arXiv:1712.03121v1 [cs.HC] 8 Dec 2017

Simultaneous Hand Pose and Skeleton Bone-Lengths Estimation from a Single
Depth Image

Jameel Malik!?, Ahmed Elhayek!', and Didier Stricker!

' Department Augmented Vision, DFKI Kaiserslautern, Germany

2NUST-SEECS, Pakistan
{jameel.malik, ahmed.elhayek,didier.stricker}@drki.de

Abstract

Articulated hand pose estimation is a challenging task
for human-computer interaction. The state-of-the-art hand
pose estimation algorithms work only with one or a few sub-
jects for which they have been calibrated or trained. Par-
ticularly, the hybrid methods based on learning followed by
model fitting or model based deep learning do not explic-
itly consider varying hand shapes and sizes. In this work,
we introduce a novel hybrid algorithm for estimating the
3D hand pose as well as bone-lengths of the hand skele-
ton at the same time, from a single depth image. The pro-
posed CNN architecture learns hand pose parameters and
scale parameters associated with the bone-lengths simul-
taneously. Subsequently, a new hybrid forward kinematics
layer employs both parameters to estimate 3D joint posi-
tions of the hand. For end-to-end training, we combine three
public datasets NYU, ICVL and MSRA-2015 in one unified
format to achieve large variation in hand shapes and sizes.
Among hybrid methods, our method shows improved accu-
racy over the state-of-the-art on the combined dataset and
the ICVL dataset that contain multiple subjects. Also, our
algorithm is demonstrated to work well with unseen images.

1. Introduction

Human hand is an example of complex articulable object
that exhibit many degrees of freedom (DoFs), self similar-
ities, self occlusions and constrained parameters. With the
arrival of commodity depth cameras and notable progress
in machine learning in the past few years, the research on
human hand tracking and pose inference has gained more
popularity and has become an active area of research.

Mainly, three approaches exist for hand pose estima-
tion. First, generative (model based), second, discrimina-
tive (learning based) and third, hybrid approach. Generative
method starts by defining a calibrated hand model geome-

try and optimize an energy function to obtain the hand pose
parameters [ 14, 16, 24, 26]. These methods achieve higher
accuracy at the cost of complex energy functions optimiza-
tions [17]. On the other hand, discriminative approach tries
to infer a coarse hand pose based on already learned infor-
mation from single depth, RGB-D or RGB images during
training [12, 18, 35, 7, 3, 33, 10, 27]. Recently published
CNN-based methods such as hierarchical tree-like struc-
tured CNN [ 1], multiview-CNN [5, 6] and region ensem-
ble network [8] have shown significant improvement in ac-
curacy over their counterpart, random forest based methods
[22, 29, 30]. Despite of the fact that direct joints regres-
sion using CNN has achieved higher accuracy over other
existing methods and our approach, the estimated pose is
coarse and do not exploit hand geometry i.e. kinematics
and physical constraints. Hence, independent learning of
hand joints is most likely to produce invalid hand poses es-
pecially during tracking. In hybrid method, the pose in-
ference obtained from discriminative method can be fed as
coarse input to a generative process to get refined hand pose
[28, 13, 21, 20, 32]. Particularly, Zhou et al. [34] propose
an efficient model based deep learning approach as an alter-
native to generative post-processing step in hybrid methods.
However, a big limitation of this work is an assumption of
a fixed bone-lengths hand model geometry during end-to-
end training. Clearly, this limitation restricts the generaliza-
tion of this approach over different hand shapes and sizes.
Our idea is to estimate not only the 3D hand pose but also
the bone-lengths of hand skeleton at the same time. To the
best of our knowledge, this problem has never been explic-
itly addressed before. So, we introduce a novel hybrid al-
gorithm which simultaneously estimates the 3D hand pose
and bone-lengths of hand skeleton. To this end, hand scale
parameters are learned to facilitate the end-to-end training
process of model based deep learning approach thereby,
leading to promising results for 3D hand pose estimation.



In order to show the validity of our approach, a hand
pose dataset with large variation in hand shapes and sizes
is necessary. Several real hand pose datasets are publicly
available, but individually, these datasets lack in varying
hand shapes and sizes of subjects, number of original depth
images and complexity of hand poses [1]. Therefore, we
combine most commonly used real hand pose datasets and
convert them into a single unified format, we call HandSet.
We summarize our main contributions as follows:

1. A novel hybrid approach for simultaneous estimation
of 3D hand pose and bone-lengths of hand skeleton.

2. A combined real hand pose dataset that offers large
variation in hand shapes and sizes, increased num-
ber of pre-processed depth frames from different depth
cameras and complex hand poses. The dataset will be
publicly available.

2. Related Work
Comprehensive reviews of hand pose estimation meth-
ods using depth sensors have been reported in [1, 23, 4].

Our work is related to the hybrid methods and the real hand
pose datasets from frontal camera view. Hence, we focus
on the most related works in the following subsections.

2.1. Hand Pose Datasets Based on Real Depth Data

In this subsection, we briefly introduce the most com-
monly used real hand pose datasets.

NYU hand pose dataset [28] provides 72,757 RGB-
D frames acquired from Prime Sense Carmine-1.09 depth
camera. The test set contains 8252 images. The dataset
covers a wide range of complex hand poses. To acquire
the ground truth, direct search method proposed by [14] is
adopted with modifications and is quite accurate. However,
this dataset has no variation in hand shapes and sizes be-
cause it has only one subject in the training set and two
subjects in the test set.

ICVL dataset [25] contains 22K original depth frames
including 10 subjects and two test sets with 800 frames
each. However, by applying rotations, the total size of
dataset exceeds 300K images along-with the ground truth.
Intel creative gesture camera was used to acquire the depth
images. The dataset has good number of complex hand
poses but, not as complex as NYU dataset [ | ]. Ground truth
is created using a search method, guided by a Binary Latent
Tree Model (LTM) [2]. However, ground truth is not very
accurate and the variation in hand shapes and sizes is less.

MSRA-2015 dataset [22] contains 76, 500 depth frames
captured from Creative gesture camera. Images are cap-
tured from 9 subjects, each performing 17 hand gestures.
Ground truth is annotated using a semi-automatic and itera-
tive process followed by manual corrections [16]. However,
annotations are less accurate.
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Figure 1: Illustration of our hand skeleton with 21DOF.

In order to benefit from the individual pros of the above
described datasets and to add the advantages of having a
bigger dataset with more variations in hand shapes, sizes
and type of depth cameras, we propose to combine them
into one unified format described in Section 3.

There are some other existing real hand pose datasets
from frontal camera view i.e. Dexter [21], SHREC-2017',
MSRA-2014 [16], ASTAR [31]. However, these datasets
either contain small number of original images, missing
depth information, few ground truth joint positions or many
outliers in the annotations. Therefore, they are not consid-
ered in this work.

2.2. Hybrid Methods for Hand Pose Estimation

The first CNN-based hand pose estimation method was
introduced by [28]. Joint locations are predicted from CNN
in the form of heatmaps. Thereafter, an inverse Kinematics
(IK) is applied to estimate 3D hand pose based on predicted
joints. Poier et al. [15] use a model based optimization
step based on multiple 3D joint hypothesis (proposal distri-
butions) received from a random regressor. In [19], coarse
joints are predicted using pixel classification random forest
algorithm. In the generative model fitting step, a similarity
function is optimized between the predicted joints and gen-
erated joints. In the methods mentioned above, model fitting
(generative) is separated from the joints estimation part. In
[13], Obreweger et al. perform a complex training of a feed-
back loop to infer the correct hand pose. It uses three neu-
ral networks. First, to estimate coarse hand pose. Second,
is used to synthesize the input image. Third, comprises of
pose update network. Ye et al. [32] introduce a hierarchi-
cal hybrid method with a spatial attention mechanism and
hierarchical Particle Swarm Optimization (PSO). Zhou et
al. [34] propose a low latency framework that seamlessly
integrates a generative hand model layer with a neural net-
work. A generative hand model layer is introduced to map
the received joint angles to 3D positions. However, the hand

Uhttp://www-rech.telecom-lille.fr/shrec2017-hand/
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Figure 2: Illustration of 3D joint transformations of four
adjacent joints of initial hand skeleton using forward
kinematics process. Assuming 1DOF for each joint and
considering three rotations at jg,j1,j2 among z axis,
the relative position of joint j3 with respect to reference
joint position jo can be calulated as (z3,y3,23,1)T =
[Trans,(S1L1)] % [Rot.(61)] X [Trans,(S2Ls)] X
[Rot. (62)] x [Trans,(SsL3)] x [Rot,(f3)] x [0,0,0,1]%.

model requires to be calibrated for a specific user. Inspired
by this work, we propose a new low latency hybrid algo-
rithm for estimating hand skeleton bone-lengths and pose
simultaneously. The end-to-end training of our pipeline is
simple and highly efficient. The forward kinematic function
in the generative layer is differentiable with respect to joint
angles and hand scale parameters.

3. Combined Dataset and Pre-Processing

First step to merge different datasets is to select the num-
ber of common joint positions present in all datasets. ICVL
dataset has least number of joints. We consider correspond-
ing 16 joints in the NYU and MSRA-2015 datasets and re-
move additional joints for consistency. Since, each dataset
uses different depth camera to acquire images, we need to
pre-process the depth frames according to their respective
camera intrinsics, frame resolutions and depth range. In-
spired by the method in [34], for depth invariance, the im-
ages are cropped around palm center in all three dimensions
(u, v and depth) using a fixed size bounding box. Then,
depth values are normalized to [—1, 1]. The 3D joint loca-
tions are also normalized in range [—1, 1] using the bound-
ing box. The final pre-processed image is of 128 x 128 di-
mension and has 16 ground truth annotations which include
12 internal joints as shown in Figure 1 and four finger-tips.
The HandSet contains 450K pre-processed training depth
images, 18K test images and 20 different subjects.

4. Hand Pose and Bone-Lengths Estimation

In this section, we explain our approach for simultane-
ous estimation of hand pose and bone-lengths of the hand
skeleton using a hybrid forward kinematics layer and deep
architectures.

4.1. Hybrid Forward Kinematics Layer

Figure 1 shows our hand skeleton. We assume a zero
pose vector (i.e. pose with all parameters set to zero) as the
reference hand pose. All other poses are defined relative
to this reference pose. We initialize the hand skeleton by
the averages of individual bone-lengths from ground truth
annotations of each dataset. Given the hand pose and scale
parameters, the hybrid forward kinematic layer (see Figure
3) implements a forward kinematic function Fy, defined as:

Fr(©,5)=J ey

Where © = {6,}, p = {1,2,---,21} is a vector of pose
parameters, S = {s;}, I = {1,2,---,15} defines the
hand scale factors associated with bone-lengths and J =
{jn}, n ={1,2,---,16} is a vector of the predicted joint
positions.

The 3D transformation of each of the 16 joints in J is
derived from its joint angles for rotation and scaled bone-
lengths for translation. The global 3D position (X, Y, 2n)
of a joint is obtained by applying series of transformations
(rotational and translational) along the path starting from
hand root joint to this joint as shown in Figure 2.

Cost function is obtained by using Euclidean 3D joint
location loss given as:

1
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Where Ji 7 is a vector of 3D ground truth joint positions.

Since, Equation 1 is differentiable with respect to both
pose parameters © and hand scales .S, hence, it can be used
in deep network to compute gradients for back-propagation.
The Jacobian of Fj, with respect to © is defined as:
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The Jacobian of F; with respect to S can be defined in a
similar way. Partial derivative of a joint j,, in J with respect
to a pose parameter 6, can be calculated as:

O?;]Tn = ( H [Rotg(6)] x [Tra1ns¢c(SCLc)])[0,0,07 17
P ceP,
4)
where,
Rot%(éc) ifc#p
Roty(0) =

P, is the set of joints along kinematic chain from j,, to the
root joint and ¢ is the rotation axis.
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Figure 3: Illustration of our model for simultaneous hand pose and skeleton estimation. The algorithm starts from three
convolutional layers and two fully connected layers. The last fully connected layer outputs hand pose parameters (©) and
scale parameters (S) associated with the bone-lengths of the skeleton. In the end, a hybrid forward kinematic function is
applied that outputs 3D joint positions using the hand scale and pose parameters.

Similarly, we compute partial derivative of a joint j, in
J with respect to a scale parameter s; as:

% = > [( T Rotg, (6:)]x[Trans, (SL)]) [0, 0,0, 1]"]
ke Py, ceP,.
&)

where,

Transy (ScLe) ifc#k
Transg(SL) =

Transy! (S.L.) ifc=k
and, P, is the set of parent joints of j,, that share the same
scale parameter s;.

4.2. Deep Architectures with Hand Scales

Human hands differ in individual fingers and palm sizes.
There is a need to explicitly consider such differences dur-
ing training. Therefore, we introduce various scales of hand
as additional learning parameters to facilitate CNN training
on HandSet as shown in Figure 3. These scales factors are
learned by the CNN along-with the pose parameters.

We propose three implementations of our method ex-
plained in the following subsections and compare their per-
formances in Section 6. We build our CNN architecture
based on the baseline architecture proposed in [12], mainly
for the sake of fair comparison. The pipeline of our algo-
rithm is shown in Figure 3. The architecture of CNN com-
prises of 3 convolutional layers using 5, 5, 3 kernel sizes
respectively. Max pooling layers are then connected using
strides 4,2,1 with zero padding. The feature maps from con-
volutional layers are of size 12 x 12 x 8. Two fully con-
nected layers consist of 1024 neurons each. Dropout layers
are added with dropout ratio of 0.3. All convolutional layers
use ReLu as activation.

4.2.1 GlobalScale

In this architecture, we define a global scale for the hand
skeleton such that it can symmetrically vary its size. In Fig-
ure 3, the last fully connected layer outputs pose parameters
and additional global hand scale parameter s, shared by all
15 bones of the hand skeleton. Larger scale value results
in bigger hand skeleton and vice versa. The hybrid forward
kinematic layer takes this scale parameter as input along-
with pose parameters and computes 3D joint positions ac-
cording to Equation 1. The partial derivative of a joint with
respect to the global scale parameter can be computed using
Equation 5.

4.2.2 5Scales

This architecture associates five separate hand scale param-
eters from tips of the five fingers to the palm center (root
joint). These parameters allow the individual fingers to
vary their lengths according to their respective scale val-
ues, thereby adding a flexibility to both shape and size of
the hand skeleton. These parameters are defined by S as:

S = {Sflvsfzvsfavsfzusfs} (6)

Given the pose parameters © and S, forward kinematic
function defined by Equation 1 is applied to estimate more
accurate 3D joint locations. Using Equation 5, the partial
derivative of a joint with respect to its associated finger scale
parameter is calculated.

4.2.3 MultiScale

In this architecture, we assign a separate scale to each bone
of our hand skeleton. Each bone-length can be estimated in-
dependently of other bones (see Section 4.1). Hence, this ar-
chitecture provides the maximum flexibility to adapt shape
and size of the hand skeleton.
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Figure 4: Sample results from our SScales architecture. The predicted 3D joint positions are displayed on the depth images.
The rows show images from NYU, MSRA-2015 and ICVL datasets, respectively from top to bottom.
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Figure 5: Sample images with overlaid predicted 3D joint
positions from our model with hand scale parameters (top
row) and Zhou et al. [34] without hand scale parameters
(bottom row), when trained on HandSet dataset.

5. Implementation Details

For end-to-end training of our model, we use Caffe open
source framework for deep networks [9]. The network is
trained until convergence with a fixed learning rate of 0.001
using 0.9 as SGD momentum. We perform data augmen-
tations i.e. rotations and scalings during training phase.
The complete framework runs on a PC with Nvidia GeForce
1070 GPU. One forward pass takes 7ms.

6. Results

In this section, we illustrate the accuracy of our model
through both qualitative and quantitative results and com-
parisons with the state-of-the-art hybrid methods. We do
not claim to exceed the accuracy of recently published dis-
criminative methods [6, 8] which neglect hand model ge-
ometry i.e. kinematics and physical constraints. Instead,
we provide a performance comparison with the existing hy-
brid methods to validate our algorithm that fully exploits a
flexible hand model geometry and estimates the 3D hand
pose and bone-lengths of the hand skeleton simultaneously.
Notably, famous public datasets such as NYU and ICVL
contain low variation in hand shapes and sizes (see Sec-
tion 2.1). However, we demonstrate our results on these
datasets for completeness. We use two common evaluation
metrics. First is the average 3D joint location error on test
dataset. Second, fraction of test frames for which maximum
predicted 3D joint error is below a certain threshold in mil-
limeter.

6.1. Qualitative Evaluation

Some challenging hand pose images from three datasets
along-with predicted joint positions from our model are
shown in Figure 4. We show some sample images with
overlaid hand skeleton from our 5Scales model and deep
model [34] in Figure 5. Our model shows very good re-
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Figure 6: Hand pose inference results on unseen images
from our model and Zhou et al. [34]. Our model shows
good results while the compared model fails to converge.
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Figure 7: Some failure cases are shown from our Glob-
alScale architecture (a and b) and MultiScale architecture
(c and d). In (a) and (b), smaller global scale leads to in-
correct poses. In (c) and (d), we see inconsistency in bone-
lengths due to independent scales estimation.

sults whereas, the compared model is unable to converge
successfully leading to inaccurate 3D hand joint positions
and bone-lengths. We tested the 5Scales model with Zhou
et al. [34] on unseen images acquired from three differ-
ent users. Our model is able to infer hand pose quite accu-
rately whereas, the other model fails to converge (see Fig-
ure 6). Some failure cases from our two other architectures
(GlobalScale and MultiScale) are shown in Figure 7. In-
correct bone-lengths estimation from GlobalScale architec-
ture can happen due to a single scale parameter associated
with all bones of the hand skeleton. On the other hand, in

Methods \ 3D Joint Location Error

Zhou et al. [34] 18.7mm
MultiScale [Ours] 15.1mm
GlobalScale [Ours] 15.3mm
5Scales [Ours] 12.7mm

Table 1: Quantitative comparison of our three architectures
and Zhou et al. [34] on HandSet test dataset.

| Methods | 3D Joint Location Error
Oberweger et al. [13] 16.0mm
Zhou et al. [34] 17.0mm
Ours 16.2mm

Table 2: Quantitative comparison on NYU test set.

| Methods | 3D Joint Location Error
LRF [25] 12.6mm
Zhou et al. [34] 11.5mm
Ours 10.0mm

Table 3: Quantitative comparison on ICVL test set.

MultiScale architecture, independent learning of each bone-
length of the hand skeleton may result in incorrect bone-
lengths estimation.

6.2. Quantitative Evaluation

We trained our three architectures (GlobalScale, Mul-
tiScale and 5Scales) as well as publicly available model
based deep architecture [34] on HandSet. Notably, [34] fails
when trained on HandSet. This is mainly due to the fact that
they assume a fixed hand model geometry during end-to-
end training. We summarize the comparison of accuracies
in Figure 8 and Table 1. Our Sscales architecture shows the
best accuracy and proves that our approach works well with
large variation in hand shapes and sizes. On NYU dataset,
our accuracy is comparable to Oberweger et al. [13] on
common joints (see Table 2). On ICVL dataset, our method
shows improved performance in comparison to other state-
of-the-art hybrid methods (see Table 3). Since, NYU dataset
has no variation (one subject) and ICVL has low variation
in hand shapes and sizes, therefore one can see a clear ad-
vantage of our method on ICVL dataset while a comparable
performance on NYU dataset. Figure 9 shows a more de-
tailed comparison on individual joints in ICVL dataset.

7. Conclusion and Future Work

In this work, we present a novel hybrid method that out-
puts 3D hand pose as well as bone-lengths of the hand skele-
ton simultaneously. We demonstrate the effectiveness of our
approach on depth images captured from unseen subjects.
Our method uses one CNN and a hybrid forward kinemat-
ics layer to predict 3D joint positions of the hand from a
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Figure 8: Qualitative comparison of our proposed architec-
tures (GlobalScale, MultiScale and 5Scales) vs. Zhou et al.
[34] on HandSet test dataset. The upper shows the fraction
of frames in error within thresholds and the lower shows the
mean error on individual joints.

single depth image. The CNN estimates hand scale param-
eters (associated to bones of hand) and pose parameters. In
the hybrid forward kinematics layer, the initial hand skele-
ton is reshaped according to estimated hand scale parame-
ters and a differentiable forward kinematic function is ap-
plied. Three different implementations of our method are
introduced that describe the hand scale parameters in dis-
tinct ways. In addition, we present a unified pre-processing
method to combine famous real hand pose datasets for bet-
ter training of the CNN thereby, gaining an advantage of
bigger dataset with large variation in hand shapes and sizes
in particular. The training process is simple and efficient
and proposed algorithm is well suited for real-time appli-
cations. Qualitative and quantitative results verify that our
method achieves improved performance over the state-of-
the-art hybrid methods.

This work can be further extended in some interesting
dimensions. It can be combined with other outperform-
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Figure 9: comparison with respect to mean error on indi-
vidual joints with the state-of-the-art hybrid methods (LRF
[25], DeepModel [34]) on ICVL dataset.

ing discriminative methods to achieve higher accuracy. We
plan to extend this work for stable real-time hand tracking.
In this case, small variations in hand scale may occur for
the same person. This can be addressed by automatically
fixing the estimated bone-lengths after a few frames. The
hand skeleton can be upgraded to skinned hand model for
fine representation of hand shape and size, thereby learn-
ing more complex hand shape parameters using CNN. We
further plan to enlarge the combined dataset by including
more variety of hand shapes and sizes using both real and
synthetic images. The same can be extended to simultane-
ous human body pose and shape estimation.
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