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Abstract

Inspired by the success of adversarial learning, we pro-
pose a new end-to-end unsupervised deep learning frame-
work for monocular depth estimation consisting of two
Generative Adversarial Networks (GAN), deeply coupled
with a structured Conditional Random Field (CRF) model.
The two GANs aim at generating distinct and complemen-
tary disparity maps and at improving the generation qual-
ity via exploiting the adversarial learning strategy. The
deep CRF coupling model is proposed to fuse the gener-
ative and discriminative outputs from the dual GAN nets.
As such, the model implicitly constructs mutual constraints
on the two network branches and between the genera-
tor and discriminator. This facilitates the optimization of
the whole network for better disparity generation. Exten-
sive experiments on the KITTI, Cityscapes, and Make3D
datasets clearly demonstrate the effectiveness of the pro-
posed approach and show superior performance compared
to state of the art methods. The code and models are
available at https://github.com/mihaipuscas/
3dv—-—--coupled-crf-disparity!

1. Introduction

Estimating scene depth from monocular images is a
fundamental task in computer vision which can be poten-
tially applied in various applications such as autonomous
driving [2], Visual SLAM [24]. The main drawback of
supervised-based systems is their dependence on costly
depth-map annotations. As such, researchers have proposed
unsupervised-based deep models using self-supervised
view synthesis based on photometric error estimation [7, 9].
Within this pipeline, the quality of the view synthesis di-
rectly affects the performance of the final depth prediction.
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Figure 1. Illustration of the proposed structured coupling approach
for adversarial monocular depth estimation. G4, Gy and Dg, Dy
denote generators and discriminators respectively.

Adversarial learning has been introduced to improve the
synthesis process in depth estimation systems [13} 20] by
simply adding a frame-level discriminative loss for the im-
age synthesis. However, the depth prediction maps and the
discriminative error maps share meaningful structural in-
formation, e.g., objects in the input images are recogniz-
able in both maps, and similar/close regions with higher
generative errors tend to output higher discriminative er-
rors. These structured relationships cannot be directly mod-
eled in a standard GAN as the generator and the discrimi-
nator are not directly connected and thus do not explicitly
flow gradients between them during the network optimiza-
tion process. We argue that the discriminative and gener-
ative sub-networks hold complimentary structural informa-
tion and jointly modeling it leads to a concurrent refinement
of the produced discriminative error maps and the disparity
maps used in the synthesis process, further improving the
learned depth prediction model.

In this paper, we propose a structured adversarial deep
model for unsupervised monocular depth estimation. The
model consists of a dual generative adversarial network
(DGAN), which takes stereo images as input and performs
image synthesis with the two branches containing separate
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generators and discriminators formulated as GANs [10].
The produced disparity maps are used to synthesize images
from a single view. The complimentary stereo information
is learned by a hallucinatory sub-network such that during
inference the system can operate in a monocular fashion.

We further propose a deep CRF model to couple the net-
work on two levels: We bind the two branches correspond-
ing to each stereo image together, such that the complimen-
tary stereo information is modeled. At the same time we
model the complimentary structured information observed
between the synthesized depth maps and discriminative er-
ror maps, through the linkage of the generative and discrim-
inative sub-networks (see Fig. [I). This 2D linkage con-
strains the generative process through the use of a structured
error, allowing for a structured refinement of the final syn-
thesized depth map. The learning of the CRF model is thus
jointly determined by the errors from both the generators
and the discriminators.

We show how the proposed coupled CRF model can be
solved with the mean-field theory, and present a neural net-
work implementation for the inference, enabling the joint
optimization with the backbone DGAN in an end-to-end
fashion. In the testing phase, only one single image is re-
quired. To summarize, our main contribution is threefold:

e We propose a novel CRF coupled Dual Generative
Adversarial Network (CRF-DGAN) for unsupervised
monocular depth estimation, which implicitly explores
making the adversarial and structured learning benefit
each other in an unified deep model for the task.

o Our model contains a dual GAN structure able to exploit
the inherent relationship between stereo images to better
learn the disparity maps. A coupled CRF model, imple-
mented as a CNN, is presented to provide a structured
fusion of the two sub-networks, as well as a structured
connection between the discriminator and the generator.

e We conduct extensive experiments on the KITTI,
Cityscapes, and Make3D datasets, clearly demonstrating
the advantage of structured coupling in the designed dual
GAN networks for the monocular depth estimation task.
The proposed model is potentially useful for other GAN
based applications possessing rich structural information.
A very competitive performance is reported on KITTI as
compared to state-of-the-art methods. The code will be
made publicly available upon acceptance.

2. Related Work

We review the related works in monocular depth estima-
tion from four research directions: supervised based meth-
ods, unsupervised based methods, probabilistic graphical
models based methods, and GAN based methods.
Supervised Learning Methods. CNN based supervised
monocular depth estimation systems, requiring single view

images and corresponding ground-truth depth maps, have
been widely developed [5, [15]. Among them, [S]] propose a
coarse-to-fine network structure using multi-scale deep fea-
tures. [[13)] further introduce a deeper network designed for
the task able to recover good scene details. Due to the high
cost in collecting depth maps, some methods [13] consider
using additional synthetic data to facilitate the model opti-
mization.

Unsupervised Learning Methods. Unsupervised depth es-
timation methods generally learn the depth estimation in a
self-supervised fashion with a view reconstruction loss, as
in [17]]. Recently, several research works have been pro-
posed in this direction [14, 25} 31} 20} [11]. [7] conduct a
pioneering exploration and propose a deep learning frame-
work considering multiple geometric constrained losses.
Following [7]], [[9] propose a left-right consistency network
design to synthesize images from both views to obtain
stronger supervision. There exist some other works [25]
which jointly learn depth estimation and ego-motion, or to
refine the predicted depth [19]. However, none of these
works consider utilizing the adversarial learning strategy for
better view synthesis thus improving the depth estimation.
Probabilistic Graphical Models. Conditional Random
Fields have been utilized in several methods [16] 28] 29],
performing a structured refinement of the depth estimation
maps. The CRF’s use is built upon the idea that pixels cor-
responding to close appearance or spatial regions will likely
have similar depths. [L6] propose a continuous CRF model
for the task. [28] propose a multi-scale fusion guided by
CRF to improve depth estimations. In this work, we con-
sider a different way via constructing a CRF model to per-
form structured coupling of a dual GAN network to benefit
from the advantages of both.

GAN-based Methods. GANs [10] have proven to be effec-
tive in generative tasks by considering global consistency
instead of local, as well as pixel level consistency. This
property makes adversarial learning suitable for unsuper-
vised depth estimation, allowing the generation of more ac-
curate viewpoint images. Pilzer et al. [20] propose to learn
a stereo matching model in a cycled, adversarial fashion,
while [[13] utilize it in a context of domain adaptation for a
single-track network, using a semi-supervised setting with
additional synthetic data. In this work, we use adversarial
learning at the generator level, however, we present a novel
dual GAN design and use a CRF model to couple the net-
work for a structured refinement and fusion of both genera-
tor and discriminator outputs in an end-to-end fashion.

3. The Proposed Approach

In this section, we present the proposed approach for
unsupervised monocular depth estimation. A framework
overview is depicted in Fig.[2] We first introduce the de-
signed dual generative adversarial network, and then elab-
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Figure 2. Framework overview of the proposed CRF-DGAN for unsupervised monocular depth estimation. W is a warping operation to
obtain a synthesized image. D, and Dy, are two discriminators corresponding to the two generative sub-networks. NMF denotes the neural
network implementation of the continuous mean-field updating which composes the deep CRF model for structured coupling of the dual
GAN:Ss. The training phase utilizes a pair of stereo images I; and I,- as input, while in the testing phase, only one single image is required.

orate how we couple the two sub-networks upon both the
generator and the discriminator, and perform a structured
refinement of the outputs within a joint CRF model. Finally,
we describe how the whole model can be organized into a
unified deep network and can be simultaneously optimized
in an end-to-end fashion.

3.1. Dual Generative Adversarial Networks

Basic Network Structure. As formalized in previous
works [0, 31]], unsupervised monocular depth estimation
can be treated as a problem of learning a dense correspon-
dence field between two calibrated image spaces. Given
a set of NV stereo image pairs {(I?,I7)}_,, the target is
to learn a generator G which is able to estimate the dense
correspondence (i.e. the disparity map) d;! from I} to I,
and the supervision is obtained from a reconstruction of I}
using a warping function f,,, i.e. I' = f,,(d}?,I}*). The
network can be optimized by minimizing the difference be-
tween I and ij} As shown in Fig. , we propose a dual
generative adversarial network with a pair of stereo images
(I7,I7) as input in the training phase. The two generative
networks G, and G}, are designed to estimate two disparity
maps d;! and d;, respectively, and part of shallow layers of
G, and G}, are shared to reduce the network capacity. Then
two warping functions f,,, and f,,, are separately used to
generate two synthesized right-view images via sampling
from the same left-view image I}'. Since dj! and d, are
generated from different inputs while similar images and the
warping is performed on the the same image, the two dis-
parity maps are well aligned and are complementary to each

other. For the synthesized images, we use two discrimina-

tors D, and Dy, to benefit from the advantage of adversarial
learning. To only learn the dual generative adversarial net-
work, the optimization objective is:

Egan(Gaa Gb7 Da7 Db? ?’ :‘L) =
EI:pr(I?) [log Dy (I?)]—HEI? ~p(I7) [IOg(l_Db(Ga (I?)))]_F

Erp p(ap) 108 Do (L) HErn ~p(rn) [log (1-Da (G (I7)))]
9]

We adopt a sigmoid cross entropy to measure the expecta-
tion of the image I; and I,. against the distribution p(I;) and
p(I,.) of the left- and right-view images respectively. Along
with the adversarial objective, we have also an L; recon-
struction objective for the generators:

LTeC(GaaGb7I?>Iln) :H i? - I? Hl + || iln - I:L ”1 (2)

where I} = f,(d?, 1) and I? = f,,(d},I7?) are the syn-
thesized images with the disparity maps d;’ and dj esti-
mated by the two generators G, and Gy, respectively.

Network Hallucination. Monocular depth estimation uses
only a single image as input in the test phase. To achieve
this, we designed a hallucination sub-network H (-) with a
convolutional encoder-decoder structure, which aims at ap-
proximating the disparity map d;. using d;. , ie. dy, =
H(d} ,W},), where W, are the parameters of the network
H. In this way, the network H preserves the information
coming from the image I7', while only the input image Ili
is required in the testing. During the training we use an
L1 loss to optimize the network parameters W, as follows:
Ly(dy,,dy W) =0, || H(dy,, W) —d3, |1 The
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proposed approach is general, if we have the stereo images
in the testing phase, the network H can be disabled to sup-
port testing with stereo images.

3.2. Structured Coupling via Deep CRF's

Probabilistic graphical models such as conditional ran-
dom fields (CRFs) have shown great success in supervised-
based approaches [16, 28]]. We investigate here how the
CRF can be used for structured unsupervised monocular
depth estimation. Since we have two generative adversarial
networks, we propose a CRF coupling model for a struc-
tured fusion of the outputs of the two nets from both the
generator and the discriminator. We first give the formula-
tion of our model in coupling two disparity maps from the
two generators, and then illustrate how this can also be done
together with the two adversarial score maps.

Given the observed disparity maps d,, and d,,, from the
backbone network, let us denote d, as a hidden disparity
map to be inferred, and dZ is an element of d,. at position i
(in analogy to d,,, and d,.,). The model can be expressed as
a Gibbs conditional distribution P(d,|d,,,d,, I, ®) =
exp(—E(d,|d,,,d,,, 1., ®))/Z(I,,0), where © is a set
of parameters and, F and Z are an energy and a normaliza-
tion function, respectively. We formally define the energy
in Eq. [3| where f; and f; are features calculated from the
input image I,. at position ¢ and j; a; > 0 and as > 0 are
weighting factors for the two unary terms; k; is a gaussian
kernel for similarity between the features:

E(d’r|d7“a JdT’h,7 I’I“7 @)) =
> (on(di — di,)? + as(d) — di.,)?)

D (B (€ 5] — &)?),
i#j 1

For the unary t:r]m, an isotropic Gaussian function is used
to describe the potential between the observation and the
hidden disparity map, as a constrain that the hidden map
to be as close as possible to the observation ones. For the
pairwise term, following [12]] we use both an appearance
and a smoothness kernel (i.e.for [=1, 2 then [3; are weights
for the kernels) to have structured constraints on the hidden
disparity map.
Inference. Exact inference of the fully connected model
requires high complexity because of the calculation of
inverse matrices [16, 21]. We approximate the infer-
ence using mean-field theory.  The target is to ap-
proximate the distribution P(d.|d,, ,d,,) with another
simpler distribution Q(d.|d,,,d,,) which can be ex-
pressed with a set of independent marginal distributions,
ie. Q(d,|d,,,d,,) =[], Qi(di|d,,.d,,). We obtain an
optimal solution Q by minimizing the KL divergence be-
tween the distribution P and Q, i.e. log Q;(d’|d,,,d,,) =
E;.;(log P(d,|d,,,d;,)]+C with C as a const. The mean-

3)

field inference for () can be derived as follows:

Ql(d;) X exp ( — (o1 + ag)df;2 + Qdf‘n(aldfna + agdih)
> Bk £0) (i - 2didi])). @)
1

The equation implies that the log distribution of Q; takes a
Gaussian distribution and its expectation produces the max-
imum probability. Then we have the mean-field updating
for the continuous hidden variable d’. written as

g = oz1dia + agdih +> Zj# kl(fi(l), f;l))dl
o1 +as+ 3, Y k(Y £

®)

The updating of d? is an iterative operation, and we are able
to achieve a local minimum after 7" iterations. In the follow-
ing we discuss how we implemented the continuous mean-
field in neural network (NMF) for the inference of the hid-
den variables, enabling a joint end-to-end optimization with
the proposed backbone dual GAN network.

Mean-Field Updating in Neural Network (NMF). In
Eq.[5l we have three steps to perform the mean-field updat-
ing. The first step is a linear combination of the unary terms,
i.e. aqdl. + asd: , which can be implemented with 1 x 1
convolutions with a ReLU operation, and then an element-
wise addition operation. The second step is the message
passing. To calculate the message with the Gaussian convo-
lution operation, i.e. 3, kl(fi(l)7 fj(l))di, due to the high
complexity, we utilize a local receptive field considering a
locally connected graph. The message passing can be per-
formed using element-wise addition operation. The third
step is a normalization step. The calculation of the normal-
ization factor (i.e. the denominator) is similar to that of the
previous steps, and an element-wise division operation is
used to perform the normalization. We have in total four
parameters to optimize, i.e. two linear combination weights
for the observation maps d,, and d,, , and other two weights
for the gaussian kernels. Since each forward step is dif-
ferentiable, the mean-field updating can be optimized with
the back-propagation, and we can stack several mean-field
blocks by sharing parameters for a deep CRF inference.
Joint Coupling of the Generator and Discriminator. To
model the structured relationship between the generator and
discriminator, we use one single CRF model to learn the fu-
sion and refinement of both. The discriminators and the
generators from the dual GAN produce the same number
of outputs, i.e. two disparity maps and correspondingly two
real/fake adversarial score maps, where we consider a pixel-
level discriminator. Then we respectively input them into
the deep CRF coupling model introduced above with two
separate forward computations, and collect gradients from
both to perform one backward computation to update the
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Figure 3. Examples of the structured output of the disparity maps
and the adversarial score maps on KITTI using the proposed CRF-
DGAN. The CRF model couples not only two GAN sub-networks
but also connects the generators and the discriminators with mu-
tual constraints in joint optimization.

model parameters during learning. By doing so, the out-
puts from the generators and the discriminators will jointly
affect the model learning, contributing implicitly as mutual
constraints to better optimize both parts. Fig.[3]shows exam-
ples of structured outputs of the generated disparity and the
discriminative errors. We use only one adversarial loss us-
ing the refined and fused the adversarial score map from the
deep coupling CRF model. Let us denote D§é£1 and Dgﬁe
as the adversarial score for the real and fake samples, and
thus we replace Eq. [T]as:
L5 (Ga, Gy, Da, Dy, I}, 1) =

gan ly+r

crf

EILLNP(I?) [log Dfégl] + EI{‘,I:} ~p(I7,I7) [IOg(]. - Dfake)] :
(6)

End-to-End Joint Optimization. The learning of the
whole network involves optimization of both the dual gener-
ative adversarial network and the deep CRF model. For the
CRF model, the final output disparity map is used to syn-
thesize another right-view image d;’,, and we use an [; re-
construction loss L.,y to supervise the learning of the CRF

model with L, f = ny:l [|IL-c,n, — L n||1. To combine the
loss functions of the dual generative adversarial network,
the whole deep network optimization objective becomes:
Lo =MLrec+72Ln+73(L5, + Lers), where {yi}i, is
a set of weights for balancing the loss from different parts.

4. Experiments

We now present the experimental setup and results to
demonstrate the effectiveness of the proposed approach.
4.1. Experimental Setup
Datasets. We have conducted experiments on the
KITTT [8]], Cityscapes [3] and Make3D [22| 23] datasets.
The KITTTI dataset contains depth images captured with a
LiDAR sensor mounted on a driving vehicle. In our ex-
periments we follow the experimental protocol proposed

by [3] containing 22,600 training images and 697 images
test images. The RGB image resolution is reduced by half
with respect to the original 1224 x 368 pixels. To evaluate
the transfer learning capabilities of our method, we test the
model trained on Cityscapes and evaluate it on the Make3D
dataset, which contains only 400 single training RGB and
depth map pairs, and 134 test samples. The Cityscapes is
a large-scale dataset mainly used for semantic urban scene
understanding. The annotated split contains 2975 training,
500 validation, and 1525 test images. The dataset also pro-
vides pre-computed disparity maps associated with the rgb
images. As the images of the dataset have a high resolution
(2048 x 1024), we resize the image to size of 512 x 256 as
in [9] for training due to the limitation of the GPU memory,
and the bottom one fifth of the image is removed.
Evaluation Metrics. Following [4} 5| 26]], we consider sev-
eral evaluation metrics to quantitatively assess the perfor-
mance of our approach: the mean relative error (rel), root
mean squared error (rms), mean log10 error (log10), and a
thresholded accuracy.

Specifically if @ is the total number of pixels of the test
set and d; and d; denote the estimated and the ground-truth
depth for pixel 7, we compute: (i) the mean relative er-

ror (rel): é 2?:1 %%d”; (ii) the root mean squared er-
ror (rms): \/é ZZQ:l(Ji — d;)?; (iii) the mean log10 error

(log10): é 2?:1 [[log,o(d;) — logyo(d;)]| and (iv) the ac-
curacy with threshold ¢, i.e.the percentage of d; such that
§ = max(§, §) < t, where ¢ € [1.25,1.25%,1.25°]. In
order to compare our results with previous methods on the
KITTI dataset we crop our images using the evaluation crop
applied by [3].

Implementation Details. Messages are passed via locally
connected convolutions i.e. considering a local receptive
field for the Gaussian convolution with a kernel window
size of 15 x 15. In our CRF model we consider depen-
dencies only for the last scale. The initial learning rate is
set to 1e-4 in all our experiments, and decreases 5 times af-
ter for each step reached in [30000, 55000]. The momentum
and weight decay parameters are set to 0.9 and 0.0002, as
in [27]. The batch size of the algorithm is set to 8.

4.2. Experimental Results

We first conduct an in-depth analysis of the proposed
approach, and then carry out a state-of-the-art comparison
with other competing methods, and finally provide a discus-
sion on the qualitative results.

Baseline Models. We mainly aim to demonstrate the effec-
tiveness of the proposed approach from three aspect: first,
the monocular depth estimation with adversarial learning
strategy, second, the proposed dual GAN network struc-
ture, and third, the coupling scheme to fuse and refine
the proposed dual GAN in a structured fashion. Thus we
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Figure 4. Examples of depth prediction results on the KITTI raw dataset. Qualitative comparison with other depth estimation methods on
this dataset is presented. The sparse ground-truth depth maps are interpolated for better visualization.

Method Error (lower is better) Accuracy (higher is better)
rel sqrel rms rmslog|d < 1.25 < 1.25%2 § <1253
CRF-DGAN (baseline model) 0.1650 1.7563 6.164 - 0.773 0914 0.962
CRF-DGAN (w/ deep network hallucination ) 0.1617 1.4834 5991 0.242 | 0.779 0917 0.964
CRF-DGAN (w/ adversarial learning ) 0.1528 1.4005 6.029 0.247 0.785 0.918 0.965
CRF-DGAN (w/ coupled adversarial learning) 0.1423 1.3067 5.687 0.238 | 0.813 0.928 0.968
CRF-DGAN (w/ dual coupled adversarial learning) | 0.1407 1.2831 5.677 0.237 0.815 0.930 0.968

Table 1. Quantitative analysis of the main components of our method on the KITTI dataset. The evaluation is conducted on the predicted

depth maps following the standard evaluation protocol.

Method Error (lower is better) Accuracy (higher is better)
rel sqrel rms rmslog |0 <125 0 < 1.25% § <1.25°
CRF-DGAN (baseline model) 0.4676 7.3992 5.741 0.493 0.735 0.890 0.945
CRF-DGAN (w/ deep network hallucination ) | 0.4397 6.3369 5.444 0.456 0.730 0.887 0.944
CRF-DGAN (w/ adversarial learning ) 0.4327 6.2006 5.541 0.424 | 0.738 0.890 0.944
CRF-DGAN (w/ coupled adversarial learning) | 0.4109 5.9848 4.636 0.403 0.756 0.897 0.953

Table 2. Quantitative analysis of the main components of our method on the Cityscapes dataset. Cityscapes does not provide a standard
evaluation protocol for depth estimation. We directly evaluate the performance on the predicted disparity maps.

present an ablation study based on several baselines, in-
cluding (i) CRF-DGAN (baseline model): a single branch
model which uses only the generator without using the ad-
versarial loss; (ii) CRF-DGAN (w/ deep network halluci-
nation): a dual-branch model with network hallucination,
which has two branches each synthesizing a right view new
image, and sharing the parameters of the encoder part. The
dual-branch model is used as the backbone network struc-
ture of our approach. A hallucinator is added in order to pre-
dict images in a monocular fashion in the testing phase; (iii)

CRF-DGAN (w/ adversarial learning): we train the back-
bone adversarially, i.e. adding a discriminator per branch;
(iv) CRF-DGAN (w/ coupled adversarial learning): the two
discriminators of the dual-GAN are coupled with the pro-
posed CRF model; (v) CRF-DGAN (w/ dual coupled adver-
sarial learning): both the discriminators and the generators
are coupled with the proposed CRF model.

Model Analysis. We conduct the ablation study on the
KITTI raw and Cityscapes datasets, as shown in Table [I]
and 2] Comparing baseline (i) and (ii), we observe a minor
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Figure 5. Qualitative comparison of different variants of the proposed CRF-DGAN model on the Cityscapes dataset.

Method Setting Error (lower is better) Accuracy (higher is better)
cap  supervised? rel sqrel RMSE RMSE(log) | 6 <1.25 §<1.257 §<1.25%

Saxena et al. 80m V4 0.280 - 8.734 0.601 0.820 0.926
Eigen et al. 80m V4 0.203 1.548 6.307 0.282 0.702 0.890 0.958
Liu ez al. 80m 4 0.202 1.614 6.523 0.275 0.678 0.895 0.965
AdaDepth [13]* 50m Vv 0.162 1.041 4.344 0.225 0.784 0.930 0.974
Kuznietsov et al. 80m 4 - - 4.815 0.194 0.845 0.957 0.987
Xu et al. 80m 4 0.120 0.764 4.341 0.181 0.852 0.959 0.987
Gan et al. [6] 80m V4 0.098 0.666 3.933 0.173 0.890 0.964 0.985
Garg et al. 80m X 0.177 1.169 5.285 0.282 0.727 0.896 0.962
Gargetal. [T] L12 + Aug 8x | 50m X 0.169 1.080 5.104 0.273 0.740 0.904 0.958
Godard et al. [9] 80m X 0.148 1.344 5.927 0.247 0.803 0.922 0.963
Kuznietsov et al. 80m X - - 8.700 0.367 0.752 0.904 0.952
Zhou et al. 80m X 0.208 1.768 6.858 0.283 0.678 0.885 0.957
AdaDepth 50m X 0.203 1.734 6.251 0.284 0.687 0.899 0.958
Mahjourian et al. [17]t 80m X 0.163 1.240 6.220 0.250 0.762 0.916 0.968
Pilzer et al. [20] 80m X 0.152 1.388 6.016 0.247 0.789 0.918 0.965
Wang et al. 80m X 0.151 1.257 5.583 0.228 0.810 0.936 0.974
Zou et al. [33]1 80m X 0.150 1.124 5.507 0.223 0.806 0.933 0.973
Zhan et al. [31]T 80m X 0.144 1.391 5.869 0.241 0.803 0.933 0.971
Guo et al. [T1]* 80m X 0.105 0.811 4.634 0.189 0.874 0.959 0.982
CRF-DGAN (ours) 80m X 0.1354 1.1815 5.582 0.235 0.828 0.933 0.967
CRF-DGAN (ours) 50m X 0.1283  0.8681 4.223 0.222 0.840 0.941 0.971

Table 3. State of the art comparison on the KITTI dataset. Methods that require additional image data are marked with *, and those that
require video data are marked with . We bold the metrics where our method achieves the best results under the same settings.

improvement in absolute error, but a more substantial im-
provement in all accuracy metrics, especially on Cityscapes
dataset. This performance boost is likely caused by the
network hallucination learning the complimentary informa-
tion between the two stereo viewpoints, resulting in a bet-
ter learned model. The effectiveness of adversarial learn-
ing has been demonstrated in other GAN-based monocular
depth estimation works [20], a benefit also observed be-
tween the baseline models (iii) and (ii). Baseline models
(iv) and (v) evaluate the effectiveness of the proposed CRF
model using different coupling strategies, between the dis-

parity maps produced by the generators and the adversarial
score maps by the discriminators. By comparing (v) and
(iii), we have 1.2 points gain on the metric rel on KITTI. We
should note that this is not a trivial gain on this very chal-
lenging and almost performance-saturated dataset. From
the accuracy aspects: we improve 4 points from 0.779 to
0.813, clearly demonstrating the effectiveness of the pro-
posed CRF-based structured coupling approach. We ob-
serve a more significant boost (around 2.7 points) on the
rel metric on the Cityscapes dataset, and that coupling both
the discriminators and the generators achieves better perfor-
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Figure 6. Examples of depth prediction results on the Make3D
dataset. Qualitative comparison between structured and non-
structured disparity maps is presented.

mance than coupling only the discriminators, meaning that
the joint coupling brings extra constraints for each part, and
facilitates the network optimization, confirming our initial
motivation. In overall, our approach has 2.5 points gain on
the difficult rel metric over the single branch basic baseline
model, demonstrating the effectiveness of the CRF coupled
dual GAN structure.

State-of-the-art Comparison. Table [3|compares the depth
estimation results of our full CRF-DGAN model with other
supervised and unsupervised methods. We outperform most
competitors due to a joint structured optimization of both
the discriminators and the generators sign. The concise net-
work design also facilitates the overall optimization pro-
cess. With regard to [7]], we also report results for a 50m
depth cap. The full CRF-DGAN model achieves better per-
formance in both the 50m and 80m settings. Of interest is
that CRF-DGAN outperforms [9]] in all metrics. Our perfor-
mance is much better than AdaDepth which also considers
generative adversarial networks while used extra synthetic
training data. [31], DF-Net [33], and [17] do not use the
same setting as our approach, requiring video training data
for extra temporal information. In contrast, CRF-DGAN re-
quires only image pairs in training and single images in test-
ing. Although our approach is not directly comparable to
them, it outperforms their results on all the metrics. Our ap-
proach is outperformed by [6], which uses stereo-matching
techniques to improve upon available sparse LiDaR ground
truth. As so it is a method with a different setting to ours
and is not directly comparable. [11] uses a stereo model
trained on the KITTI raw and then synthetic SceneFlow [18]]
are used to distil a monocular model reaches higher perfor-
mance than CRF-DGAN, but it requires both a large amount
of additional stereo data for training and a more complex
optimization process.

Qualitative Analysis. The performance can be qualita-
tively observed in Fig. @] and [5] for KITTI and Cityscapes,
respectively. The advantage of structured modeling be-
tween the generator and the discriminator can be observed
in Fig. ] where our method is able to capture object details
as well as objects in their entirety. Furthermore, we quali-
tatively evaluate a model learned on the Cityscapes dataset
and tested on the Make3D dataset. The results are shown in

Figure 7. Examples of structured outputs of the real and the fake
discriminative score-maps on the Make3D dataset, with the asso-
ciated depth predictions.

Figure[6] The importance of adding structural information
when inferring on unfamiliar data can be clearly observed.
Conditioning on the input images allows the approach to
maintain a good detail consistency. Figure [7] shows the
structured output of the discriminative score-maps gener-
ated from associated real and synthesized samples. The ar-
eas in which the synthesized disparity values with low ac-
curacy produce a high discriminative error. Fig. [5] show-
cases different variants of the proposed CRF-DGAN ap-
proach and the improvement in quality.

Discussion on the Time Aspect. On a single Titan V-100,
with a batch size of 4, the model can infer 6 images with a
resolution of 512 x 256 per second, which is near real-time
speed. Further performance improvements in speed can be
achieved through decreasing the size of the CRF receptive
field and also consider approximation approaches in the ex-
pensive Gaussian convolutional operations, e.g. permuto-
hedral lattice algorithm [1]].

5. Conclusion

We have presented an end-to-end unsupervised deep
learning framework for monocular depth estimation. The
proposed framework consists of two generative adversar-
ial sub-networks, aiming at on one hand generating dis-
tinct while complementary disparity maps, through accept-
ing images from different views as input, and on the other
hand, improving the generation quality via exploiting the
adversarial learning strategy. We couple the dual-GAN by
a deep CRF model, which is able to perform structured re-
finement and fusion of the predicted disparity maps from the
generators and the adversarial scoremaps from the discrim-
inators. The deep CRF coupling also makes the discrimina-
tor and the generator explicitly constrain on each other, and
thus facilitates the optimization of the whole network for
better disparity generation. We conducted extensive exper-
iments on the challenging KITTI, Cityscapes, and Make3D
datasets, clearly demonstrating the effectiveness of the pro-
posed approach.
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