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Abstract

The success of existing deep-learning based multi-view
stereo (MVS) approaches greatly depends on the availabil-
ity of large-scale supervision in the form of dense depth
maps. Such supervision, while not always possible, tends
to hinder the generalization ability of the learned models
in never-seen-before scenarios. In this paper, we propose
the first unsupervised learning based MVS network, which
learns the multi-view depth maps from the input multi-view
images and does not need ground-truth 3D training data.
Our network is symmetric in predicting depth maps for all
views simultaneously, where we enforce cross-view consis-
tency of multi-view depth maps during both training and
testing stages. Thus, the learned multi-view depth maps
naturally comply with the underlying 3D scene geometry.
Besides, our network also learns the multi-view occlusion
maps, which further improves the robustness of our network
in handling real-world occlusions. Experimental results on
multiple benchmarking datasets demonstrate the effective-
ness of our network and the excellent generalization ability.

1. Introduction

Multi-view stereo (MVS) targets at reconstructing the
observed 3D scene structure from its multi-view images,
whereas both the intrinsic calibration and extrinsic calibra-
tion between cameras are available. Traditional geometry-
based approaches exploit multi-view photometric consis-
tency and various kinds of regularizations/priors [6]]. Re-
cently, the success of deep convolutional neural networks
(CNNs) in monocular depth estimation [18, 9, [19] and
binocular depth estimation [33l [34] has been extended to
MYVS. Existing deep CNNs based MVS approaches [30, 31}
111 124] tend to represent MVS as an end-to-end regression
problem. By exploiting large-scale ground truth 3D train-
ing data, these methods outperform traditional geometry-
based approaches and dominate the leading boards on dif-
ferent benchmarking datasets [30, [31]. However, the suc-
cess of these supervised MVS approaches strongly depends

on the availability of large-scale ground-truth 3D training
data, which not only not always available but also may fur-
ther hinder their generalization ability in never-seen-before
open-world scenarios [34]. Thus it is highly desired to de-
velop unsupervised learning based MVS approaches.

In this paper, we propose the first unsupervised deep
MYVS network as shown in Fig.|I} which could be learned in
an end-to-end manner and without using ground-truth depth
maps as the supervision signals. We demonstrate that the
multi-view image warping errors (photometric consistency
across different views) themselves are sufficient to drive a
deep network to converge to the correct state that leads to
superior MVS performance. Our network structure differs
from existing MVS and simple extension of unsupervised
binocular stereo matching in the following aspects:

a) Our network is symmetric to all the views, i.e., it treats
each view equivalently and predicts the depth map for
each view simultaneously. Existing supervised learning
based MVS methods [30, 31} [11}, 27] apply an “asym-
metric” design and infer depth map for the reference
image only. Thus, multiple depth maps estimated from
different viewpoints do not comply with the same 3D
geometry and 3D point clouds processing is required to
derive a consistent 3D geometry. We would like to argue
that this kind of “centralized” and “asymmetric” design
has not fully exploited the multi-view relation encoded
in the multi-view images.

b) We propose a new cross-view consistency in depth maps
building upon our multi-view symmetry network design.
The underlying principle is that as the multi-view im-
ages observe the 3D scene structure from different view-
points, the estimated depth maps from MVS network
should be consistent in 3D geometry. As our experi-
ments demonstrate, this consistency plays a key role in
strengthening the image warping error and guiding the
network to coverage to meaningful states.

c) We integrate multi-view occlusion reasoning into our
network, which enables us to detect occluded regions by
using the cross-view consistency in depth maps. Under
our framework, multi-view depth maps prediction and
occlusion reasoning are alternatively updated.
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Figure 1. Our unsupervised deep multi-view stereo network architecture. Our network consists of five modules, namely, feature
extraction, guidance and differentiable homography, cost volume regularization, spn, and cross-view consistency loss evaluation. Note
that, under our symmetric design, our network outputs consistent depth map for each image.

Our main contributions are summarized as follow:

1) We present the first deep unsupervised MVS ap-
proach, which naturally fills the gap between traditional
geometry-based approaches and deep supervised MVS
methods. Our proposed unsupervised method avoids the
necessity of large-scale 3D training data.

2) We introduce the cross-view consistency in depth maps
and propose a loss function to measure the consistency.
We demonstrate that this kind of consistency could be
utilized to guide the training of a deep neural network.

3) Expensive experiments conducted on the SUN3D, RGB-
D, DTU and Scenes11 benchmarking datasets demon-
strate the effectiveness and the excellent generalization
ability of our method.

2. Related Work

MYVS has been an active research topic in geometric vi-
sion. Existing methods can be roughly classified into two
categories: 1) Geometry-based MVS and 2) Supervised
learning based MVS. We will also discuss related work in
unsupervised monocular and binocular depth estimation.
Geometry-based Multi-view Stereo: Traditional MVS
methods focus on designing neighbor selection and photo-
metric error measures for efficient and accurate reconstruc-
tion [5} 8, 4]]. Furukawa et al. [3] adopted geometric struc-
tures to reconstruct textured regions and applied Markov
random fields to recover per-view depth maps. Langguth
et al. used the shading-aware mechanism to improve
the robustness of view selection. Wu et al. [28] utilized
the lighting and shadows information to enhance the perfor-

mance of the ill-posed region. Michael et al. [10] chose
images to match (both at a per-view and per-pixel level)
for addressing the dramatic changes in lighting, scale, clut-
ter, and other effects. Schonberger et al. proposed the
COLMAP framework, which applied photometric and geo-
metric priors to optimize the view selection and used geo-
metric consistency to refine the depth map.

Supervised Deep Multi-view Stereo: Different from the
above geometry-based methods, learning-based approaches
adopt convolution operation which has powerful feature
learning capability for better pair-wise patch matching
[12 [14]). Ji er al. [12]] pre-warped the multi-view images to
3D space, then used CNNs to regularize the cost volume.
Huang er al. [11]] proposed DeepMVS, which aggregates
information through a set of unordered images. Abhishek
et al. directly leveraged camera parameters as the pro-
jection operation to form the cost volume, and achieved an
end-to-end network. Yao et al. adopted a variance-
based cost metric to aggregate the cost volume, then applied
3D convolutions to regularize and regress the depth map.
Im et al. applied a plane sweeping approach to build
a cost volume from deep features, then regularized the cost
volume via a context-aware aggregation to improve depth
regression. Very recently, Yao et al. introduced a scal-
able MVS framework based on the recurrent neural network
to reduce the memory-consuming.

Unsupervised Geometric Learning: Unsupervised learn-
ing has been developed in monocular depth estimation and
binocular stereo matching by exploiting the photometric
consistency and regularization. Xie et al. [29] proposed
Deep3D to automatically convert 2D videos and images



to stereoscopic 3D format. Zhou et al. [35] proposed an
unsupervised monocular depth prediction method by min-
imizing the image reconstruction error. Mahjourian et al.
[21]] explicitly considered the inferred 3D geometry of the
whole scene, where consistency of the estimated 3D point
clouds and ego-motion across consecutive frames are en-
forced. Zhong et al. 33| 134] used the image warping error
as the loss function to derive the learning process for esti-
mating the disparity map.

3. Our Network

In this section, we present our unsupervised learning
based multi-view stereo network, MVS2, which could be
learned without the need of ground truth 3D data. We rep-
resent MVS as the task of predicting a depth map for each
view simultaneously such that the estimated multiple depth
maps comply with the underlying 3D geometry. Our net-
work structure follows the MVSNet model proposed in [30]
but with significant modifications to achieve unsupervised
MVS with multi-view symmetry, i.e., MVS?2.

3.1. Multi-view Symmetric Network Design

Under the MVS configuration, each image observes the
underlying 3D scene structure from different viewpoints.
Therefore, the estimated depth maps from MVS network
should be consistent in 3D geometry and each depth map es-
timation is not independent. However, existing deep MVS
networks 30, [11}131]] generally apply an “asymmetric” de-
sign and infer depth map for each image (termed as “refer-
ence image”) individually. Thus, multiple depth maps esti-
mated from different viewpoints do not necessarily comply
with the same underlying 3D geometry.

In this paper, we propose a de-centralized and multi-
view symmetric network structure for MVS as illustrated
in Fig. m Our network is symmetric to all the views, i.e.,
it treats each view equivalently and predicts the depth map
for each view simultaneously. Our unsupervised deep MVS
network consists of five modules, namely, multi-scale fea-
ture extraction, cost volume construction, cost volume reg-
ularization, depth map refinement through spatial propaga-
tion network, and unsupervised loss evaluation. We briefly
describe each module with focus on how to achieve multi-
view symmetry and how to enforce multi-view consistency.

3.1.1 Cost Volume Reconstruction

Under our multi-view symmetry configuration, we need to
estimate a depth map for each input view. Following the
MVSNet network, a cost volume has to be constructed for
each input view. Denote the feature map extracted by fea-
ture extraction module for each view as F; € REXWxF,
where H, W, F' denote the image height, image width and
feature dimension correspondingly. We adopt the classical

plane sweeping based stereo pipeline and use differentiable
homography matrix to warp the current image into each of
the remaining images as shown in Fig. [2]
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Figure 2. Cost Volume Construction. The per-image cost volume
is constructed by calculating the variance of the warped feature
maps and the reference feature maps.

In this way, we obtain N — 1 warped feature volumes
for each depth value d. We add the current feature vol-
ume into the group of warping feature volumes. Denote
D as the depth sample number, then we obtain D groups of
multiple feature volumes {V;;},=1 ... y. Finally, the mul-
tiple feature volumes are aggregated to one cost volume
C; € RPXHXWXFE by yging the variance operation [30],
which has been shown to be better than other operations
such as mean or sum operation.

3.1.2 Cost Volume Regularization

The raw cost volume C; aggregated by the variance-based
cost metric could be noise-contaminated, so we utilize 3D
CNN to regularize each raw cost volume to generate a prob-
ability volume. After that, we apply the ArgMin operation
to regress the depth map for the current view. The cost vol-
ume regularization process is illustrated in Fig. 3]
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Figure 3. The cost volume regularization module. It takes a cost
volume as input, and is followed by a series of 3D CNNss.
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As shown in Fig. 3] we apply multi-scale 3D CNN to
regularize the cost volume. The multi-scale 3D CNN con-
sists of four-scale, where each convolutional operation is
followed by a BN layer and a ReLU layer. On this base,
we pass the feature maps between the same scale to form



a residual architecture for avoiding losing the critical infor-
mation. The output of our regularization module is a 1-
channel volume V with dimension D x 1/4H x 1/4W.

Finally, we adopt the regression way to obtain an initial
depth map D;,,;+. We first use the softmax function along
the depth dimension to convert volume V to a probability
map P. Then, we apply the ArgMin operation to regress
the depth map. The whole process is expressed as:

dmax dmax

znzt— Z dXP

d=dmin d=dmin

where dyin, dmas denote the min and max depth value.

3.1.3 Depth Map Refinement

Even though the initial depth map is already a qualified out-
put, the reconstruction boundaries of the object may suer
from over-smoothing due to up-sampling. To tackle this
problem and improve the performance, we apply the spatial
propagation network (SPN) [20] to refine the initial depth
map. In this step, we obtain the guidance from the feature
extraction module, and it could produce the affinity matrix
which is spatially dependent on the input image. Then, we
adopt the affinity matrix to guide the refinement process.

3.2. Multi-view Occlusion reasoning
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Figure 4. The cross-view depth consistency check process. First,
we warp the refined depth map D, to other view. Then, we re-warp
the warping depth D;_ﬂ map to current view. Final, we compare

the refined depth map D and warping depth map D;;l to obtain
the mask.

Occlusion is inevitable to MVS, thus we have to decide
the occlusion mask to avoid the occluded points from par-
ticipating in the loss evaluation. Different from the oc-
clusion mask detection based on forward-backward con-
sistency check [23]][36], we exploit pixel-wise cross-view
depth consistency to obtain the occlusion mask. Specifi-
cally, given a pair of estimated depth maps D; and D;, we
can synthesize two versions of D; by using the depth maps
and the warping relations W;_,; and W;_,;. The first or-
der synthesized depth map D/ ;18 generated by D; and
W, ;. The second synthesized depth map D

ated by Di N

i—i 1s gener-

; and W;_,;. The cross-view depth consistency

Z d x softmax (Va), (1)

check is 1llustrated in Fig.[] Given perfect depth maps D,
and D;, D; and D ; should be the same up to occlusion.
Therefore we mark pomts which satisfy the constraint | D;

i HZ| > 7 as invalid, where we set the threshold 7 = 5.
For the sake of robustness, we use the cross-view depth con-
sistency rather than the brightness consistency. In Fig. 5
we present a visualization of the evolution of the occlusion
mask, its corresponding source images and synthesized im-
age. It can be observed that with the increase of iterations
the occlusion mask becomes more and more accurate.

I

(d) 5000 step

(a) target img (b) source img (c) warp img

(e) 50000 step
Figure 5. The visualization and iteration of the occlusion mask.
From left to right: target image, source image, warped image and
the occlusion mask of various stages of the training process.(black
means invalid points). Best Viewed on Screen.

(f) 100000 step (g) 120000 step (h) 150000 step

3.3. Loss Functions for Unsupervised MVS

In this paper, we target to develop an unsupervised learn-
ing framework to estimate a fine and smooth depth map
for each input image. For optimizing the quality of depth
map, we adopt two aspects of loss functions: view synthe-
sis loss which includes unary term loss and smoothness loss,
and cross-view consistency loss. Given multi-view images
(I1,1s,...,I,,), we first obtain the corresponding estimated
depth maps during the training process. With the estimated
depth map D, of the 74, view and the given camera pose
between 74, and jth view (I; and I;), we can produce the
synthesized view I i of 445, using the pixel of j;, view and
the mapping relations W;_,; between them. Similarly, we
can also obtain the synthesized image IZ _,; and the map-
ping relations W;_, ;. According to the bilateral mapping
relations we can produce the secondary synthesized image
I j—i using I ; and similarly the IL”_> jusing I J/ _,; with the
bilinear sampler methods.

Our overall loss function can be formulated as follows:

L= Z Z ‘Clynthesm Lconsistencya 2)

i=1 j=i+1

where v denotes the total amount of selected views. Apart
from this, Eéymhem and Lconsistency Stand for the syn-
thesized image loss between I; and I; and the cross-view
consistency loss.



3.3.1 View Synthesis Loss

The view synthesis loss Ci’imhasis between I; and [; is de-
fined as:
£i’yjnthesis = w“(ﬁ'ﬁj + Ei’z) + ws‘civ 3

where £/ denotes the unary term loss and £%7 denotes the
depth field smoothness regularization loss.

Unary term loss. During the reconstruction process, we
would like to minimize the discrepancy between the source
image and the reconstructed image. Our loss consists of not
only the L; distance between images and their gradients,
but also the structure similarity SSIM. In order to further
improve the robustness in brightness, we also exploit the
Census transformation to measure the difference. Thus, our
unary term loss is defined as follow:

Lo = |T\14| S (e (Li-Tn) 42 (VI VIL,)

1-8(I;, 1, .,

)T

A 5

“4)

where M 1is the unoccluded mask for obtaining the valid
points. S(-) denotes the structure similarity SSIM. ¢(s) =
V52 4 0.0012 can elevate the robustness of our loss. V(+)
denotes the gradient operator and C- denotes the Censum
transformation of image. In this paper, we set \; =
0.5, A2 = 0.8, A3 = 0.5, Ay = 0.2.

Smoothness regularization term loss. To encourage the
smoothness in the predicted depth map, the depth smooth-
ness term is defined as:

VzDiD :

ci— %Z (e—al\vm
&)

where a; = 0.5, a9 = 0.5. N denotes the total number of
the pixels.

VDi| + 8_02|v211"

3.3.2 Cross-view Consistency Loss

Besides the above brightness constancy loss, we also ap-
ply a new cross-view consistency loss by considering the
consistency between the images and depth maps for these
views. We introduce the following two losses: cross-view
consistency loss £. and multi-view brightness consistency
loss Ly,

v—1 v v
‘Cconsistency = Z Z (‘C’(L»’j + Z ‘c;;j’k)' (6)

i=1 j=i+1 k#j

The cross-view consistency loss consists of image con-
sistency loss L, based on images and depth consistency
loss £4 based on depth maps. It can be formulated as:

LH = N5+ (LH+ L3+ Xe - (L7 + L), (D)

+A1 (C(Ii) - C(Ig/‘—m‘))) - M,

where A5 = 0.3, \g = 0.3.

Given two images I; and I;, we can produce a synthe-
sized image [ J/ _,; by using I;, D; and the relative pose be-
tween them. Naturally, we can also produce the secondary
synthesized image IZ/; ; using [ J, _,;» D; and their relative
pose. Suppose that the predicted depth maps are accurate,
then the discrepancy between Ii”_)j and I; should be very
small and vice versa. In order to alleviate the robustness
of the consistency loss, we also introduce another term to
access the difference between I;; ; and I;. The cross-view
image consistency loss £,, is defined as:

Ez;f = Lsynthesis ([j 5 I;I_U ) . (8)
For the sake of robustness, we exploit the constraint be-
tween the predicted depth map D), and the synthesized depth
map D;_,;. Therefore, the cross-view depth consistency
loss L4 is defined as:

L = (Di _ D;ﬂ.) M, 9)

Besides the above consistency loss, we also present the
multi-view brightness consistency loss to enhance the rela-
tionship of other views relative to the reference view. Our
multi-view brightness consistency loss is formulated as:

i7j,k], 1 1
‘Cb = Esynthesis (Ij_n'v Ik_>z)7 (10)
which evaluates the brightness constancy across views
i, j, k, i.e., multi-view consistency.

4. Experimental Results

To evaluate the performance of our proposed network
MVS?2, we conducted experiments on widely used multi-
view stereo datasets, e.g. DTU [1]], SUN3D, RGBD, MVS
and Scenes11 [1_1 To align with other related works, we only
trained our network on the training set of the DTU dataset,
and directly tested on other datasets.

4.1. Implementation Details

Dataset: The DTU dataset[1] is a large-scale multi-view
stereo dataset, which consists of 128 scenes and each scene
contains 49 images with 7 different lighting conditions. For
a fair comparison, we follow the experimental setting in
[30]. We generate the ground truth depth maps from the
point cloud with the screened Poisson surface reconstruc-
tion method [[15]. We choose scenes: 1, 4,9, 10, 11, 12, 13,
15, 23, 24, 29, 32, 33, 34, 48, 49, 62, 75, 77, 110, 114, 118
as the testing set and the other scenes as training set. The
RGBD, SUN3D, MVS and Scenes11 datasets contain more
than 30000 different scenes in total, which are very differ-
ent from the DTU dataset. We use these datasets to validate
the powerful generalization ability of our network.

Uhttps://github.com/Imb-freiburg/demon



Table 1. Quantitative results on the DTU’s evaluation set [1]. We evaluate all methods using both the distance metric [1] (lower is
better), and the percentage metric [16] (higher is better) with 1mm thresholds

Accuracy(mm) Completeness(mm) overall Percentage (<1mm)
Mean. Median. Variance Mean. Median. Variance Acc. Comp. f-score
Camp [2] 0.835 0.482 1.549 0554 0523 4.076 0.695 7175 6494  66.31
Furu [6] 0.612  0.324 1249 0939 0463  3.392 0.775 69.55 61.52  63.26
Tola [25] 0.343 0210 0.385 1.190 0492 5319 0.766 90.49  57.83  68.07
SurfaceNet[12] 0450  0.254 1.270 1.043  0.285 559 0.746 83.80 63.38  69.95
MVSNet [30] 0396 0.286 0436 0.741 0399  2.501 0.592 86.46  71.13  75.69
MVSZ (ours) 0.760  0.485 1.791 0.515 0307 1.121 0.637 70.56  66.12  68.27

Training Details: Our MVS? network is implemented in
Tensorflow with an NVIDIA v100 GPU. We train our model
on the DTU’s training set, but test it on the DTU’s test set
and other datasets directly. The image resolution for the
DTU dataset is 640 x 512. The resolution of the predicted
depth map is one-quarter of the original input due to down-
sampling. The depth ranges are uniformly sampled from
425mm to 935mm with a resolution of 2.6mm and the depth
sample number is D = 192. For other datasets, in order to
align the depth range, we set the depth start from 0.5mm
with the depth sample resolution of 0.25, and the number of
depth sample is D = 128.

For the hyper-parameters, we set w,, = 0.8, ws = 0.1
throughout the experiments. The batch size is set to 1 due
to memory limit. The models are trained with RMSP opti-
mizer for 10 epochs, with the learning rate of 2e-4 for the
first 2 epochs and decreased by 0.9 for every two epochs.

Error Metrics: We use the standard metrics used in a
public benchmark suite for performance evaluation. These
quantitative measures include absolute relative error (Abs
Rel), absolute difference error (Abs diff), square relative er-
ror (Sq Rel), root mean square error and its log scale (RMSE
and RMSE log) and inlier ratio (§ < 1.25%,i = 1,2, 3).

4.2. Comparison with SOTA Methods

To verify the performance of our MVS?, we tested it on
the widely used DTU dataset. First, we conducted extensive
quantitative comparisons with the state-of-the-art (SOTA)
methods published recently. Performance comparison with
other SOTA MVS methods is reported in Tab. [, From
Tab. |1} we can conclude that MVS? achieves higher com-
pleteness than other SOTA MVS methods while achieving
comparable performance under other metrics. We applied
a depth map fusion step to integrate the depth maps from
different views to a unified point cloud representation. We
chose the gipuma [7] to fuse our depth maps. The qualita-
tive comparisons in 3D reconstruction are shown in Fig. [6]
where MVS? achieves 3D reconstruction comparable with
state-of-the-art supervised MVS method [30].

4.3. Ablation Studies

To analyze the contribution of different modules of our
network model, we conduct three ablation studies on the
DTU validation set with W x H x D = 640 x 512 x 192.
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(a) Ground Truth  (b) Yao’s result [30] (c) Our result
Figure 6. Qualitative comparison in 3D reconsturciton between
our MVS? and SOTA supervised MVS method [30] on the
DTU dataset. From left to right: ground-truth point clouds, Yao’s
point clouds [30], our point clouds. Best Viewed on Screen.

Quantitative results are reported in Tab. [2]

SPN Refinement. Under our network model, we introduce
the spatial propagation network (SPN) [20] to refine the ini-
tial depth map. To analyze the contribution of this module,
we conduct experimental comparison with and without this
module and the results are reported in Tab. [2] It can be
observed that when the SPN module is removed, the per-
formance consistently drops. For example the Abs Diff in-
creases from 11.3912 to 13.0339, and the Abs Rel increases
from 0.0147 to 0.0175, which clearly demonstrates the ef-
fectiveness of the SPN refinement module.

Cost Volume. In building the cost volume, we exploit both
the feature for the current view and the variance-based fea-
ture [30]. To validate the effectiveness of our cost vol-
ume construction, we compare with a baseline implemen-
tation by using the variance-based feature only, which is
used in [30]. As illustrated in Tab. 2] when the feature
for the current view is excluded from the cost volume, the
performance consistently drops. For example the Abs Rel
jumps from 0.0147 to 0.0204 and the Abs Diff increases
from 11.3912 to 15.1751. The experimental results prove
the effectiveness of our proposed cost volume reconstruc-



Table 2. Ablation Experiments. (a) Without spatial propagation refine module, only compute self-supervised loss through initial depth
map generated by inference network. (b) With cost volume generated just by the variance-based homography feature. (c) Without the view
consistency self-supervised loss. (d) Our complete MVS?. Datasets: DTU dataset

Error metric

Accuracy metric(§ < at)

w/o Abs Rel  Abs Diff  SqRel RMSE  RMSE log « a? ol runtime
(a)SPN Refine 0.0175 13.0339  1.8440 30.4543 0.0187 09814 0.9992 1.0000 0.313s
(b)Cost(difference) 0.0204 15.1751 23806  34.6147 0.0251 0.9753  0.9986  1.0000  0.273s
(c)view consistency  0.0355 249464 52399  55.4236 0.0425 0.9482  0.9920 0.9998  0.322s
(d)MVS? (ours) 0.0147 11.3912  1.5478  28.4428 0.0156 0.9900 1.0000 1.0000  0.325s

Table 3. Ablation experiments with different combinations of
consistency methods. (a) With only the multi-view brightness
consistency (BC) loss. (b) With only the cross-view consistency
check (CC) loss. (c) With all loss. Datasets: DTU dataset

Error metric

Abs Rel ~ Abs Diff ~ Sq Rel RMSE RMSE log
(a) BC 0.0180 13.4363 1.7042  30.2826 0.0190
(b) CC 0.0172 12.8649 1.6311 29.4134 0.0182
(c) BCand CC 0.0147 11.3912 1.5478  28.4428 0.0156

tion method in exploiting the feature of the current view.
Consistency Loss. In this paper, we have proposed a con-
sistency loss to further constrain the multiple estimated
depth maps, which is also a key contribution. To analyze
the contribution of this consistency loss, we conducted ex-
periments with and without this loss term and the results are
reported in Tab. 2] When the cross-view consistency loss
is removed from our unsupervised loss, the performance
deteriorates sharply. For example the Abs Rel shoots up
from 0.0147 to 0.0355 while the Abs Diff increases from
11.3912 to 24,9464 and the Sq Rel jumps from 1.5478 to
5.2399. The experimental results clearly demonstrate the
significance of our proposed consistency loss.

Besides the above ablation studies in analyzing the con-
tribution of our novel consistency loss term, as our con-
sistency term actually consists of two terms (multi-view
brightness consistency and cross-view consistency in depth
maps), we also conducted two additional experiments to an-
alyze the effectiveness of each term and the correspond-
ing results are reported in Tab. [3] From Tab. [3] we could
draw the following conclusions that: 1) Both the multi-view
brightness consistency term (BC) and the cross-view con-
sistency term (CC) are critical for achieving improved per-
formance; 2) The cross-view consistency term (CC) plays a
more important role than the multi-view brightness consis-
tency term (BC) in depth map estimation.

4.4. Generalization Ability

As agreed in monocular depth estimation and binocular
stereo matching, the supervised depth estimation methods
strongly depend on the availability of large scale ground
truth 3D data and the generalization ability could be hin-
dered when evaluated on never-seen-before open-world
scenarios. Here, we would like to verify the general-
ization ability of our unsupervised MVS network model.

We conducted experiments on SUN3D, RGBD, MVS and
Scenes11 datasets using our pre-trained model without any
fine tuning. In Table 4 we compare the performance of
our MVS? with state-of-the-art traditional MVS methods
and supervised MVS methods. We can conclude from Ta-
ble E] that: 1) Our MVS? outperforms state-of-the-art tra-
ditional geometry-based multi-view method COLMAP[22]
with a wide margin, which shows the benefits in exploiting
the large scale datasets; 2) Compared with supervised MVS
methods trained on each dataset individually, our MVS2,
even only trained on the DUT training dataset, outperforms
current state-of-the-art supervised MVS method DeepMVS
on part of the error metrics. Qualitative comparison be-
tween our MVS? and competing MVS methods (COLMAP,
DeMoN, DeepMVS) on the RGBD dataset is demonstrated
in Fig.[8] where our method consistently achieves compared
performance with SOTA supervised methods.

We also conducted experiments on the Tanks and Tem-
ples datasets without any fine tuning to validate the gener-
alization ability of our network model. We choose N = 3,
W = 1920, H = 1024 and D = 192 for our experiments.
Qualitative point cloud results are presented in Fig.[7| where
our MVS? could reconstruct very detailed 3D structures.

5. Conclusions

In this paper, we have proposed the first unsupervised
learning based MVS network, which learns the depth map
for each view simultaneously without the need of ground
truth 3D data. With our proposed multi-view symmetry net-
work design, we can enforce the cross-view consistency of
depth maps during training and testing. Our learned multi-
view depth maps comply with the underlying 3D geometry.
Our network learns multi-view occlusion maps in an alter-
native way. Experimental results on multiple benchmarking
datasets demonstrate the effectiveness and excellent gener-
alization ability of our network. In the future, we plan to
extend the depth consistency beyond pairwise relation, such
as consistency inside a clique. Extension to dynamic scenes
[13] could be another interesting future direction.
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Table 4. Generalization Ability. Multi-view stereo methods: COLMAP, DeepMVS, DeMoN, where Deep MVS and DeMoN are super-
vised methods and trained on these datasets correspondingly.

Error metric

Accuracy metric(d < o)

Datasets Method AbsRel AbsDiff SqRel RMSE RMSE log o o? ol
SUN3D COLMAP[22] 0.6232 1.3267 3.2359  2.3162 0.6612 0.3266 0.5541 0.7180
DeMOoN([26] 0.2137 2.1477 1.1202 24212 0.2060 0.7332  0.9219 0.9626
DeepMVS[11] 0.2816 0.6040 0.4350 0.9436 0.3633 0.5622  0.7388  0.8951
MVS? (ours) 0.3488 0.5956 0.4879  0.7525 0.3805 0.4930 0.7616  0.9100
RGBD COLMAP [22] 0.5389 0.9398 1.7608  1.5051 0.7151 0.2749  0.5001 0.7241
DeMoN 0.1569 1.3525 0.5238  1.7798 0.2018 0.8011  0.9056 0.9621
DeepMVS [11]] 0.2938 0.6207 0.4297  0.8684 0.3506 0.5493  0.8052 09217
MVS2 (ours) 0.4414 0.8698 0.9352  1.2853 0.4726 0.4657 0.6878  0.8057
MVS COLMAP [22] 0.3841 0.8430 1.257 1.4795 0.5001 0.4819 0.6633  0.8401
DeMoN[26] 0.3105 1.3291 19.970  2.6065 0.2469 0.6411  0.9017 0.9667
DeepMVS 0.2305 0.6628 0.6151 1.1488 0.3019 0.6737 0.8867 0.9414
MVS2 (ours) 0.3729 0.8170 09135 1.3938 0.4921 0.5136  0.6952 09123
SCENESI11 COLMAP[22] 0.6249 2.2409 3.7148  3.6575 0.8680 0.3897 0.5674 0.6716
DeMoN [26] 0.5560 1.9877 3.4020 2.6034 0.3909 0.4963  0.7258  0.8263
DeepMVS [11] 0.2100 0.5967 0.3727  0.5909 0.2699 0.6881  0.8940 0.9687
MVS2 (ours) 0.5981 2.0848 3.3365 2.9477 0.4885 0.4695 0.6531 0.7879

(a) Train (b) Panther

(e) M60

(f) Lighthouse
Figure 7. 3D point clouds generated by our MVS? without any finetuning on the Tanks and Temples dataset.
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