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Abstract

A major element of depth perception and 3D understand-
ing is the ability to predict the 3D layout of a scene and its
contained objects for a novel pose. Indoor environments are
particularly suitable for novel view prediction, since the set
of objects in such environments is relatively restricted. In
this work we address the task of 3D prediction especially
for indoor scenes by leveraging only weak supervision. In
the literature 3D scene prediction is usually solved via a
3D voxel grid. However, such methods are limited to esti-
mating rather coarse 3D voxel grids, since predicting en-
tire voxel spaces has large computational costs. Hence, our
method operates in image-space rather than in voxel space,
and the task of 3D estimation essentially becomes a depth
image completion problem. We propose a novel approach
to easily generate training data containing depth maps with
realistic occlusions, and subsequently train a network for
completing those occluded regions. Using multiple pub-
licly available dataset [18, 12] we benchmark our method
against existing approaches and are able to obtain supe-
rior performance. We further demonstrate the flexibility of
our method by presenting results for new view synthesis of
RGB-D images.

1. Introduction
Scene completion has drawn a lot of attention recently

from the computer vision [19], robotics [9] as well as the
neuroscience community [5]. Most of these works are
driven by the assumption that 3D scene completion is im-
portant for 3D scene understanding which in turn is use-
ful for tasks such as robot navigation. Towards this end,
recent works have addressed 3D scene completion by se-
mantic voxel filling [18, 1]. However, these approaches are
limited as follows: (i) semantic labeling of 3D voxels will
generally produce coarse labelings in order to be compu-
tationally feasible, and (ii) labeling of voxels in the object
interior might be redundant as one is mostly interested in
object surfaces. Therefore, we focus on predicting detailed
surfaces rather than semantic voxels. Moreover, methods

Figure 1. Given an input depth image proposed network can gen-
erate multiple depth images which can be further combined for 3D
scene completion.

predicting entire voxel grids rely on large labeled datasets
that are expensive to create and label [18]. In contrast, our
system does not require any additional labeled data and only
relies on calibrated depth images which are easy to acquire
using existing RGB-D sensors [16]. An instance of the pre-
dicted output is displayed in Fig. 1. In summary our contri-
butions are as follows:
• We propose a network architecture to predict depth at ar-

bitrary viewpoints given a single depth image.
• The network is trained solely using unlabeled depth im-

ages without relying on additional supervision signals.

2. Literature Review

In computer vision literature the problem of scene com-
pletion was addressed by some of the earliest work into
human perception understanding [10], where it is conjec-
tured that human perception relies on its ability to com-
plete scenes. With the availability of cheap sensors [16] and
computational resources a renewed interest is seen in this
field. In [18, 2] the authors predict the complete 3D scene
from a single depth image using a network to learn shape
prior of indoor objects. Given a new scene they predict
the voxelised volume with semantic labels for each voxel
along with its occupancy probability. Learning these prior
requires a large synthetic dataset [18, 1] or the need to man-
ually label real world data [12], both of which are expen-
sive procedures. In comparison our method solely relies

1

ar
X

iv
:1

80
8.

03
60

9v
1 

 [
cs

.C
V

] 
 1

0 
A

ug
 2

01
8



P

~O

Depth completion
Networkwarped to 

target pose

XDepth prediction
network

Input Depth Depth at target poseO

O ~O

P
Ground-truth generation

( ),
Original and occluded depth pair

(b) An instance of our training set(a) Our strategy of depth prediction  

X 

Figure 2. We avoid predicting depth at the target pose, i.e., P → depth prediction network → O, by the following depth completion
strategy: P → warp to target pose → Õ → depth completion network → O.

on (synthetically) transforming calibrated depth images to
generate training data. Moreover the final prediction in the
above-mentioned works is a coarse grid of voxels whereas
our system outputs a full-resolution depth image for a de-
sired viewpoint.

Our approach shares similarities with [22] and [13],
which also use displacement fields to solve an image com-
pletion/inpainting task. However, these methods are re-
stricted to single or few objects and its unclear how they
would generalize to natural scenes.

We model the scene completion task as an instance of
depth image inpainting (e.g. [7]). Using low rank approx-
imations is a popular framework for image inpainting [6].
In [20] the authors extend this approach from RGB to
depth images using additional regularization to the gradi-
ents. Similar to our work they do not require additional
labeled data. However the noise patterns used in image in-
painting are often either random and unstructured (e.g. salt
and pepper noise) or structured but artificial (e.g. text super-
imposition). In contrast this work explicitly considers nat-
urally occurring structured missing regions, i.e occlusions
generated by warping images based on a given depth map.

The authors of [14, 23] use RGB information to complete
a sparse depth image. This is restrictive as we can only
complete viewpoints that have corresponding RGB images.
On the other hand as we do not rely on RGB images we are
able to synthesize arbitrary viewpoints within a reasonably
distance from the observed depth map.

3. Dataset generation via dual warping
Given a depth image at a particular pose our target is

to generate depth views at arbitrary locations. A natural
way to accomplish this would be to generate a pair of depth
images of the same scene from different view-points and
use them as ground truth. However, for this we would re-
quire the complete 3D model of a scene from which syn-
thetic pairwise views could be generated, i.e. two different
depth images of the same scene with the ground truth poses.
These 3D models are rarely available or time-consuming to
acquire.

In this work we exploit a novel strategy to generate train-
ing data solely from given depth images. Let P be a given
depth image and O be the depth image at the target pose
that we want to estimate. The estimation of the depth image
at a novel view-point P → O consists of is modelled via
two stages: (i) a geometric warping step and (ii) filling of
the occluded regions. The former is very straight-forward
and can be computed efficiently. Thus, we pose the novel
view generation as a depth completion problem (Fig. 2). A
convolutional network is trained for this task.

A strongly supervised approach requires training data
consisting of depth map pairs (O, ÕP ), where ÕP is the
depth map P warped to the pose of O, and the task of
the DNN is to fill in missing depth values in ÕP to match
O. It therefore requires acquisition of multiple (at least
two) depth maps for each scene, and a strongly supervised
method is consequently not applicable on e.g. unordered
collections of unrelated depth maps. Thus, we replace
the strongly supervised task by a weakly supervised one,
which—as a by-product—turns out to be also less challeng-
ing in terms of problem difficulty (see below). Let Õ be
the depth map obtained by warping P̃O (i.e. O warped to
the pose of P ) back to the pose of O, then the training data
consists of pairs (O, Õ). Since a given depth map is warped
twice we call it “dual warping” (see Fig. 2). It only requires
independent depth images {O} and a method to generate
realistic nearby poses (corresponding to the poses of depth
maps {P}, if they were supplied). Thus, we state our first
strategy for training data generation below:

Strategy 1. The occlusionO\Õ generated by warping forth
and back serves us the ground truth occluded and complete
image pair (Õ, O).

Note that some parts of the depth map O become occluded
during the “dual warping”. Further, Oy = Õy for all pixels
y with visible depth Õy > 0, and e.g. Õy = 0 for occluded
pixels. To this end, one can raise a fundamental question:
why does one require a complex strategy 1 to train a depth
completion network. A straight-forward choice would be
following one:

2



(a) (b) (c) (d)
Figure 3. (a) An instance of a real depth image from NYU Dataset [12] where pixels with unknown depths (NaN) are marked with zero.
(b) Depth after warped forth and back from the original depth to a random location and orientation. (c) Same as (b) but projected with
upscaling with resolution factor 2 to reduce the aliasing affect. (d) An additional instance of (c) with opposite view-points. Note that the
pairs ((c), (a)) and ((d), (a)) serve as the ground truths for our depth completion network.

Strategy 2. Removing random regions at arbitrary pixel lo-
cations in the depth images—the occluded and the original
depth image pair (Õ, O) can serve as the ground truth for
depth image completion.

However, we argue that there is a clear shift in domains
between the training data (where random missing regions
are presented to the network) and test data (where missing
regions are occurring due to occlusions). We claim (and ex-
perimentally verify) that strategy 1 brings the training dis-
tribution closer to the test distribution, and its properties are
further discussed in Sec. 3.2. In Sec. 5.2 we also validate
that strategy 2 performs inferior to our dual warping strat-
egy 1 for dataset generation.

3.1. Warping procedure

Let (x, y) be the original pixel coordinates of the depth
image and K = [f, 0, x̄; 0, f, ȳ; 0, 0, 1] be the camera ma-
trix where f is the focal length and (x̄, ȳ) are the principle
point of the camera. Further, let sxy be the depth at pixel
(x, y). The depth at the corresponding pixel (x′, y′) at the
relative pose (R, T ) can be written as

sx′y′x
′ = K(RK−1sxyx + T ) (1)

where x and x′ are the homogeneous pixel co-ordinates at
(x, y) and (x′, y′) respectively. We utilize (1) for forward
and backward warping. Hence, our warping procedure es-
sentially corresponds to rendering of 3D point clouds with
a z-buffer test enabled for hidden surface removal. In the
following section we postulate and empirically validate that
the above strategy will not introduce any additional occlu-
sion (up to aliasing effects due to point instead of mesh
rendering). Further, the aliasing effect is addressed by up-
scaling the depth image by a factor of 2 before warping to
the target pose. Note that the camera matrices are modified
accordingly (i.e.[2f, 0, 2x̄; 0, 2f, 2ȳ; 0, 0, 1]) while warping
with the higher resolutions. The effectiveness of our warp-
ing strategy is demonstrated by the example shown in Fig. 3.

Each depth image is warped to a random pose and then
warped back to the original pose. These random poses

O

P

Q

Figure 4. An example where ÕP (warped forth and back to the
pose P ) and P [O] observe similar objects (marked by blue). In
contrast, ÕQ (warped forth and back to the pose Q) observe more
objects than Q[O] (marked by red).

are generated on the horizontal plane where the translation
and orientation increments are uniformly sampled within
the range of [−1m, 1m] and [−15◦, 15◦]. Our synthesized
poses thus emulate essentially the lateral motion of a hand-
held depth camera. The axis of the angular shift is chosen as
vertical. Each warping generates a pair of original and oc-
cluded image. We generate 25 different original-occluded
image pairs for each depth image. Thus the size of our
ground truth dataset is 25× the original depth image dataset.
Note that Õ and P [O] are depth images observe scene areas
visible from both of the poses of O and P .

3.2. Analysis of the generated occlusion patterns

Although in strategy 1 we warp twice (to and from a ran-
dom location), we (essentially) do not introduce any addi-
tional occlusions. In fact, the occluded region generated by
the strategy is contained in the occluded region generated
by warping an actual depth image P at the random pose to
the original pose:

Lemma 1. The occlusion O \ Õ ⊆ O \ P [O] where P [O] is
the depth image generated by the warping the depth image
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Figure 5. Architecture: The encoder and the decoder is marked by gray and white respectively. The network estimates 2D flow of the
source and the target pixel locations of similar depth. The depth at the source locations are copied at the target pixel locations with the
unknown depth. The depth at the known pixel locations are kept unaltered. The network is trained with the training image pairs (O, Õ)
and minimize the L`1 loss of the occluded part [see eq. (3)]. No that no direct supervision for the source and target flow is provided and
let the network learn the flow directions for which the loss is minimum.

P to the original pose. Further, if the camera at P does not
observe any additional objects, then O \ Õ = O \ P [O].

Proof. Let us denote the warping step of a depth map O
into the pose of P yielding O[P ] by O

warp−−−→
P

O[P ], and

let Õ := (O[P ])[O] be the result of dual warping O
warp−−−→
P

O[P ] warp−−−→
O

Õ. By construction a 3D point X visible in O

(written as X ∈ O) is not visible in Õ iff X /∈ O[P ]. Com-
pared to O[P ] the true depth map P may contain additional
surfaces occluding X at the pose of P , hence X /∈ O[P ]

(or X /∈ Õ) implies X /∈ P (equivalence holds if P has
no additional occluders not present in O[P ] blocking X , see
Fig. 4).1 Together with X /∈ P implying X /∈ P [O] we
have that X /∈ Õ is a sufficient condition for X /∈ P [O], or
O \ Õ ⊆ O \ P [O].

4. Architecture and loss
We follow the U-Net architecture very similar to [15].

Its a feed-forward convolutional network consists of an en-
coder and a symmetric decoder, where a number of skip
connections is introduced by concatenating the features
from the encoder layer to the corresponding decoder layer.
The network takes an input depth image of size 512 × 384
and passes the input through multiple convolutional and de-
convolutional layers (with stride 2) to predict a 2D displace-
ment field of the same size as the input. Here the displace-
ments (similar to pixel-shifts [21]) indicate shifts between
the source pixel and target pixel location. Note that tar-
get pixel locations are the pixels with missing depth. The
task of the network is to predict the corresponding source
pixel locations (from which the known depth value is sub-
sequently copied) instead of directly hallucinating the depth
value at the target pixel location. The details of the archi-
tecture can also be found in Fig. 5. Note that experimen-
tally we observe (validated in the result section) that dis-

1The vertical line segments are not visible from O.

placement estimation network performs better than the di-
rect depth prediction network. In contrast to the single im-
age depth prediction networks [3] (RGB to depth), in our
case the depth for unknown regions is indirectly estimated
by copying from known depth map portions.

We utilize a masked `1 loss L`1 in this work. The mask
Ω is considered as the pixels with the unknown depths Ω :=
O \ Õ. We also incorporate a total variation loss Ltv to
ensure smooth depth predictions, and we further leverage a
content loss [8], Lc, to preserve structure of the depth image
as described below:

Ltv =
∑
y∈Ω

(
‖Oy − Ôy‖1 + λ‖∇Ôy‖1

)
(2)

Lc = γ
∑
y∈Ω

‖φl(O)y − φl(Õ)y‖1 (3)

where Ôy is the predicted depth at the pixel y and φl are
the feature descriptors at the layer l. Note that the depth
is predicted only at the unknown pixels and the feature de-
scriptors in the loss (3) is only considered for the last two
layers. The network is trained to minimize the sum of the
above loss L`1 = Ltv + Lc. λ and γ are chosen as 10−3

and 10−5 respectively.

5. Experiments
The proposed depth completion network (named

as Depth-Flow-Net) is evaluated on the widely used
SUNCG [18] and NYU Depth v2 [12] datasets. The loss
L`1 is minimized using ADAM with a mini-batch of size 10.
The weight decay is set to 10−5. The network is trained for
100 epochs with an initial learning rate 0.001 which is grad-
ually decreased by a factor of 10 after every 10 epochs. The
network is trained with Tensorflow on a desktop equipped
with a NVIDIA Titan X GPU, and evaluated on an Intel
CPU of 3.10GHz.
Baseline Methods We compare the proposed network
against the following baselines:
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• The straight forward network for predicting depth di-
rectly (named as Depth-Net) instead of predicting depth-
flow (Depth-Flow-Net) at the unknown pixels. Depth-
Net is employed as baseline in this work.

• Low rank completion (LR) [20]: The missing depth val-
ues are computed by low rank matrix completion with
low gradient regularization.2

• Highly sparse inpainting (Semantic) [14]: Region-based
depth recovery for highly sparse depth maps.3 This
method requires semantic labels of different objects
present in the depth image. Fortunately, the datasets used
in this work contain semantic labels which have been em-
ployed during the evaluation of this baseline. Note that
none of the other methods including ours do not require
semantic labels.

• PDE-based inpainting (PDE) [17]: Partial differential
equation based anisotropic diffusion model for image in-
painting is executed as baseline for RGB inpainting.

• Mumford-Shah inpainting (MS) [4]: The traditional im-
age inpainting based on Mumford-Shah-Euler model is
also evaluated as baseline.4

5.1. Depth image completion

SUNCG [18] is a large-scale synthetic dataset con-
tains 45, 622 depth images of different scenes with realistic
rooms and furniture layouts. The NYU depth dataset [12]
consists of 1, 449 real depth images of indoor environment
of commercial and residential buildings. The datasets also
consists of semantic object labels which are not utilized in
this work. In each epoch we select a batch of 2, 000 depth
image pairs (original and with occlusions) generated by our
augmentation technique. More augmented images are gen-
erated by random cropping and flipping the images in the
left/right direction.

Quantitative Evaluation The proposed network is eval-
uated for the task of generating new depth views. For this
task a set of 100 testing image pairs of the same scene
at different view-points and orientations is generated from
SUNCG [18] datasets.5 One is considered as the depth at
the source pose and the other considered as depth at the tar-
get pose. The depth image at the source pose is first warped
at the target pose and then fed into the depth completion
network Depth-Flow-Net. In Table 1, we display the mean
and median depth prediction error evaluated only at the un-
known pixels.

For NYU Depth v2 [12] datasets, no complete 3D model
is available. Thus, we rely on the “dual warping” technique

2code is available at https://github.com/xuehy/depthInpainting
3code is available at https://uk.mathworks.com/fileexchange/64546
4code is available at https://uk.mathworks.com/fileexchange/55326
5code is available at https://github.com/shurans/sscnet

Table 1. Depth completion Comparison : SUNCG datasets [18]

LR [20] Semantic [14] Ours

Mean error 0.34m 0.33m 0.28m
Median error 0.25m 0.23m 0.05m

Table 2. Depth completion Comparison : NYU datasets [12]

LR [20] Semantic [14] Ours

Mean error 0.42m 0.37m 0.38m
Median error 0.26m 0.20m 0.06m

(strategy 1) to generate test data. In Table 2 we observe
that existing depth inpainting algorithms [20] and [14] per-
form comparably, whereas the proposed depth prediction
method improves the median error significantly. A detailed
description of the runtime can also be found in Table 3. We
observe Depth-Flow-Net is fastest among the depth comple-
tion benchmark methods. Note that all the methods includ-
ing ours are evaluated on a CPU. The estimation of 2D dis-
placements, depth completion, and generation of new view
are included in the runtime.

Qualitative Evaluation The network is again used to
evaluate for the task of generating new depth views. Sepa-
rate sets of depth images are chosen as test sets. Each depth
image of the test set is warped w.r.t. a randomly sampled
target pose (with position and orientation variations from
the range of [−1m, 1m] and [−15◦, 15◦]). The proposed
depth completion network is then employed for depth com-
pletion at the occluded regions. The novel view generation
results are plotted in Fig. 8. Although, direct depth esti-
mation network Depth-Net produces reasonable solutions
in some cases, we observe that proposed dispacement-field
based Depth-Flow-Net produces more consistent solutions.
The estimated displacements are displayed by green lines
segments while target pixels are marked with blue dots.

In order to enhance the quality of completed depth maps,
we utilize an ensemble-inspired framework: after warp-
ing the current depth maps to multiple nearby poses, the
induced occlusions are completed using Depth-Flow-Net.
The resulting depth maps are warped back to the origi-
nal pose and are subsequently merged using a pixel-wise
median filter (which we use as a efficient surrogate for a
more refined approach for depth maps fusion such as [11]).
Examples for such 3D scene completion can be found in
Fig. 8(c) and Fig. 8(e). Note that signed distance functions
(i.e. volumetric fusion) could be applied to obtain smoother
surfaces. However, we leave this for future work. More
results can be found in the supplementary material.

5
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(a) A sample depth (b.1) synthetic train data (b.2) synthetic train data

(c) Input (d) trained with Strategy 1 (e) trained with Strategy 2
Figure 6. Experiment with alternative strategy: Removing random
blocks. We observe more ghosting artifacts if the same network
(Depth-Net) is trained with the alternative strategy compared to
the “dual warping” strategy.

5.2. Validation of dual warping for dataset creation

To validate our synthetic dataset generation method
(strategy 1), we conduct an experiment with a dataset gen-
erated by strategy 2. For each depth image the missing re-
gions are generated by removing random regions of pix-
els. Up to 20% of all pixels are removed. The size of
each removed region is chosen uniformly within the range
[1, 50] along both the directions. We train Depth-Net for
both the datasets generated by strategy 1 and 2. Note that
in the current experiment Depth-Net is chosen over Depth-
Flow-Net to demonstrate that strategy 1 does not just favor
a displacement-based network, but enhances the problem it-
self. The results are displayed in Fig. 6. We observe more
accurate depth prediction with strategy 1. Thus the current
experiment validates our argument of minimal domain shift
of novel view generation with strategy 1.

5.3. Limitation / Failure cases

Despite the generally good performance of Depth-Flow-
Net we have encountered failure cases, usually caused by
the following:

• In the presence of large occlusions on foreground objects
(e.g. Fig. 7(a)) the background depth may incorrecly spill
over into the foreground object (Fig. 7(b,c)).

• Very large occlusions (or otherwise regions with missing
depth, such as in Fig. 7(d)) can lead to displacement vec-
tors that point themselves to missing data (Fig. 7(e,f)). In
our current approach there is no guarantee that the dis-
placement field always refers to valid depth.

Despite the above limitations, proposed Depth-Flow-Net
produces satisfactory results in a wide variety of depth im-
ages. A number of examples are included in the supplemen-
tary material.

(a) A sample depth (b) Completed depth (c) Estimated flow

(d) A sample depth (e) Completed depth (f) Estimated flow
Figure 7. Failure cases: Two different instances of NYU (a) and
SUNCG (d) datasets where proposed Depth-Flow-Net fails due to
the limitations in the current approach. See text for more details.

Table 3. Runtime Comparison: evaluated on CPU

MS [4] PDE [17] LR [20] Semantic [14] Ours

Runtime 114.8s 4.07s 73s 5.81s 0.7s

Table 4. Quantitative comparison of RGB image completion

PDE [17] MS [4] Ours

PSNR 24.9dB 24.7dB 26.08dB

5.4. Novel RGBD image synthesis

We also exploit our image augmentation strategy for
new view RGBD image synthesis given a single RGBD
image. We utilize a similar augmentation (strategy 1) to
generate the ground truth for RGBD image completion. A
network similar to Depth-Flow-Net is trained on the aug-
mented RGB-D datasets of (original-occluded) pairs. In
contrast to depth estimation it takes 4D channels as input
and estimate 2D displacements from source to target re-
gions. Once the network is trained we warp the original
view to the target views and complete the missing pixels
using the predicted displacement field.

We conduct similar procedure as before for quantitative
and qualitative evaluation. A quantitative comparison can
be found in Table 4 and a qualitative comparison is dis-
played in Fig. 9. We observe an improvement of PSNR
compared to the traditional in-painting algorithms. More
results can be found in the supplementary document.

6. Evaluation on SUNCG [18] dataset
To evaluate the proposed method on SUNCG [18]

datasets, we utilize similar evaluation dataset generation
technique as NYU [12] datasets. We warp the current depth
maps to multiple nearby poses and the induced occlusions
are completed by proposed Depth-Flow-Net. The results
are displayed in Fig. 10 and Fig. 11 along with the esti-
mated depth flow. Note that the depth-flow is estimated at
every pixels but in the figure we only show the flow at the
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(a) input depth (b) 3D plot of (a) (c) scene completion (d) input depth (e) 3D plot of (d) (f) scene completion
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(g) Translation 0.5m (left) (h) Translation 0.5m (right) (i) Translation 0.5m (left) (j) Translation 0.5m (right)
Orientation 10◦ Orientation 10◦ Orientation 10◦ Orientation 10◦

Figure 8. Qualitative results of depth completion methods at different viewing location and orientation on NYU Depth v2 [12] dataset.
Images are first warped to the target pose and then use depth completion methods to predict depth at the occluded regions. Depth-Flow-Net
produces less artifacts and can even hallucinate handles of the chairs. A complete video is shown in the supplementary material.
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unknown pixels with a regular 4 pixel interval.

7. Conclusion
In this work we develop a technique to complete 3D

scenes indirectly by filling occluded regions in warped
depth (and optionally RGB) images. Hence, we are able to
avoid a costly volumetric representation and consequently
work in higher-resolution image-space. Our main contri-
bution is the generation of training data via dual warping,
which adds realistic occlusion patterns to given depth im-
ages. Therefore large amounts of training data are easy to
acquire. We also perform a thorough evaluation to demon-
strate the effectiveness of our weakly supervised approach
and to show the efficiency of a proposed depth completion
network. Further, the flexibility of the proposed method is
emphasized by an evaluation on RGB-D data. Currently,
the proposed method is limited to generating depth images
of relatively nearby poses, which is a restriction addressed
in future research.
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(a) Input Depth (b) Projected in 3D (c) Proposed completion (d) Completion by SSC-Net [18]
Figure 10. (a) Qualitative results of depth completion methods at different viewing location and orientation on NYU [12] datasets. Images
are first warped to the target pose and then use proposed depth completion method to predict depth at the occluded regions and subsequently
merged.
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Figure 11. (a) Qualitative results of depth completion methods at different viewing location and orientation on NYU [12] datasets. Images
are first warped to the target pose and then use proposed depth completion method to predict depth at the occluded regions and subsequently
merged.
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