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Abstract

In sports, such as alpine skiing, coaches would like to
know the speed and various biomechanical variables of
their athletes and competitors. Existing methods use ei-
ther body-worn sensors, which are cumbersome to setup,
or manual image annotation, which is time consuming. We
propose a method for estimating an athlete’s global 3D po-
sition and articulated pose using multiple cameras. By con-
trast to classical markerless motion capture solutions, we
allow cameras to rotate freely so that large capture vol-
umes can be covered. In a first step, tight crops around the
skier are predicted and fed to a 2D pose estimator network.
The 3D pose is then reconstructed using a bundle adjust-
ment method. Key to our solution is the rotation estimation
of Pan-Tilt cameras in a joint optimization with the athlete
pose and conditioning on relative background motion com-
puted with feature tracking. Furthermore, we created a new
alpine skiing dataset and annotated it with 2D pose labels,
to overcome shortcomings of existing ones. Our method es-
timates accurate global 3D poses from images only and pro-
vides coaches with an automatic and fast tool for measuring
and improving an athlete’s performance.

1. Introduction

In many sports, like alpine skiing, coaches would like to
know performance metrics such as Center of Mass, speed
and various biomechanical variables at every point in time,
giving them accurate feedback about potential increases or
losses in speed and precision. This can be used to enhance
the athlete’s performance by comparing athletes and find-
ing optimal motion trajectories. Existing methods, like op-
tical barriers in skiing, only offer average speeds within
segments, while other methods using Inertial Measurement
Unit and/or GPS sensors [11, 12, 13, 15, 28] are cumber-
some to wear. Using motion capture suits is also not feasi-
ble in high-speed settings with large capture volumes.

Recent deep-learning-based monocular human pose esti-
mation methods are able to reconstruct articulated 3D pose
from moving cameras [23, 24, 29,42, 31,27, 36, 30, 44, 41,

, 43], however, only relative to the camera pose and with-
out accurate scale and depth information [14]. Such relative
poses contain no information on the athletes global posi-
tion and speed, the unquestionably most important metric
for racing sports. We therefore have the goal of estimat-
ing an athlete’s global 3D pose at every point in time using
just video frames from multiple cameras arranged around
the track. One way to get those poses is to manually an-
notate every frame. This manual annotation is however
very tedious and time-consuming, so instead we chose to
train a pose estimation network to predict 2D joint locations
without the athletes needing to wear markers. Normally,
pose estimation algorithms are only trained on human pose
databases which don’t feature motions of particular sports.
We focus on alpine skiing, where no suitable dataset exists.
Existing alpine skiing datasets [38, 11, 35] are very lim-
ited in the number of athletes and locations that they fea-
ture, making methods trained on them not generalize well.
To remedy those problems we created a new alpine skiing
dataset, containing 1982 manually annotated frames from
various recordings and in diverse weather conditions.

To go from videos to global articulated 3D poses, we
propose the following multi-stage approach. Because ath-
letes are often very small in the captured images, we first
train a network to predict a tight bounding box around them.
Those crops are then given to the pose estimation network
that was mainly trained on the new skiing dataset. The 2D
detections from all cameras are then combined in a bundle
adjustment approach to reconstruct the global 3D pose. Key
to our solution was the expression of the athletes’s motion in
terms of a discrete cosine basis, which enforces smoothness
constraints explicitly, and tracking features on the static
background as an additional cue for constraining the cam-
era motion. This strategy is closely related to panorama
stitching and structure from motion and more general than



related methods that utilize known line markings on sports
fields [7, 8, 33]. We tried off-the-shelf structure from mo-
tion methods, however, these fail on skiing footage due to
the large zoom, large distance and view angle between cam-
eras, and lack of discriminative patterns on the ski slope.
Moreover, optimizing camera motion freely as in [40] lead
to underconstrained systems of equations and diverging be-
haviour. We evaluate the performance of taking fully cal-
ibrated cameras and our method for estimating the cam-
era rotations with varying number of cameras. Our results
are significantly more accurate across various biomechani-
cal variables when compared to using the monocular recon-
struction of [35].

2. Related work

As this paper builds upon work in the field of 3D human
pose estimation, we outline in the following, the most im-
portant advances in this area and also explain our need for a
new task-specific skiing dataset.

Global 3D human pose estimation. Using at least two
cameras from different perspectives, it is possible to obtain
a global 3D pose estimate and potential ambiguities in scale
can be resolved [25, 26]. It is now common to estimate
2D pose with deep neural networks [6, 19] and infer skele-
ton pose with model-based optimization [34, 18]. More re-
cently, Pavlakos et al. [30] propose to extend pictorial struc-
ture models by taking CNN generated 2D heatmaps and re-
solving the 3D structure in a quantized grid by maximizing
a likelihood term explaining the 2D detections. This line of
work requires known camera pose and intrinsic parameters.

Puwein et al. [32] jointly estimate a 3D human pose
and the position and orientation of several fixed wide-
baseline cameras using a bundle adjustment method that
minimizes an energy function comprising reprojection er-
rors, a smoothness term and optical flow consistency be-
tween the motion of the estimated kinematic structure and
the videos. Similarly, Elhayek et al. [10] estimate both
pose and camera locations simultaneously, with the differ-
ence that some cameras are fixed, while a small subset can
freely move. They minimize an energy function containing
a negative likelihood term describing the similarity of the
model parameters to the measured data, as well as smooth-
ness terms for both the human pose and the cameras.

More difficult is the reconstruction from moving cameras
with totally unknown orientation. Several papers [7, 8, 33]
leverage common line markings of sports fields as known
reference points for pan-tilt-zoom (PTZ) camera calibra-
tion. Those methods can leverage the geometric constraints
that games like football are played on a two-dimensional
surface with a limited spatial extent, but don’t generalize to
sports with unconstrained environments, such as ski racing.

Using multiple hand-held and unsynchronized cameras,
Hasler et al. [17] first construct a global model of the en-
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Figure 1: Setup overview of the multi-view skiing dataset.

vironment, then synchronize the cameras using sound, and
finally use a silhouette-based approach to find a 3D mesh
of the subject. In our case, reconstruction on very zoomed
in, fast moving motion would not yield enough overlap to
employ the structure from motion approach described.

Most closely related to ours is the approach of Taka-
hashi et al. [40], using multiple unsynchronized and un-
calibrated cameras. They use a bundle adjustment method
that leverages the limb lengths as priors on the human body
and takes into account that the 2D pose estimations contain
some amount of error. However, using their approach to
freely optimize camera rotations failed in our large capture
volume with very fast moving athletes.

Ski datasets. While there exists extensive datasets for
human poses in various settings like the MPII Human
Pose [5] dataset or the Human3.6M [20] dataset, they fea-
ture only very few, if any, skiing images of amateurs and
lack annotation of the skis and poles. Professional athletes
in a racing scenario are even more rare, which would make
accurate inference impossible in those cases. To train or
refine a 2D detector, we have therefore decided to create a
new alpine skiing dataset featuring semi-professional ath-
letes for which videos are publicly available.

For the purpose of evaluating 3D pose estimation meth-
ods and comparing to related work, we used a manually
annotated multi-view (MV-Ski) pan-tilt-zoom alpine skiing
dataset [38, 11, 35]. It features 6 professional athletes on
a Giant Slalom slope with three turns, filmed by six cam-
eras that are arranged in a circle around the center of the
track as shown in Figure 1. 2D joint locations were man-
ually annotated. Calibration points around the track served
to calculate the camera parameters, specifically the intrin-
sic and extrinsic camera matrices. From this, global ground
truth 3D poses were triangulated.

While the MV-Ski dataset is well suited for developing
semi-supervised models [35], the fact that it only features
6 athletes in similar suits performing the run on the same
slope with the same camera angles makes methods trained
on it unable to generalize to different skiing settings.
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Figure 2: Figure a shows the 24 annotated joints, with the
subset of body joints marked in blue. The white circles are
non-annotated helper joints. Figure b shows four annotated
images of the new dataset featuring various conditions.

3. New single-view alpine skiing dataset

To facilitate generalization of marker-less ski motion
capture to new environments, we create a large single
view (SV-Ski) dataset for alpine skiing. We downloaded
16 alpine skiing videos that were posted on Youtube un-
der the Creative Commons license, featuring mainly semi-
professional ski racers from many different perspectives in
various weather conditions. Those videos were split into
147 training and 11 validation sequences of various lengths,
from which frames were sampled in fixed intervals ranging
from 0.3 to 10 seconds, depending on the discipline. In to-
tal, 1982 images were sampled and annotated with 24 2D
key points, as depicted in Figure 2a, of which 1830 were
used as training and 152 as validation images. The dataset
comprises at least 32 unique athletes in 5 unique locations
and various conditions (see Figure 2b) and is made available
online ! for further research.

Calibration pole augmentation. As this newly created
Alpine dataset does not feature any calibration poles like
the MV-Ski dataset, evaluating a 2D pose estimation algo-
rithm that was only trained on this will produce significant
outliers, particularly for the ski poles. One way to improve
robustness on the MV-Ski dataset is to augment SV-training
images with randomly superimposed cutouts of various cal-
ibration poles, see Figure 3. At training time, we uni-
formly sample 2/ (0, 20) randomly selected poles and place
them uniformly over the image. The poles are scaled by
U(0.5,2.5) and rotated U (—15,15) degrees. We compare
this method to adding one MV-Ski sequence to the training
of OpenPose.

ISingle view alpine skiing dataset: https://cvlab.epfl.ch/
ski-2dpose-dataset/
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Figure 3: Left: Example image showcasing calibration
poles. Right: Augmented alpine skiing image.

4. Method

Our goal is to take as input a set of synchronized video
streams of the same athlete filmed from different angles and
estimate the global and articulated 3D pose. We target an
easy-to-setup solution: The cameras are assumed to be in-
trinsically calibrated, have known relative position, but un-
known orientation. The advantage is that this setup allows
us to use consumer cameras without specialized hardware
for angular readout — handheld recording is conceivable.
The position requirement might sound restrictive, however,
when using up to three cameras a simple distance measure
between pairs of cameras is sufficient to determine their rel-
ative position. Furthermore, the intrinsics for fixed-focal
length cameras only have to be calibrated once. Still, pro-
fessional PTZ-cameras that have been calibrated for differ-
ent zoom levels can be used as well.

We develop our approach for estimating the gloabal ar-
ticulated 3D pose in two steps. In the first, we assume the
rotation matrices as known, while in the second we jointly
optimize for 3D pose and camera rotations. To go from
images to 3D pose, we propose a multi-staged approach as
shown in Figure 4, where 2D pose detections are generated
from cropped images around the athlete and then 3D poses
are optimized to best fit all localized 2D joints. Generating
2D estimations first allows us to analyze potential detection
weaknesses when using a new dataset, before developing a
method for 3D joint detection.

First, we train and run an object detection network [22]
on each video stream to generate a tight square bounding
box around the primary athlete, which effectively excludes
persons in the background. Outliers are filtered out and
bounding box detections are temporally smoothed. The 2D
pose estimation network [6] is subsequently trained and run
on the square crop, generating joint heatmaps, from which
2D joint key points are extracted. The 2D detections from
all cameras are then incorporated into a bundle adjustment
method which reconstructs the underlying 3D pose of the
skier. This optimization includes our core contribution on
conditioning camera motion on tracked features.
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Figure 4: Method overview — Images from up to 6 different cameras are preprocessed to find 2D joint locations by first
cropping a bounding box around the athlete and then running a pose estimation network on it. 2D poses from all cameras
and all frames are used in a bundle adjustment approach to triangulate the athlete’s global 3D pose. Additionally, camera
rotations can be estimated by tracking background features over consecutive frames. Coaches can extract useful information
about biomechanical variables like the hip flexion or fore/aft distance along the athlete’s trajectory from the 3D pose.

4.1. Athlete detection

Sports videos are often captured from a distance and con-
tain sequences of very different zoom levels, resulting in the
athlete size in the image ranging from frame-filling to only
making up a very small portion of the frame. While pose es-
timation networks like OpenPose run images through their
network at multiple scales to account for this fact, athletes
can be so small in images that detection fails completely.
Even when the skier fills a good portion of the frame and the
input scale is right for the pose estimation network, other
people on the slopes or other high-contrast objects in the
background can lead to wrong detections when only inter-
ested in the pose of the main subject. We therefore first
detect a tight bounding box around the athlete, resulting in
the pose estimation network always receiving examples of
the same scale.

In general, object detection is the process of localizing
occurrences of certain classes in images and drawing a tight
bounding box around them. In recent years, several Deep
Learning approaches made great advances in terms of ac-
curacy and detection speed. Liu er al. propose the Single
Shot MultiBox Detector (SSD) [22] generating scores for
the presence of an object in predefined bins and then ad-
justing the bins to better match the object shape. Detec-
tions from multiple feature maps and different resolutions
are then combined to allow for detection of various sizes
in one single network stage. For this task we chose the
SSD [22] network for its good performance and low com-
putational overhead during both training and test time.

As the SSD network is a single-image detector and does

not incorporate temporal information from the fact that we
are dealing with videos, detections between frames can suf-
fer from jitter and outliers if other people are present in
the scene. To remove strong outliers, we replace all detec-
tions whose center deviates beyond the bounding box of the
last correctly detected frame by the latter. Jitter and vary-
ing sizes of the bounding boxes are dealt with by apply-
ing temporal Gaussian smoothing to the center location of
the crops and their respective side lengths with parameters
Ocenter = 10 and og;4q. = 50 frames. Finally, side lengths
are scaled by a factor of 1.5 for the newly created SV-Ski and
2 for the MV-Ski dataset and all crops get resized to 500 x
500 pixels. This was done because the SSD network tended
to produce too small bounding boxes on the unseen MV-Ski
dataset. Training specifications for the SSD network are de-
scribed in the supplementary material.

4.2. 2D pose estimation

Given an input image I € R“*"*3 of width w and
height h, the task of 2D pose estimation is to compute x and
y coordinates for every joint j € {1,..., Ny}. The Open-
Pose network by Cao et al. [60] returns for every joint j a
confidence/heat map C; € R**" and for each limb/bone
I € {1,.., Nz} aPart Affinity Field (PAF) B; € R¥*h*2,
with every point in B; encoding a vector describing limb
orientations. Using the PAF as an indicator for which joints
in the heatmaps belong together, the poses of multiple peo-
ple can be efficiently differentiated. We finetune this model
for the extended set of ski pose joints, including ski tip and
tail, and pole positions. Because in our problem we are fo-
cusing solely on the pose estimation of a single athlete on



the slope and not multiple people, we don’t rely on some of
the multi-person detection advantages that PAF’s bring to
the table. Indeed, for this task we take the maximum loca-
tion p; € R? as p; = argmax,, ; C; of each confidence
map for each joint j. Training specifications for the Open-
Pose network are described in the supplementary material.

Refining SSD bounding boxes using OpenPose. Be-
cause of the Gaussian smoothing of detected SSD bounding
boxes, drifts in the crop with respect to the athlete’s cen-
ter may still be present. Athletes often extend their arms
and poles outwards for balance in difficult terrain, which
may cause the thin ski poles to exit the bounding box when
drifts in the smoothed crops are present. To remedy this,
we run OpenPose on the generated crops and take the me-
dian of the computed joint positions as the new center for
each frame. Then, we apply a weaker Gaussian smoothing
pass to the center locations and side lengths with parameters
Ocenter = D and 04,4, = 5, and re-run OpenPose.

4.3. 3D pose estimation

The last step in our approach is estimating the 3D poses
of the skier using a bundle adjustment optimization method
with the detected 2D joint locations. We take the OpenPose
output pf’c € R? from all cameras ¢ € {1, ..., N¢}, over
all frames f € {1, ..., Ng}, for each joint j € {1,..., N;}
and reconstruct the respective underlying 3D joint positions
ij € R3 in global space. Let us denote the complete 3D
pose at time f as Pf € RV/*3,

Cosine basis parametrization. One way to go about
the bundle adjustment would be to directly optimize for the
points P in 3D space. We would jointly try to optimize
f X Njx3unrestricted parameters, meaning poses in neigh-
boring frames are not guaranteed to transition in a smooth
motion. This is usually countered by penalizing accelera-
tions measured by finite differences.

Instead of letting our 3D points be completely free and
add a smoothness term after the fact, we chose to describe
them using a parametrization that is inherently smooth over
time [4]. We model the motion using the inverse discrete
cosine transform (IDCT), meaning that it is the result of
a sum of Ny cosine waves, scaled by coefficients I; ;4 €
R for each joint j € {1,..., N;} and its dimension d €
{z,y, z}. The 3D pose can then be reconstructed using

No—1 1
g J’ Zﬂdcos{ <f+2>}, (D

for f € {0,...,Np — 1}

The lower we set Nyp, the smoother the motion will be,
as we are only using low-frequency cosine waves, but we
might not be able to reproduce actual fast changes in move-
ment. On the other hand, if we increase the number of coef-
ficients, we could approximate more complex motions but

risk picking up high-frequency noise. With known rotation
matrices, we set [Np to 25, while with uncalibrated cameras
we set it to 11. These values were chosen empirically for a
good balance between smoothness and accuracy.

4.4. Using known camera rotations

In this section, we assume that the parameters for all
frames f and all cameras ¢ are known. Specifically, this
means we know the intrinsic matrix K¢ € R3%3, the
matrix describing world to camera rotation R/¢ € R3*3
and camera location t/* € R3. Using the extrinsics
[RF-c | t/:¢], the transformation of a world coordinate point
ij " to camera c’s coordinate frame is given by

P/ = RIePl" +the )
The projection f)‘jf *“ € R? (in homogeneous coordinates) of

point ij ’“ onto camera c’s image plane is then given by

ple — Klepiv. @

~f.c

The homogeneous pomt p;’ can then be transformed to the

Euclidean point p ‘e RQ by dividing by the last coordi-
nate. Finally, denote the complete projection from world
coordinates to an image plane as

me(PI) = ple. “)

3D reconstruction is done using a bundle adjustment ap-
proach, where we optimize an energy function

argmin F(IL, K, R, t) , (5)
o

that includes a reprojection error, as well as priors on the
human body defined as

E(H7 Ka R7 t) = )\TEPETGP + )\limbsElimbs . (6)

Reprojection term. The 3D joint location estimations
are iteratively updated by gradient descent such that when
projected to each camera plane, they are as close as possi-
ble to the 2D joint locations. If we had perfectly consistent
2D localizations, a simple least-squares bundle adjustment
process with decent initializations would yield very good
results. In our case, 2D detections sometimes contain high
per-joint pixel errors, and we use a robust norm that also
incorporates the detection confidence, similar to Takahashi
et al. [40]. We write the reprojection energy term as

Nr No Ny

NFNCNJZZZ mo(P{™),p]), (1)

f=1lc=1j4=1

Erep(I1, K, R, t)

with P} = IDCT(IT

(n(0) — n(erep(x,y)))erep(x,y) (3

;) in DCT encoding. The distance

g(z,y) =



re-weights the scaled reprojection errors

erep(x7y) = ||(£C - y)C(y)”Q ) (9)

where n(z) denotes the normal distribution’s probability
density function N (0, 02) and C(y) the heatmap probabil-
ity value at point y. Using this norm with o2 = 100, outlier
points have negligible influence on the energy function.

Human prior term. We would like all limbs (7, j) €
Limbs to consistently have the same lengths £(i,j) over
time. To this end, we minimize the difference between the
estimated and the known limb lengths,

B = 5 3 S (1P =PI e~ 0.) ' (10)

f=1..Np ij

with P} = IDCT(II;) in DCT encoding. The limb lengths
(i, j) were taken from the ground truth data, but can also
be measured manually on the athletes.

Optimization and parameters. When optimizing for
absolute 3D positions, all points were initialized in the cen-
ter between all cameras, with an additional random spread
of U(—10, 10) meters. We used the L-BFGS [21], a quasi-
Newton optimization algorithm, with step length 0.05, run-
ning it for 100 outer iterations, with at most 20 inner itera-
tions per optimization step. The energy terms were scaled
by )\rep = 80 and )\limbs =1.

4.5. Estimating camera rotations

In the same way we optimized the 3D pose positions, it
is possible to freely optimize other parameters such as the
camera’s rotation [40]. We again use the IDCT as in Equa-
tion 1 to compactly describe the Euler angles of the camera
rotations using Nt = 11 coefficients I'. The objective then
becomes

argmin E(II, K, T, ¢t) . (11)
LT

Initialization. Like with the 3D pose, the camera an-
gles can be parametrized by a low-dimensional cosine basis
and iteratively updated to the correct ones by gradient de-
scent. A problem with this approach is however initializa-
tion. If the cameras face in randomly initialized directions,
it is unlikely that the optimization objective can converge
to a desirable solution. We instead propose a bootstrapping
step, where in every gradient descent iteration only the 3D
poses are optimized, while the cameras are adjusted to al-
ways point to the center of the estimated poses.

More specifically, in the beginning we initialize all 3D
pose positions around the center of all cameras with a ran-
dom spread of U(—1, 1) meters to be largely independent
of any specific sport. For every camera we then compute
the look-at rotation matrix, with the target being the mean
location of the 3D pose and the camera’s up direction being
the global z-axis. A problem with the look-at matrix is, that

the person is originally not necessarily in the middle of the
image. To solve this, we first compute the horizontal and
vertical relative position of the skier in the 2D image. From
the camera intrinsics, we know the Field of View (FoV) and
can then pan and tilt the rotation matrix in the opposite di-
rection of the calculated horizontal and vertical FoV shift.
When optimizing with this method for 25 outer itera-
tions, we get a very rough estimate for the real 3D pose
positions and camera rotation matrices, which serves as an
initialization for joint optimization of all parameters.
Homography camera rotation differences. From this
initial estimate, we could potentially optimize for 3D poses
and camera rotations jointly, but preliminary tests (Table 2)
have shown that doing this with only the 2D pose estimates
as information for the optimization does not yield accu-
rate results. What we propose instead is to use the back-
ground information and the fact that we are dealing with
PTZ-cameras to our advantage. Since PTZ-cameras are
fixed in space and can therefore only rotate, detected 2D
points, say of consecutive frames f and f + 1 in camera c,
are related [16] by a homography matrix H 7€ satisfying

H = K/t ARD(KT )7 (12)

with A Rf-¢ being the relative rotation between the images
and K7¢ and K7*1:¢ the intrinsics of the first and second
frame, respectively.

Because we assume the intrinsics as known, to find the
rotation we only need to compute the homography. For this,
we collect features in consecutive images using an ORB de-
tector [37, 3] and match them by minimizing the Hamming
norm [2]. We only consider those points lying outside the
bounding box predicted by the SSD network, to exclusively
track features in the static background. The correspond-
ing points are then used to find the homography matrix [1],
excluding outliers with RANSAC. Finally we compute the
rotation between any consecutive frames f and f + 1

AR = (K/They T g K Te (13)

For cameras with a fixed position, AR is a pure rotation
matrix. In practice, slight camera movements and noisy in-
puts to the homography computation will not produce per-
fect rotation matrices, but we found that extracted Euler an-
gles are not far off their ground truth, as shown for one ex-
ample sequence in Figure 5. Notice that since the camera
has a large focal length, pitch and yaw changes in the x and
y axes are much more significant than rolling in the z axis,
and are also estimated more accurately. Outliers in the rota-
tion differences are removed by a median filter with size 7
and smoothed using a Gaussian with standard deviation 3.

Bundle adjustment with rotation differences. In our
energy function, we add a term

1 NeslNe

(D) = s 2o DLIARY — (BRI (B9, (14)

f=1 c=1




Figure 5: Estimated change in rotation A R for one camera.

with R® = IDCT(I'®) in DCT encoding, minimizing the
norm between the measured A R/¢ and estimated consecu-
tive camera rotations R/*1¢ (R#)T. By minimizing this
term, we enforce that the estimated relative camera motion
matches the one measured by optical flow, which enables
the bundle adjustment to find the absolute rotation more
easily. Note that this formulation is robust to measure-
ment noise and the estimated homographies not being pure
rotations, since the Euler-angle representation ensures that
R is a proper rotation matrix. We further optimize for IT
and I over 1500 outer iterations. The energy function was
weighted with .., = 500, Ajipmps = 1 and A = 10000.

5. Results

In this section, we report the performance of our motion
capture algorithm on the task of ski performance analysis.
First, we quantify the accuracy gain brought about by the
new SV-Ski dataset, optical-flow guided rotation estimation,
and other model choices. Second, we compare against ex-
isting monocular methods for 3D human pose estimation on
the public MV-Ski dataset.

Metrics. We report the widely-used Percentage of Cor-
rect Key points (PCK) metric, the fraction of predicted
joint positions that is within one head-neck distance to the
ground truth, as well as the Mean Per Joint Position Errors
(MPJPE), the mean euclidean distance to the ground truth.
For 2D keypoints, MPJPE is measured in normalized image
coordinates ranging from O to 1, for 3D in meters (m).

In addition we, analyze the mean absolute error (MAE)
of skiing-specific metrics that are widely used in perfor-
mance analysis [38, 1 1], such as the center of mass (CoM),
knee angle, and lean angle, where the latter is measured
in the plane orthogonal to the skiing direction. These are
defined formally in the supplementary material. For the
MPJPE and CoM, we analyze the Global error computed
in world coordinates, the Centered error measured relative
to the hip, and in Normalized coordinates where the scale
of the prediction is adjusted to the ground truth in the least
squares sense before error computation. Monocular meth-
ods can only estimate the latter, as scale and depth is am-
biguous without knowing the athletes height. All metrics
are computed over the available test sequences and the mean
and standard deviation (std) across all frames is reported.

(a) SV-SKki training (b) SV-Ski Augmented training

Testdataset | PCK | MPIPE £std | [ Testdataset | PCK | MPJPE +std |
SV-Ski all 92.69 | 0.0195 £ 0.0638 SV-Ski all 95.77 | 0.0807 £ 0.0488
SV-Ski body | 94.88 | 0.0132 +0.0416 SV-Skibody | 97.91 | 0.0625 + 0.0346
MV-Ski all 51.37 | 0.1064 £ 0.1297 MV-Ski all 65.51 | 0.0137 £ 0.1236
MV-Ski body | 58.26 | 0.0835 £ 0.1092 MV-Ski body | 73.01 | 0.0092 £ 0.1074

(¢) SV-Ski Aug. + weight init. MPII
[ Testdataset | PCK | MPIPE £std |

(d) SV-Ski Aug. + init. MPII + MV-Ski
[ Testdataset | PCK | MPIPE £std |

SV-Ski all 96.76 | 0.0119 + 0.1268 SV-Ski all 96.51 | 0.0119 £ 0.0431
SV-Ski body | 98.36 | 0.0081 + 0.1077 SV-Ski body | 97.81 | 0.0087 + 0.0296
MV-Ski all 70.10 | 0.0755 £ 0.0429 MV-Ski all 78.11 | 0.0627 £ 0.1275
MV-Ski body | 76.83 | 0.0577 £ 0.0268 MV-Ski body | 83.12 | 0.0507 + 0.1133

Table 1: 2D pose estimation results on SV-Ski and MV-Ski
with four different dataset configurations used for training.

Test sets. MV-Ski-test contains two runs of a skier not
contained in the training set, totalling to 1674 frames. SV-
Ski-test comprises 152 images that are strictly excluded
from training.

5.1. 2D pose estimation

We trained OpenPose using four different dataset con-
figurations. First we only trained it on the newly created
SV-Ski dataset, which we then augmented with calibration
poles. We then initialized the network using pretrained
weights from the MPII Human Pose dataset, and finally
added one MV-Ski sequence using four camera angles.

In Table 1 we analyze different training and test splits,
using all keypoints and also just the body joints, the 14
joints 0-4, 6-8, and 10-15 shown in Figure 2a. In the case of
the SV-Ski-test set we have information about joint visibil-
ity and invisible joints were not counted in the PCK results.
The data augmentation and taking one MV-Ski sequence for
training brought the biggest gain in accuracy. The accuracy
on the SV-Ski-test set improved overall, but not as much be-
cause it was already very high. See the supplementary ma-
terial for the same comparisons, displayed graphically.

5.2. 3D pose estimation

In Table 2 we highlight the best results obtained from
both the calibrated and uncalibrated cases. For those, the
bundle adjustment used all 6 cameras and 2D pose estimates
by the best performing dataset configuration that includes
one additional MV-Ski sequence. For the local metrics, like
the centered MPJPE and the biomechanical variables, the
two methods both yield comparable, high accuracies, with
the uncalibrated method only slightly worse. Still, the lat-
ter is mostly well within the standard deviations of the cal-
ibrated methods. On the global metrics, like the MPJPE,
CoM distances and speed, we see a larger discrepancy be-
tween the two methods, meaning that the poses found when
estimating the camera rotations are locally accurate, but
globally contain small deviations of the whole pose.

As baselines, we also report all metrics on bundle ad-
justment approaches, where we don’t use the cosine basis
parametrization (Ours-A and Ours-B). In the uncalibrated



[ Metric | Ours-calibrated | Ours-uncalibrated | Ours-A (calibrated) | Ours-B (uncalibrated) | C [ D[35] |
Global MPJPE [m] 0.092 + 0.091 0.701 £0.219 0.096 + 0.120 7.590 + 4.946 n/a n/a
Global Body MPJPE [m] 0.060 £ 0.046 0.688 + 0.201 0.056 + 0.033 7.490 + 4.792 n/a n/a
Centered MPJPE [m] 0.077 £ 0.087 0.090 + 0.085 0.087 £+ 0.122 0.459 + 0.960 n/a n/a
Centered Body MPJPE [m] 0.045 £+ 0.030 0.071 £ 0.053 0.050 + 0.034 0.355 £ 0.383 n/a n/a
Normalized MPJPE[m] 0.075 £ 0.083 0.087 £ 0.082 0.087 £ 0.117 0.232 +£0.238 0.07 n/a
Normalized Body MPJPE[m] | 0.039 + 0.025 0.051 £ 0.035 0.042 + 0.029 0.132 £0.103 n/a 0.081
Global CoM Error [m] 0.05 £ 0.04 0.78 + 0.24 0.05 + 0.02 8.93 £5.40 n/a n/a
Global speed MAE [m/s] 0.74 + 1.76 1.87. £2.64 0.45 + 1.08 31.35 +£22.45 n/a n/a
Knee flexion MAE [deg] 3.96 £ 3.16 4.83 +3.18 445+ 3.98 1421 +11.84 23 +6.1 7.39
Hip flexion MAE [deg] 3.92 £2.82 474 +3.45 4.26 + 3.08 15.30 £11.38 2.6 5.3 5.74
Lean angle MAE [deg] 3.91 £+ 2.60 3.68 + 2.56 4.48 +4.61 8.09 + 7.01 33+33 n/a
Fore/aft angle MAE [deg] 6.77 £5.20 5.75 £ 5.67 8.72 £ 842 12.26 £11.72 n/a n/a
Fore/aft distance MAE [m] 0.07 + 0.05 0.07 + 0.06 0.09 + 0.08 0.30 +0.38 0.03 + 0.05 n/a

Table 2: Comparison of our results in calibrated and uncalibrated cases to methods proposed by OSstrek et al. (unpublished

data) (C: Monocular 3D pose estimation) and Rhodin et al.

1 (D: Semi-supervised). As a baseline, we also provide results

when not using a cosine basis and directly optimizing for 3D pose coordinates (Ours-A and Ours-B). In the uncalibrated case
(Ours-B), we show the performance when optimizing camera rotations without enforcing Equation 14.

case (Ours-B) we also directly optimize for the rotation ma-
trices without getting rotation measures from the homog-
raphy approach. As can be seen in Table 2, our new un-
calibrated approach outperforms the baseline by an order
of magnitude in all metrics, with only slightly lower gains
in the calibrated case. Note that the bundle adjustment in
Ours-B easily gets stuck in a local degenerate minimum.
While this approach worked for previous work [40], the
high speeds, large capture volume and zoomed in cameras
in the MV-Ski dataset impede convergence to better solu-
tions. Using background cues and the cosine basis provided
a strong guide to avoid those local minima. The other main
benefits in that case are the improved smoothness of the mo-
tion and speedup of the bundle adjustment. Using the cosine
basis parametrization, we usually need only about half the
number of iterations to reach a similar performance.

An analysis showcasing the performance of both cali-
brated and uncalibrated cases, across dataset configurations
and number of cameras used, can be found in the supple-
mentary material. We see the largest gains in accuracy when
going from two to three cameras. With more than that, re-
construction quality still improves, but with diminishing re-
turns. We also show how improved 2D detection quality
directly translates into higher 3D triangulation accuracy.

Comparison to existing methods. In Table 2 we com-
pare our best results with the methods proposed by Ostrek et
al. (unpublished data) and Rhodin et al. [35]. OStrek et al.’s
method computes all biomechanical variables indirectly
from images via monocular 3D pose estimation trained on
the MV-Ski dataset. Rhodin ef al. estimate a monocular 3D
pose using a semi-supervised method by constraining the
model to predict the same pose in all views and needing
only few labelled images. Both our best calibrated and un-
calibrated methods perform only slightly worse than OStrek
et al. (unpublished data), while yielding lower standard de-
viations and using only a single sequence from the MV-Ski

dataset. Both our methods outperform the semi-supervised
method by Rhodin et al. [35].

Velocity estimation. In contrast to existing monocular
approaches [35], our method allows to estimate the athletes
instantaneous velocity as the change in CoM position be-
tween two frames, even if camera rotations are unknown.
Using calibrated cameras, we get mean absolute errors of
0.74 £ 1.76 m/s, while when estimating rotations, it rises
to 1.87 £ 2.64 m/s. This is still relatively low, given the
high speed of the professional athletes, that ranges between
15 — 20 m/s in the test sequences and the large capture vol-
ume of more than 30 — 50 m distance between cameras.

6. Conclusion

We developed a practical method for reconstructing the
global articulated 3D pose from bare videos taken from
multiple rotating cameras. Our key contribution is joint op-
timization of 3D human pose and camera rotation by incor-
porating additional constraints from tracked features and re-
sulting homographies. Our empirical evaluation shows that
training 2D keypoint detection on the large SV-Ski dataset
and subsequent multi-view 3D reconstruction is as accurate
or better as training 3D pose estimation directly on the avail-
able small-scale multi-view datasets [35], while promising
improved generalization capability to new scenes. The im-
provement brought about by our contributions are quan-
tified in terms of widely used reconstruction metrics as
well as biomechanical variables that are common for per-
formance analysis of professional athletes. By contrast to
monocular solutions, we are able to provide accurate global
measurements without the need for cumbersome camera ro-
tation calibration, which makes this method directly appli-
cable for ski coaches.
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Appendices

In this supplementary material, we analyze the performance gains of using different dataset configurations in both 2D and 3D
pose estimation and show how various 3D metrics perform as a function of the number of cameras used. Further, we explain
how those metrics were calculated and give training specifications for both the object detector and pose estimator networks.

A. 2D pose estimation performance as a function of dataset modifications

We evaluate different OpenPose trainings on test sets of both the SV-Ski and MV-Ski datasets. We report metrics on both
all the athlete’s joints, as well as when excluding skis and poles. With our 2D object detector and pose estimator trained on
mainly the new SV-Ski dataset we see them under-performing on the MV-Ski dataset because it contains challenging features,
like the calibration poles. The improvements on the accuracy by a range of modifications are displayed graphically in
Figure 6. The addition of cut-out calibration poles onto training images improves accuracies by a large margin (Configuration
A to B) for the MV-Ski test set. By adding one sequence from the MV-Ski dataset, we again see a considerable jump in
performance on the MV-Ski test set. Performance on the SV-Ski is already very high and increases strongest when adding data
augmentation, making it more robust.
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Figure 6: Comparison of all four dataset configurations, showing the improvements each addition yields on unseen test sets
for both the SV-Ski and MV-Ski datasets. A: Alpine dataset, B: Alpine dataset augmented with calibration poles, C: Transfer
learning from MPII weights on augmented dataset, D: Like previous, but with one additional MV-Ski sequence from four
camera angles.
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B. 3D performance as a function of number of cameras and dataset modifications

Figures 7 and 8 show various performance metrics extracted from comparing the estimated 3D poses with the ground
truth, in the cases where camera rotations are known and where we estimate them. For each metric, we show the performance
across dataset configurations and number of cameras used. All metrics were averaged over two unseen test sequences.

In all cases, the methods utilizing all 6 cameras with the OpenPose weights that were trained on one additional MV-Ski
sequence consistently performed the best. We see the largest jump in performance when taking 3 instead of 2 cameras. In
the calibrated case, using more cameras still improves all metrics, but with diminishing returns. When estimating camera
rotations, local metrics (like the biomechanical variables or hip-centered MPJPE) see no big improvements using more than
3 cameras, whereas the global metrics (like the MPJPE or CoM) benefit from each additional camera.
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Figure 7: With known rotation matrices: Comparison of all performance metrics for different number of cameras used in the
bundle adjustment and four differently trained 2D detectors.
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C. Metrics

We compute performance scores using both general metrics using merely the locations of estimated and ground truth
joints, as well as more specific errors between estimated and ground truth biomechanical variables.

C.1. General performance metrics

Percentage of Correct Key Points (PCK) The PCK is defined as the percentage of estimated 2D points ﬁf detected within
radius 7 of the ground truth pj-c as

100 o5 s
PCK = SN gl - plll, <rf) . (15)

NN = =

We take the radius 7/ as the ground truth head-to-neck distance

Tf = ||p£ead _pieck||2 . (16)

In the MV-Ski dataset, the head joint is not at the top but in the middle, therefore we use the double distance r/ in that case.

Average distances In both 2D and 3D cases, the Mean Per Joint Position Error (MPJPE) is defined as

Nr Ny

1
MPJPE = ! — pf 17

over all Np frames and N joints in the dataset. In the 3D case only, we calculate the hip-centered MPJPE, where we
subtracted the center-hip position from every joint. We also compute the Normalized MPJPE (NMPJPE) [35], which we
calculate by the usual MPJPE metric between the hip-centered ground truth and normalized hip-centered poses, given by

pf . pf
A P -p
pior'm = ﬁf K ﬁfpf ’ (18)
where pose vectors are flattened for the dot products.
Center of Mass (CoM) The CoM of a person is calculated as a weighted sum of limb centers
1 P; + P;
CoM = — > My = (19)

(i,7)€Limbs

where m; ;) is the mass of the limb connecting joints ¢ and j, and M =}, - 1imps M(i.j)-

The relative weights, adapted from Ostrek ef al. (unpublished data), are the following for both sides of the body: (head):
0.065, (shoulder, hip): 0.1835, (shoulder, elbow): 0.023, (elbow, hand): 0.014, (hand): 0.006, (hip, knee): 0.119, (knee,
ankle): 0.038, (toes, heel): 0.038, (ski tip, ski tail): 0.043, (hand, ski pole basket): 0.003 .

Speed Knowing the global 3D positions of the skier’s COM and the frame rate of the videos we can compute their speed
véo ) atevery time step f using
Vhors = |ICoMT — CoM?*1|FPS . (20

All MV-Ski Videos feature a frame rate of 50 Frames Per Second (FPS). For calculating the mean absolute error between the
ground truth and predicted speeds, the predicted CoM’s have been smoothed temporally by a Gaussian filter with o = 1.5.

C.2. Biomechanical variables

More specific to alpine skiing, there are several biomechanical variables that are used for injury prevention or training
purposes. We mainly focus on knee flexion, hip flexion, lean angle and fore/aft angle/distance. All variables are calculated
from the global 3D pose P.
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Knee flexion The knee flexion is the angle measuring how much the knee is bent. It is calculated as the angle between the
two vectors

Vthigh = Phip — Prnee (21
Verus = Pankle - Pknee (22)

for the right and left legs in the same way. The angle between those vectors is given by

Uthigh * Ucrus

Oknee = arccos ———————"— (23)
||'Uthigh || chrus ||
Hip flexion The hip flexion is the angle between the spine and right or left thigh. Those vectors are defined as
VUspine = Pneck - Pcenter,hip (24)
Vthigh = Pypee — Phip (25)
and again we calculate the angle between them by
Ohip = arccos Uspine * Uthigh (26)

[Vspine | [Vtnign]l -

Lean angle The lean angle is the sideways inclination between the CoM and the left or right middle of the skis. It is usually
calculated on the outside ski, which can be reasonably well figured out by taking the leg with the larger knee flexion value.
The following equations are only given for the right side, but symmetry applies. First we define the local coordinate vectors
z', 1’ and 2/, fixed at the center of both ankles:

&' = Pright_skitip — Pright_ski tail 27)
Y = Pt ankic — Pright_ankie (28)
Z=x' xy (29)
y =2 xa', (30)

where ' and y have been normalized after calculation. Furthermore, we define the vector C' between the center of both

ankles
Beft,ankle + Pright,ankle

Peenter-ankle = 5 (3D
and the CoM as
C = CoM — Peenter ankle - (32)
Now we need to project C' onto the ¢z’ plane as
Ty (C)=C—(C-2) -2 (33)

and can then compute the lean angle as the angle \;.q,, between the normalized projection and the z’ axis using

ANean = arccos(z’ - my o (C)) . (34)
Fore/aft angle and distance The fore/aft angle measures how much the skier leans to the front or back, instead of the side.
To calculate it, we use the same x’, ' and 2’ vectors as calculated in equations 27 - 30, but centered at the outward ski ankle.

We define the vector C' now as
C = CoM — Pyight_ankle - 35

and project it onto the 'z’ plane as
T2 (C) =C —(C-y') -y . (36)
Then we can compute the fore/aft angle sy, qf: between the normalized projection and the z' axis using
Aforejaft = arccos(z’ - my 2 (C)) . (37

The last metrics we compute is the fore/aft distance d s, /q 1> defined as

dfore/aft = Sin()‘fore/aft) : ”CH : (38)
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D. Training specifications
This section provides more information on how the SSD and OpenPose networks were trained.
D.1. SSD training specifications

We trained a PyTorch implementation of the SSD network [9] on the newly annotated SV-Ski dataset for 2000 iterations,
using a batch size of 32 images. The network was initialized with pretrained VGG 16 weights. The optimizer used was
Stochastic Gradient Descent (SGD) with learning rate 0.001, momentum 0.9 and weight decay 0.0005. The learning rate was
scaled by 0.1 at iterations 1000 and 1500. As this PyTorch implementation was made for multiple object classes we trained
it with one athlete class and one unused dummy class.

D.2. OpenPose training specifications

For training OpenPose, all images were resized to 736 x 368 pixels. In addition to the augmentation with MV-Ski cali-

bration poles, for data augmentation each of the following transformations was applied independently with a probability of
0.5:

e Adjusting the image gamma value uniformly by a factor of /(0.5, 1.5).
e Shifting the image hue uniformly by U/(—15, 15) °.

e Rotating the image uniformly by I/ (—40, 40) °.

e Mirroring the image horizontally.

In addition, all training images were randomly cropped around the ground truth pose of the skier, such that the network
always received poses of roughly the same scale. During test time, no data augmentation is applied besides resizing the
imaged to the input resolution.

Training was done in batch sizes of 8 over 200 epochs using the Adam optimizer with learning rate 0.00004, momentum
0.9 and weight decay 0.0005. In all cases, the first OpenPose stage block was initialized with pretrained VGG 19 weights,
while all other stages were either randomly initialized or using weights pretrained on the MPII dataset.

During test time the OpenPose model that yielded the lowest validation error during all training epochs was chosen. The
outputs from the SSD network were resized to 368 x 368 pixels and run through OpenPose several times scaled by 0.5, 0.75,
1, 1.25, 1.5 and 2 for being able to detect a wider range of SSD outputs. Results from all scales were averaged to generate
the final heatmaps and PAFs.
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