0-empty), RGB value normalized within the
range [0, 1], and sensor intensity when available (Seman-
tic3D.net dataset). The sensor intensity is mean centered
and normalized using the mean and range of the training
data distribution.

A.3. Training

Training is performed in a 2-step process similar to [76].
This process is illustrated in Figure 7. In the first training
stage, we use the Trilinear Interpolation layer to map the
voxel-wise predictions to point-wise predictions and mini-
mize the point-wise loss. We train 3D-FCNN with Trilinear
Interpolation layer for 200 epochs with a learning rate be-
tween le~ 5 and 1e™ 3, and reduce it by a factor of 10 every
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Figure 7: We follow a 2-stage training by first optimizing over
the point-level unary potentials (no CRF) and then over the joint
framework for point-level fine-grained labeling.

50 epochs. In the second training stage, we combine the
pre-trained 3D-FCNN, the Trilinear Interpolation layer and
the CRF, and train the whole system end-to-end. The base
learning rate in this stage is set to a value between 1e~ 7 and
1le™5, and the training is performed for 2 epochs. We use a
learning rate multiplier of 1e* and 1e? for the CRF s bilat-
eral weights and compatibility matrix, however we did not
extensively study the effect of these parameters. In most
cases, the training of the second stage converges within a
few hundred iterations (Convergence is determined using
a validation set). In the CRF formulation, although the
kernel weights wg, w; and the compatibility matrix p are
learned using gradient descent, the kernel bandwidth pa-
rameters 6, 3, 0, are not learned within our efficient vari-
ational inference framework. Thus, we used grid search or
fixed values for some parameters following [37]. We fix
6, at Scm, 05 at 11, and use a validation set to search for
an optimal value of 6,. We limit our search to the range
[0.1,3.2]m. When no RGB information is available, we in-
stead searched for 0 in the same range and did not use the
bilateral filter. The kernel weights and compatibility matrix
are learned during training. Similar to [76] we use 5 CRF
iterations during training and 10 CRF iterations at test time.

B. Effect of end-to-end training vs separate
CREF initialization

We performed an experiment to evaluate the effect of
end-to-end training versus separately initializing the CRF
module. For the separate initialization, we set the theta
parameters to the optimal joint training values we found
during end-to-end training, the spatial weight to 3, and the
bilateral to 5 for all experiments. Results show that joint
training performs better than separate CRF initialization es-
pecially in mAcc metric (see Table 9).

C. Experimental and Evaluation Setup
C.1. Datasets

We now present the characteristics of the datasets we use
to evaluate our framework. The datasets we chose for eval-
uation are Semantic3D.net [26], the Stanford Large-Scale
3D Indoor Spaces Dataset (S3DIS) [5], KITTI [23, 22],
and NYU V2 [52]. As shown in Table 8, our framework
is general in that it can handle point clouds from various
sources, both indoor and outdoor environments, as well as
partial and fully reconstructed point clouds. Specifically,
two of the datasets are collected from indoor environments
and two from outdoor environments. They also cover a va-
riety of data acquisition methods, including laser scanners
(Semantic3D.net, KITTI), Kinect (NYU V2), and Matter-
Port (S3DIS). Moreover, the S3DIS is a fully reconstructed
point cloud dataset, while NYU V2 provides point clouds
extracted from a single frame RGB-D camera. The size of
the training sets also vary from 12 million training points
for the KITTI dataset to 1.9 billion training points for Se-
mantic3D.net (excluding the validation set).

C.2. Evaluation Metrics

We use two main metrics for our evaluation: mean class
accuracy (mAcc) and mean class IOU (mIOU), where IOU
is defined similarly to the Pascal segmentation convention.
Accuracy per class is defined as:

thi ___tn,
gti  tpi+ fni’
where tp; is the number of true positives of class i, fn; is
the number of false negatives of class ¢ and gt; is the total

number of ground-truth elements of class ¢. The mean class
accuracy is then defined as:

(6)

acc; =

1 X
mAcc = N Zl acc;, @)

where N is the number of classes.
We define per class IOU following the Pascal convention

as:
ipi tp;

gti + fpi tpi + fri+ fpi’ ®)
where tp;, gt;, fn; are defined as above, and fp; is the num-
ber of false positives of class i. Note that IOU is a more dif-
ficult metric than accuracy since it doesn’t simply reward
true positives, but also penalizes false positives. From the
definition above, we obtain mean class IOU as:

10U;

N
1
mIOU = Z_; 10U;. )



Table 8: Datasets Characteristics

| KITTI[23,22] | NYUV2[52] | S3DIS[5] | Semantic3D.net [20] |

Scene outdoor indoor indoor outdoor
Point Cloud type partial partial full partial
Sensor type Laser Kinect MatterPort Laser
Number of training points 12million 125million | 228million 1.9billion

Table 9: Effect of CRF initialization: End-to-end training vs
Manual

End-to-end ‘ manual

mlIOU mAcc‘mIOU mAcc

Semantic3D.net | 61.30 73.08 | 60.72 69.69
S3DIS | 48.92 57.35|47.09 53.6
KITTI| 36.78 49.46 | 36.34 46.34
NYUV2| 43.45 56.43|41.63 52.28

Dataset

C.3. Visualizations

In this section, we include more qualitative segmentation
results for all datasets. The results showcase the initial seg-
mentation of the standalone 3D-FCNN-TI followed by the
final result of the SEGCloud framework.



Figure 8: Qualitative results on the Semantic3D.net dataset



Figure 9: Qualitative results on the KITTI dataset



Figure 10: Qualitative results on the KITTI dataset
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Figure 11: Qualitative results on the S3DIS dataset
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Figure 12: Qualitative results on the S3DIS dataset



Figure 13: Qualitative results on the NYU V2 dataset



Figure 14: Qualitative results on the NYU V2 dataset



