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Abstract

We present a simple, yet effective method for non-rigid
alignment of point clouds. Our focus lies on developing a
practical approach that allows us to do efficient, multi-way
alignment of millions of points such as those produced by
structured light scanners. Starting from an initial displace-
ment field over the combined point cloud, our solution re-
lies on an iterative smoothing scheme on the neighborhood
graph of each sub-scan, reducing the Dirichlet energy of the
displacement field. We compare a number of schemes for
computing the initial displacement field, ranging from esti-
mating the Laplacian of the combined point clouds to more
traditional measures such as the point to point distance or
point to plane distance.

1. Introduction

Optical surface scanning technologies ranging from Li-
dar over time-of-flight cameras to structured light scanners
allow us to acquire digital models of many types of objects
for a vast range of applications. However, almost all of these
applications require us to scan each object from several di-
rections since each scan only covers the object as seen from
a particular point. Often, we are interested in a closed sur-
face model for applications such as additive manufacturing,
and even in cases where we do not need a complete 3D
model, concavities and self-occlusion make it impossible
to capture the entire region of interest from a single van-
tage point. For these reasons, we invariably have to deal
with point clouds that consist of multiple sub-scans, each
covering a part of the object. It is crucial these are aligned
precisely.

Substantial progress has been made when it comes to
rigid alignment of such point clouds. In a typical process-
ing pipeline, global, rigid registration is followed by a local,
rigid alignment. However, rigid alignment cannot account

for errors caused by faulty intrinsic calibration or due to
motion artifacts during the scanning process. These prob-
lems cause a non-rigid distortion of the scanned surfaces.
The misalignment results in high-frequency artifacts when
the combined point cloud is later on triangulated to produce
a surface model. Clearly, we can remove the noise using
smoothing methods, but while feature preserving smooth-
ing methods are available, features and noise might well
overlap in the frequency domain making it effectively im-
possible to remove the noise without harming features. The
problem is illustrated in Figure 2 where three overlapping
sub-scans are shown as triangle meshes in 2a, 2b, and 2c.
In Figure 2d, a triangulation of the combined point cloud
is seen. It is clear that the combined point cloud contains
high-frequency noise, which is not present in the original
sub-scans. These high-frequency components (as already
observed in [5]) are caused by a misalignment of the sub-
scans that could not be corrected through rigid alignment.

We approach this problem via a scheme that specifically
removes the high-frequency noise that arises when sub-
scans are combined into a single point-cloud. Our approach
is to apply a combinatorial reconstruction algorithm, e.g.,
[4], to obtain a (noisy) triangle mesh of the combined scans.
We then cast the non-rigid alignment as a feature preserving
smoothing of the triangle mesh performed after the recon-
struction.

We know that much of the noise in the reconstruction is
introduced by the misalignment of the sub-scans. Thus, we
constrain the smoothing to be an almost rigid deformation
of each sub-scan. To be more specific, we first compute
displacement vectors for each vertex in the combined point-
cloud. This can be done in a number of ways, and the nat-
ural approach is to compute the Laplacian – assuming that
we have a triangulation of the point set. In the next step, we
apply the smoothing based on the computed displacement
vectors. However, we constrain the displacement of each
vertex to be coherent within its respective sub-scan.
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Figure 1: To illustrate the principle of our method the red
and blue samples are translated, and noise is added. Simple
Laplacian smoothing yields the green curve. The smooth-
ing removes the translations and reduces the noise, but it
also blurs the sharp features. In comparison our proposed
method (orange curve) enforces coherence of the displace-
ment vectors within each sample set. This preserves fea-
tures much better at the expense of less noise reduction.

The process is illustrated in 2D in Figure 1. The light-
blue dots show samples of the original signal. Another set
of samples of this signal has been corrupted by noise and
then translated to emulate misalignment: the red dots have
been moved up and the blue dots have been moved down.
Consequently, the curve connecting the samples (red and
blue) is very erratic. We can remove the noise and jagged-
ness by regular smoothing, but this leads to significant blur-
ring of the sharp features as illustrated by the green curve.
The orange curve illustrates our method which more effec-
tively preserves the features of the original signal while also
removing noise.

In the following, we assume the individual sub-scans to
be already rigidly aligned - globally and locally. Besides the
aforementioned approaches to global alignment, scans are
often already coarsely aligned - either through the structure-
from-motion (SfM) step necessary in a multi-view-stereo
(MVS) pipeline or directly measured while capturing, for
example through a turntable or robotic arm. Furthermore,
we assume our sub-scans also to be locally aligned, for ex-
ample, by classical rigid ICP.

2. Related Work

There exist a plethora of algorithms for registration or
alignment of 3D data. Giving a comprehensive overview is
clearly beyond the scope of this paper, but we refer to [27]
for a comparative survey on rigid and non-rigid alignment
techniques for point clouds and meshes.

The continued work in the field shows the lack of a gen-
eral solution to the various use cases of this fundamental
idea. The literature on non-rigid registration differs vastly

in the underlying motivation and application. Early work
focused on fitting a single scan and a predefined template,
e.g., for parametrization of human bodies [1]. This contin-
ues to be a challenging task as finding correct correspon-
dences is crucial [17, 30]. Commonly, only a small number
of feature points is therefore considered and based on those
a deformation model is fitted, e.g., using thin-plate splines
[9] or isometric deformations [15]. The approaches in [6]
and [23] divide the point cloud into clusters, which are then
individually aligned via rigid ICP. Spatial smoothing of the
resulting transformations results in a global transformation
function, which aligns the scans with a template or base
model.

Feature-point based methods are popular for global
alignment, allowing for arbitrarily translations and rotations
[13, 26, 19, 34]. If multiple scans need to be aligned, the
transformations need to be consistent [8]. For the com-
bined task of global, non-rigid alignment of multiple scans,
feature-points are used as well [5]. In our work, we assume
the transformations to be small, i.e., we are only concerned
with the final step of the alignment and assume global align-
ment as a separate task.

A wide range of feature preserving smoothing tech-
niques exist, e.g. [18, 22, 12, 14] and generally use prior
assumptions to constrain the smoothing. The specific prop-
erties to differentiate noise from surface features either has
to be carefully picked and tuned or estimated from ground
truth data, like it has been done in Mesh Denoising via Cas-
caded Normal Regression (CNR) [31].

Our approach to feature preserving smoothing is simi-
lar to the deformation in the optimal step framework of [2],
but here we apply the technique to multi-way alignment. It
is also closely related to High Fidelity Scan Merging (HiFi)
[10] – in the sense that our approach shares the idea of com-
bining smoothing on the merged scans as well as on the par-
tial sub-scans. However, their approach does not explicitly
optimize an error function.

2.1. Contribution

Our method allows for feature-preserving smoothing of
multiple partial scans. When a mesh is reconstructed from
a set of sub-scans using a combinatorial method, i.e., a
method which preserves the input points as vertices of the
output mesh, information about the scanning process is re-
tained. As mentioned, any misalignment between the sub-
scans then manifests itself as high-frequency noise in the
output mesh. We propose to formulate feature preserving
smoothing after reconstruction on the output mesh as non-
rigid alignment. Feature preservation is based on the obser-
vation that the displacements due to smoothing should vary
smoothly over the sub-scans since the error that requires a
non-rigid alignment is assumed to result in a coherent de-
formation of the sub-scans.



(a) Scan direction 1 (b) Scan direction 2 (c) Scan direction 3 (d) Merged scans and global mesh

Figure 2: Three separate sub-scans from different viewing directions (a-c) with individual meshes resulting from 2D Delaunay
triangulation in the corresponding image plane. When combining all points (aligned with rigid ICP) into a global mesh the
non-rigid misalignment results in visual noise as seen in sub-figure (d)

Many methods for non-rigid alignment, e.g., [1, 6, 17,
23], address the case of aligning a single set of source points
to a target shape. In order to apply them to the case where
there are multiple scans, an incremental approach would be
necessary. However, this has the inherent drawback that
the result depends on the order in which the sub-scans are
added. This arbitrary choice would lead to accumulating
errors. Furthermore, it bears the peril of initializing with a
scan with particularly pronounced distortion.

Thus, our goal and main contribution is a method that
aligns all sub-scans jointly and symmetrically in order to
reduce high-frequency noise in the final mesh. We build
on the framework introduced in [2] and show how to apply
it to multiple scans jointly. Furthermore, we extend this
framework with an error function focused on denoising the
resulting output mesh with a regularization using the sub-
scan information. The resulting algorithm is able to correct
the misalignment of multiple scans comprised of millions
of points in only a few minutes.

3. Method

For non-rigid alignment, we are concerned with two
driving forces. We want to achieve proper alignment of the
positions of the points resulting in a smooth global mesh
when triangulated. Nevertheless, we also want to move the
points coherently, i.e., we likewise want the displacement
vector field during this process to be smooth. Intuitively the
procedure applies Laplacian smoothing to the final mesh,
but before actually moving the vertices, we smooth the re-
sulting displacements across the each sub-scan.

3.1. Continuous Energy

At the core of our approach lies the idea of reducing the
local variations measured by the Dirichlet energy on a do-
main ⌦ , which, in this context, are 2-manifolds embedded
in R3. For the two energies in non-rigid alignment, we have
two distinct domains. One being the manifold ⇥ given by
the surface of the scanned object, which is approximated
by the surface reconstruction step. This constructs a global
mesh of the merged scans. The other one, ⌅, is given by the

individual sub-scans and the triangulation of them.
Driving the alignment of the point cloud is a smoothing

process, which seeks to reduce the Dirichlet energy on the
global manifold ⇥

Ea[p] =

Z

⇥
krp(x)k2 dA , (1)

where function value p(x) is the position in the embedding
space. We are not interested in the actual minimum of this
energy, but rather take gradient steps

@

@p
Ea = �2�p (2)

to yield a smoother surface, giving the classical Laplacian
smoothing [28].

Our displacement energy then measures how close our
actual displacement d(x) is to a given target displacement
t(x), obtained from, but not limited to, the gradient men-
tioned above eq.(2).

Ed[t] =

Z

⇥
kd(x)� t(x)k2 dA . (3)

As mentioned earlier, we also want to enforce a coherent
movement of the points in each of the sub-scans in order
to limit distortion. To that end, we minimize the Dirichlet
energy of the displacement vector field t 2 R3 associated
with each point x on the k manifolds seen by each of the k
sub-scans

Ec[t] =
X

k

Z

⌅k

krd(x)k2 dA . (4)

Our combined energy is now simply a weighted sum of
the energies

Et = Ed + ↵Ec , (5)

and its gradient is

@

@d
Et = d(x)� t(x) + ↵

X

i

�⌅id(x) . (6)



3.2. Discrete Formulation

A triangulated surface S, with vertices V = {vi},
i = 1, . . . , N and edges E = {eij}, defines a graph
G = (V,E). The discrete Laplace operator on that graph
can be expressed as a matrix L such that

(Lu)i =
X

j

wij(ui � uj) , (7)

where ui is the value at vertex vi.There are multiple variants
of the discrete Laplace operator discerned by their weights
!ij [33]. We use the uniformly weighted Laplacian given
by !ij =

1
di

, where di is the degree of vertex i.
For the alignment of multiple surfaces Sk each corre-

sponding to one individual scan, we have disjoint edge sets
Ek. Indexing all points of all sub-scans jointly we can
gather the corresponding Laplacian operators in one matrix
L⌅. The edges are generated by a Delaunay triangulation
of the 2D positions in the image plane of each sub-scan.
We remove edges that are longer than ten times the average
edge length to avoid separate pieces of the scanned surface
to be dependent on each other.The discrete formulation of
eq. (5)

Et = kD � Tk2 + ↵kM⌅Dk2 , (8)

where M⌅ is the incidence matrix with respect to the sub-
scans. The gradient is then expressed as

rEt = D � T + ↵MT
⌅M⌅D (9)

= D � T + ↵L⌅D , (10)

where T 2 RN⇥3 is the matrix of target displacements,
and D 2 RN⇥3 the displacements actually applied after
optimization, akin to [2] but formulated for the multi-way
alignment case. The second equality in eq.(9) only holds
for the unweighted discrete Laplacian.

After applying the calculated translations D, the target
displacements change with the updated positions. For that
reason we repeat this process for a fixed, small number of it-
erations or until the smallest eigenvalues of the local covari-
ance matrices (see Figure 8a) fall below a certain threshold,
which is a parameter to our algorithm.

If we were to do simple gradient descent, starting with
an initial guess of using the target displacements, i.e., D0 =
T , we would obtain a gradient equal to ↵L⌅T + 2T and a
resulting translation of

T1 = 3T + ↵L⌅T (11)

This effectively defines a smoothing process of the target
translations over the individual sub scans. Although we
used a conjugate gradient solver in practice, it can thus
be seen that the non-rigid alignment is conceptually just
smoothing the displacements, resulting from a smoothing
operator, with respect to the proximity in the sub-scans.

3.3. Target Displacements

As input to the optimization framework, we need a target
displacement T . As our goal is denoising, we evaluate dis-
placement vector fields generated by smoothing operators
for meshes as well as point clouds.

GLP Graph-Laplacian smoothing only uses the connectiv-
ity information of the mesh discarding any spatial in-
formation. As a simple approximation to the Laplace-
Beltrami operator, it is the natural choice to approxi-
mate eq (1) in case a global mesh is given.

MCM Mean Curvature Motion on point clouds [11], is
computationally more demanding as it fits a total least
squares (TLS) regression plane to the neighborhood
around each point and projects the point onto it. The
plane passes through the centroid of the k-nearest
neighbors and its normal points in the direction of least
variance.

Centroid Instead of estimating a regression plane, sim-
ply moving each point to the centroid of the k-nearest
neighbors directly is another way to induce a dis-
placement vector field. It also relates to the Graph-
Laplacian, but instead of using the edges of a mesh as
edges in the graph, the edges connect to the k-nearest
neighbors around each point.

P2P The classical point-to-point correspondence [3] is es-
sentially equivalent to the centroid of the k-nearest
neighbors, where k = 1. Although some additional
heuristics have been incorporated to reject false or mis-
leading correspondences [25]. For non-rigid align-
ment, it is not well-suited as it lumps points together
(see Figure 6a), but it is included for completeness.

P2Pl Point-to-plane (P2Pl) [7] correspondence is widely
used for ICP. It is similar to MCM in that it also re-
stricts the displacements to the normal directions. Fur-
thermore, the standard way of normal estimation via
Eigen decomposition of the covariance matrix is equiv-
alent to TLS regression [20]. The only difference is the
point the regression plane passes through, which in the
case of P2Pl is the centroid of the k-nearest neighbors
with k = 1, and not n.

4. Results and Comparison

We evaluated our method on a set of four different scans
depicted in Figure 3. The famous Stanford Bunny was taken
from the The Stanford 3D Scanning Repository [29]. The
three other models (Owl, Facade, and Skull) were scanned
with a structured light scanner while placed on a turntable
to obtain pre-aligned sub-scans.



In Figure 3 each of the sub-scans is shown in a distinct
color. All of the scans show substantial non-rigid misalign-
ment, albeit being carefully calibrated. This becomes ob-
vious in the top row showing the combined sub-scans after
rigid alignment via ICP. The bottom row shows our non-
rigid alignment process based on the Graph-Laplacian sub-
stantially reduces the error for all models. In case of the
Skull, the inside of the nose has only been scanned from a
single direction. This is visible as an orange patch before
and after the non-rigid alignment.

Figure 4 and the top row of 5 show that the non-rigid
alignment error is substantially reduced. Laplacian smooth-
ing [21] alone introduces far more blurriness before the
high-frequency noise caused by the misalignment vanishes
as shown in the bottom row of 5. It also becomes appar-
ent that Bilateral mesh denoising [12] models the high level
of noise as features and even after 50 iterations taking 48
minutes cannot fully remove the misalignment noise. High
Fidelity Scan Merging (HiFi) [10] is able to align the sub-
scans well, taking 390 seconds for five iterations, resulting
in less remaining noise. However, it still is not able to align
the sub-scans as well as ours, and a more visible pattern can
be seen in Figure 7 indicating larger deviations in between
the sub-scans. The final image in Figure 4 shows the result
of Cascaded Normal Regression (CNR) [31]. There is also
some remaining misalignment visible after 412 seconds of
processing, as the misalignment noise gets transformed to
lower frequencies, resulting in vertical streaks. It should
also be noted that using point to plane (P2Pl) displacements
boils down to the method proposed in [2].

Table 1 lists timing for the alignment on the different
models. A Intel R� Xeon R� E5-2660v3 CPU with 10 cores
was used during processing. The adjacency matrix for the
sub-scans had to be assembled for all approaches in order to
compute L⌅. This adds a pre-processing time listed in the
fourth column of 1 to all variants. The meshing step is of
course only mandatory for the GLP displacements. We use
the implementation of the Co3Ne algorithm [4] available in
Geogram [16]. Timings for reconstructing the global mesh
are listed in the fifth column. All of the variants for gener-
ating the displacement vector fields, except for P2P which
produces lumped points, reduce the misalignment. A clear
advantage of the GLP based approach is a substantial reduc-
tion in computation time.

The same set of parameters is employed for all models
shown in Figure 3. We use the 16 nearest neighbors for
computing the MCM, as well as for the centroid. P2P and
P2Pl use an upper bound on the euclidean distance of 18-
times the average closest point distance. Running ten itera-
tions with a stiffness factor ↵ between 15 and 30 gave good
results on all models.

In contrast to the other approaches for calculating the
displacements, GLP does not require to recompute the

neighborhood relation in each iteration. Furthermore, using
the uniform Graph-Laplacian alleviates us from recomput-
ing the weights in each iteration. For P2P and Centroid, it
is necessary to update the kD-tree used for nearest neigh-
bors search adding computation time. When using MCM
or P2Pl, an additional Eigen decomposition has to be com-
puted for each point. These factors accumulate to 20% to
60% reduced iteration time for GLP compared to the other
methods.

Although the setting and the data is different in [23] as
they are concerned with aligning a single scan to a template
and the data is not publicly available, our implementation
in Python achieves timings on the same order. Compar-
ing, for instance, their results for aligning a point cloud of
8.7 million points in 221 seconds with the 279 seconds for
our Skull model with 7.2 million points. The more related
case discussed in [6] of aligning the 1406 scans of the The
Digital Michelangelo Project containing 28 million vertices
took 1.5 hours on a cluster of 60 nodes.

One thing to note is that when a global mesh is initially
given, using the GLP displacements is not only faster but
also avoids folding triangles as can be seen in Figure 6. It
inherits the mesh fairing properties of the Graph-Laplacian
[21] and is the only approach of the ones evaluated that di-
rectly results in a proper mesh.

Figure 8 gives a quantitative comparison between the
classical energy terms based on Point to Point (P2P) and
Point to Plane (P2Pl), the proposed methods Centroid,
Mean Curvature Motion (MCM), Graph Laplacian (GLP),
and simple Laplacian smoothing. Figure 8a shows the qual-
ity of the alignment measured by the smallest eigenvalue of
the local covariance matrix of the merged points. All meth-
ods show a similar result indicating a successful reduction
in noise. Laplacian smoothing shows the most rapid de-
crease as the is no regularizing term. The Dirichlet energy
in Figure 8b is computed with respect to the global mesh.
For the Point to Point based method this energy term no-
tably increases after an initial decline as a result of drastic
tangential drift of the points. The method is oblivious to the
mesh as correspondences are only based on proximity. On
the other hand, the Graph Laplacian is explicitly account-
ing for this and thereby able to reduce the energy beyond
the other regularized methods.

5. Discussion

In this paper, we proposed a method bridging non-rigid
registration of partial scans and feature preserving mesh de-
noising. While coherent displacements preserve features
much better, it is still effective at removing the noise due
to alignment errors.

We have compared several procedures for computing the
displacements that drive the smoothing process, and we find
that the Laplacians tend to give the best quality, yet also the



Table 1: Processing times for setup & 10 iterations of the alignment process in seconds for the models shown in 3.

Preprocessing Alignment

#Scans #Points Adjacency Meshing MCM GLP Centr. P2P P2Pl

Bunny 10 362k 3.32 2.36 28.47 15.40 24.00 19.27 28.38
Owl 3 692k 15.73 7.47 71.49 27.89 58.92 55.25 69.87
Facade 3 3.8M 77.43 40.53 284.77 150.77 229.08 189.83 262.76
Skull 18 7.2M 40.50 58.53 566.59 279.00 443.95 378.18 526.25

Figure 3: Color coded triangulation of the sub-scans
aligned with rigid ICP (top row), and non-rigid ICP with
Graph-Laplacian (GLP) based displacements (bottom row).

best run-time performance.
Our work relies on two essential assumptions. The first

of these is that we already have a rigid alignment. The
energies we minimize are very local and cannot establish
correspondences between points far apart. Fortunately, it
appears that modern methods for rigid alignment [24, 32]
make this assumption reasonably easy to justify. Our sec-
ond assumption, in case of the GLP based energy, is that
we have triangle mesh connectivities for both the combined
point cloud and for each sub-scan. Fortunately, the partial
scans can generally be triangulated using 2D Delaunay tri-
angulation in the image plane, and several combinatorial re-
construction algorithms are available for reconstruction of
mesh connectivity from the combined point cloud, e.g., [4].

If these assumptions are met, our post-reconstruction
non-rigid alignment procedure can be applied. Compared
to merely smoothing out the noise due to misalignment or
(almost equivalently) performing a volumetric reconstruc-
tion, the benefit is that we are able to preserve features more
accurately. We see the utility of our method predominantly
as the last step in the pipeline – somewhat unusually – after
meshing of the points.

When comparing to the two related classes of algo-
rithms, i.e., feature-preserving mesh denoising and non-
rigid alignment, we arrive at the best of both worlds. Non-
rigid alignment operates on point clouds, ignoring the mesh

connectivity. Feature-preserving denoising uses the topol-
ogy information of the mesh, but ignores the knowledge
about the scanning process. Our method uses the fact that
we want each input scan to deform almost rigidly as an in-
formal prior, turning an approach for non-rigid registration
into feature preserving smoothing. It also should be noted
that more sophisticated smoothing algorithms are straight-
forward to include in our framework. In summary, by using
both sources of information, we obtain superior results in
the frequent scenario of creating high fidelity meshes from
scanned data.
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