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Abstract

Camera calibration methods usually consist of capturing
images of known calibration patterns and using the detected
correspondences to optimize the parameters of the assumed
camera model. A meaningful evaluation of these methods
relies on the availability of realistic synthetic data. In pre-
vious works concerned with conventional cameras the syn-
thetic data was mainly created by rendering perfect images
with a pinhole camera and subsequently adding distortions
and aberrations to the renderings and correspondences ac-
cording to the assumed camera model. This method can
bias the evaluation since not every camera perfectly com-
plies with an assumed model. Furthermore, in the field of
plenoptic camera calibration there is no synthetic ground
truth data available at all. We address these problems by
proposing a method based on backward ray tracing to cre-
ate realistic ground truth data that can be used for an un-
biased evaluation of calibration methods for both types of
cameras.

1. Introduction

The most commonly used camera calibration procedure
consists of three steps: i) capturing images of calibration
patterns, ii) detection of the patterns, i.e. points of inter-
est in the images belonging to the calibration pattern, and
iii) using the correspondences to optimize the parameters of
the assumed mathematical camera model. In order to evalu-
ate single parts of this pipeline, synthetic calibration pattern
renderings with known correspondences can be beneficial
in two ways. Firstly, the quality of the pattern detection
method can be assessed by comparing the detector results
on the renderings to the ground truth positions, and sec-
ondly, the optimization as well as the camera model can be
evaluated using the ground truth correspondences without
depending on a possibly biased pattern detector. However,
the validity of such an evaluation depends on the quality of
the ground truth data, i.e. its ability to reflect real data.

Figure 1. Schematics of a plenoptic camera as introduced by Adel-
son and Wang [4] and Lumsdaine and Georgiev [5] based on the
ideas of Lippmann [6]. The red and green cones indicate the areas
visible from the corresponding pixels.

For conventional cameras the synthetic image generation is
usually done by first rendering the calibration pattern from
the perspective of a simple pinhole camera model so that
the correspondences are easy to calculate. Afterwards the
images and correspondences are then distorted according to
the assumed camera model (see e.g. [1][2][3]). This pro-
cedure poses the problem, that the generated data is not re-
flecting a real camera, but a virtual camera perfectly com-
plying with the assumed distortion model. Accordingly, in
a comparative evaluation of different calibration algorithms
those methods assuming the exact same camera model have
an advantage. Another problem is posed by the modeling of
de-focus and image degradation effects like vignetting. In
previous works these are either not modeled at all or sim-
ulated by adding Gaussian noise and blur to the perfectly
distorted images. In neither of these cases the resulting im-
ages are directly comparable to real data resulting from a
significantly more complex image formation process.
In the case of plenoptic cameras this imaging process is
even more complicated since an additional microlens array
(MLA) is placed between the main lens and the image sen-
sor (compare Fig. 1). This renders the standard pipeline of
creating perfect images and adding distortions and degrada-
tion afterwards infeasible since distortions of the main lens
affect the position and angle of a ray hitting the MLA and
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therefore have to be applied before the light rays enter the
microlenses.
We propose a pipeline to generate realistic renderings of
calibration patterns with ground truth correspondences, i.e.
the positions of the calibration patterns’ points of interest in
the form of 2D pixel coordinates as well as 3D world coor-
dinates. The key idea in generating these ground truth posi-
tions is to use ray tracing not only to render a realistic image
I of a calibration pattern, but also to render a position image
J whose pixels store positional information about the scene
points hit by the rays traced from the respective pixel. Since
the pose of the calibration pattern and thereby the 3D posi-
tions of its points of interest are exactly known, the search
for the ground truth positions within the rendering I is re-
duced to simply finding the pixel positions with the correct
positional information in the rendering J . Since a straight
forward implementation of this idea is computationally ex-
pensive, we also propose a second method in which a ray
in the scene space is calculated for every pixel, which is
then intersected with the desired calibration pattern model
to find the ground truth point positions. In summary, our
contributions are:

• An extension of the plenoptic camera model of [7] to
include multiple microlens types

• Two methods for calculating the ground truth positions
of the points of interest in the rendered images

• Publicly available implementations of the simulation
and ground truth creation methods1

Note, that while the descriptions throughout this work are
focused on plenoptic cameras, the whole pipeline is directly
applicable to conventional cameras. We simply choose
to describe the method for plenoptic cameras since these
present a more complex case and the research in this area is
in greater need of ground truth data as the standard approach
of distorting perfect renderings is not applicable here.

2. Related Work
Camera simulation in computer graphics: The idea of

using more realistic, physically-based lens models instead
of a perfect pinhole camera for synthesizing images via ray
tracing has first been explored by Potmesil and Chakravarty
[8] and was later refined by Kolb et al. [9] and Wu et al.
[10]. These models were further extended by Wu et al. [11]
regarding the use of spectral ray tracing to simulate certain
wave optics effects.
In contrast to these advanced methods for conventional
cameras, the simulation of plenoptic cameras is a less ex-
plored area. This type of camera has only gained interest
during the past decade due to the emergence of the first pro-
totypes by Ng et al. [12] and the commercial realizations

1https://gitlab.com/ungetym/plenoptic ground truth creator

by Lytro (no longer existing) and Raytrix [13]. Despite be-
coming a more active field of research, the simulation of
plenoptic cameras in most publications concerned with us-
ing synthetic images is rather rudimentary. Fleischmann et
al. [14] render images without any main lens and Zhang et
al. [15] as well as Liang et al. [16] use a simplified thin main
lens model. Accordingly, the synthesized images do not
show the distortion and image degradation effects present
in real data. Further works by Liu et al. [17] and Li et al.
[18] based on ray splitting require an unrealistic large dis-
tance between the camera and the scene objects as well as
simple scene materials. More recently, Michels et al. [7]
proposed to fully model a plenoptic camera’s components
and presented an implementation for Blender [19]. Despite
wave optic effects and multiple microlens types not being
simulated in this approach, we decided to base our method
on it due to its availability and extensibility.
Evaluation of pattern detectors: While previous works on
the calibration of plenoptic cameras use either manually la-
beled data [20] or evaluate the detection and calibration as a
combined system relying on precise real life measurements
[21][22], approaches for conventional cameras have been
evaluated with synthetic data for a broad variety of differ-
ent patterns over the past decades. Luccese and Mitra [3]
use projective warping and Gaussian blur on checkerboard
images and Zhang [1] renders square pattern images assum-
ing a pinhole camera with non-zero skew and also applies
Gaussian blur. Heikkila [2] employs ray tracing and addi-
tional Gaussian noise as well as blur, but uses exactly the
same camera model for rendering the point patterns as for
the calibration. Ha et al. [23] render sharp single triangle
pattern corners for a perspective camera and add different
levels of Gaussian noise and blur afterwards.
In summary, there is no previous work for the calibration
of plenoptic cameras featuring synthetic data and the work
dealing with conventional cameras uses simplified or ideal
models to generate synthetic data.

3. Organization

Sections 4.1 to 4.3 describe the extended camera model
for ray tracing and our general approaches for creating the
ground truth positions. Subsequently, some insights regard-
ing the usefulness of the direct approach via forward ray
tracing are provided in section 4.4. Finally, in section 5.1
the realization for Blender is explained and the remaining
sections are devoted to the evaluation of our approach.

4. Method

The ray tracing approach presented in [7] is capable of
producing realistic images for plenoptic cameras with one
microlens type and by deactivating the MLA it can also be
used to simulate conventional cameras within the bounds of

https://gitlab.com/ungetym/plenoptic_ground_truth_creator


Figure 2. Schematics of the plenoptic camera model for ray trac-
ing. While the objective’s lenses are fully modeled, the MLA is
approximated by two planes with recalculated normals and the
sensor is simulated by a combination of an orthographic camera
and a diffusor plane.

ray tracing, i.e. without wave optical effects. Nevertheless,
instead of directly using this simulation for our positional
rendering approach, we first extend the camera model in
order to also be able represent multifocus plenoptic cameras
as distributed by Raytrix [24].

4.1. Simulation of Plenoptic Cameras

The basic setup of the camera model is given in Fig. 2.
As described in [7], the objective’s lenses are explicitly
modeled and the refraction at their surfaces is smoothed
by recalculating the surface normals in order to avoid im-
age artifacts resulting from the polygonal surface structure.
The sensor is modeled by combining an orthographic cam-
era with a diffusor plane which randomly refracts the rays
traced from the orthographic camera within a specified an-
gle distribution. This simulates a real pixel’s field of view
(FOV) and its response to light rays with different angles of
incidence. Accordingly, the diffusor plane can be thought
of as the location of the sensor.
The last component, the MLA, is designed as a simple two
plane model by exploiting the lensmaker’s equation for a
thin lens with index of refraction (IOR) η and focal length
f , given by

1

f
≈ (η − 1)

(
1

R1
− 1

R2

)
, (1)

where R1 and R2 describe the front and back surface cur-
vature radii. For a flat back surface, given by R2 = ∞,
it follows f ≈ R1/(η − 1) and since a large radius R1

leads to the front surface locally nearly being a plane, the
microlenses can be constructed by using a two plane model
with large IOR η and recalculated surface normals. We ex-
tend this part of the model to feature differently focused
microlenses on the same MLA as shown in Fig. 3 by setting
different values for R1 depending on the coordinates of a
microlens in the hexagonal grid. Since to our knowledge the
Raytrix cameras are the only commercially available multi

Figure 3. Rendering of a checkerboard with three differently fo-
cused microlens types overlaid with the hexagonal MLA layout.
The black tuples are the coordinates of the center points with re-
spect to the visualized base and the colored numbers indicate the
lens type.

focus plenoptic cameras, we describe the extension for a
setup with three microlens types as used by Raytrix. This
model, however, can easily be modified to feature different
configurations.
For the three microlens setup the type t ∈ {0, 1, 2} of a mi-
crolens with center coordinates (i, j) in the hexagonal grid
is given by t = (i − j)%3 as visualized in Fig. 3. In or-
der to match the setup of a Raytrix camera, the three focal
lengthsRt1 have to be chosen carefully with two restrictions
in mind. First, all focal lengths should be larger than the
distance between the MLA and the sensor plane since the
MLA in Raytrix cameras is placed between the main lens
and the virtual image of the scene, thus the microlenses col-
lect converging light rays (compare Fig. 1). And second, the
depth of field (DoF) of the three lens types should slightly
overlap to create a connected combined DoF without focus
gaps [24].
The described model can now be used to render realistic im-
ages of calibration patterns (or arbitrary scenes) for various
plenoptic as well as conventional camera setups, where the
camera type can be switched by (de)activating the MLA and
modifying the parameters and positioning of the sensor and
MLA. Note, that for the sake of simplicity, the illustrations
in the remaining sections will contain the schematics of a
real plenoptic camera instead of the model described here.

4.2. Rendering Positional Information

Since the pattern position and orientation are exactly
known for the rendering, we can assume to have a set
{pk}k=1,··· ,n ⊂ R3 of locations of the n relevant pattern
points, e.g. the n = 28 corners of a 4 × 7 checkerboard.
In order to use this information for finding the ground truth
pixel positions of the calibration pattern points in the im-
ages rendered with the previously described setup, the same
model is used to render positional information via ray trac-
ing. In the usual backward ray tracing pipeline, for ev-
ery pixel (i, j) a set of rays R(i,j) is traced through the



Figure 4. Positional rendering visualized: The right image shows a section of the rendering I containing the pixel (i, j) and the schematics
in the middle visualize the bundle of rays traced from (i, j) and its intersection with the calibration pattern object. On the left the set of
scene points hit by the rays, {p(r) : r ∈ R

(i,j)
hit }, is shown in red. Despite the calibration pattern not being in focus of the microlens, the

pixel’s positional information, J(i, j), can be calculated as the mean of the set of points, shown in blue.

camera into the scene and the colors of the scene points
hit by the rays are accumulated which will be shortly for-
malized in the following. Let p(r) ∈ R3 denote the first
scene point hit by the ray r ∈ R(i,j) and split the set of
rays into two disjoint sets R(i,j) = R

(i,j)
blocked ∪̇ R

(i,j)
hit with

R
(i,j)
blocked containing the rays not leaving the camera due to

being blocked by the aperture or camera housing and R(i,j)
hit

denoting the set of rays intersecting scene objects, whereby
every ray leaving the camera is assumed to be inR(i,j)

hit . The
color of a pixel (i, j) in the calibration pattern rendering
I : {0, · · · , width} × {0, · · · , height} → {0, · · · , 255}3
is then given by

I(i, j) =
1

|R(i,j)|
∑

r∈R(i,j)

c(p(r))

=
1

|R(i,j)|
∑

r∈R(i,j)
hit

c(p(r)), (2)

where c(p(r)) describes the color of the 3D point hit by
ray r and rays in R(i,j)

blocked are not assumed to add non-zero
color information. We would like to remark, that the color
c(p(r)) can be the result of further ray tracing calculations
depending on the scene objects’ reflectivity and transmis-
sion properties. However, for the task at hand only the first
scene point hit by a ray, p(r), is considered.
For the positional rendering the same procedure is used, but
instead of the color values c(p(r)) the positions p(r) are
accumulated and averaged, i.e. the value of the positional
rendering J : {0, · · · , width} × {0, · · · , height} → R3 at
pixel position (i, j) is given by

J(i, j) =
1∣∣∣R(i,j)
hit

∣∣∣
∑

r∈R(i,j)
hit

p(r), (3)

as visualized in Fig. 4. Note, that the pixel value is normal-
ized by

∣∣∣R(i,j)
hit

∣∣∣ instead of |R(i,j)| as in Equation 2 since we
are interested in the average scene point hit by the rays un-
biased by vignetting, i.e. the amount of blocked rays.

Despite knowing the average scene position J(i, j) a cam-
era pixel (i, j) is seeing, the known 3D calibration point
positions {pk} can most likely not directly be found in
the positional rendering due to J maximally containing
width× height 3D positions of the continuous calibration
pattern plane. The naive solution to this problem is search-
ing for pixels at which the value of J is close to a position
{pk}, i.e. for every pk we search for

(̂ı, ̂) = argmin
(i,j)
||pk − J(i, j)|| (4)

and accept the solution (̂ı, ̂), if the distance for this position
is within a certain threshold, ||pk − J (̂ı, ̂)|| < λ for some
λ > 0. This procedure, however, does not work for plenop-
tic images since these can contain a scene point multiple
times in different microlens images as shown in Fig. 1 and
Fig. 3. Fortunately, the MLA configuration is known and
therefore the image J can be splitted into microlens images
J1, · · · , Jm, each containing only the rendered information
for exactly one microlens. In these images the search can
then independently be performed.
This naive solution for finding the ground truth pixel posi-
tions has the obvious drawback of a limited accuracy. The
solution is only accurate within ±0.5px and if the number
of samples, i.e. rays per pixel, is not sufficient, the found
pixel (̂ı, ̂) might even be an outlier due to J (̂ı, ̂) containing
a wrong position. This accuracy problem will be tackled in
the following by rendering J with a higher resolution than
I , filtering out unreliable results and finally using interpola-
tion near the filtered pixel positions. First, one can observe,
that for a sufficiently large number of samples per pixel, the
values of small neighborhoods in J form an equidistant grid
on the calibration pattern plane as visualized in Fig. 5. This
observation is used as a constraint for filtering the point can-
didates.
Assume J was rendered with a resolution ofK ·width×K ·
height, K ∈ N and let (̂ı, ̂) a pixel such that some corner
position pk is located in the polygon given by J (̂ı, ̂), J (̂ı+
1, ̂), J (̂ı, ̂+ 1) and J (̂ı+ 1, ̂+ 1) as shown in Fig. 5 and
without loss of generality let J (̂ı, ̂) be the closest of the



Figure 5. The values of J in a neighborhood of (i, j) approxi-
mately form a grid on the calibration pattern plane. This visual-
ization shows the effect that the number of rays has on the grid
structure. The positional images J used here were calculated with
642 (top) and 2562 (bottom) samples per pixel.

four corners to pk. In order to allow the interpolation of the
pixel position within these coordinates, we first check, if the
neighborhood N := {(̂ı + a, ̂ + b) : −1 ≤ a ≤ 2,−1 ≤
b ≤ 2} approximately forms an equidistant grid. To this
end, the average distances between the values of vertical
and horizontal neighbors,

dvert =
1

12

∑
(i,j)∈N |b<2

||J(i, j)− J(i, j + 1)|| and (5)

dhoriz =
1

12

∑
(i,j)∈N |a<2

||J(i, j)− J(i+ 1, j)||, (6)

are calculated and then used to define the first constraint∣∣∣∣1− ||J(i, j)− J(i, j + 1)||
dvert

∣∣∣∣ < λd (7)

for all (i, j) ∈ N |b<2 and a threshold λd ∈ (0, 1) and anal-
ogously ∣∣∣∣1− ||J(i, j)− J(i+ 1, j)||

dhoriz

∣∣∣∣ < λd (8)

for all (i, j) ∈ N |a<2. In this length constraint λd describes
the maximal relative deviation which simply enforces that
the lengths of horizontal and vertical lines in the grid do not
deviate too much from the respective average. A similar
constraint is calculated for the angles of grid connections,
i.e. the average angle

α =
1

9

∑
(i,j)∈N |a<2,b<2

α(i,j) (9)

with α(i,j) := ∠(J(i, j), J(i + 1, j), J(i, j + 1)) is calcu-
lated and the respective constraint is formulated as

∀(i, j) ∈ N |a<2,b<2 : |α(i,j) − α| < λα (10)

for a threshold λα ∈ (0, π). If both constraints hold for the
neighborhood of (̂ı, ̂), the ground truth pixel position (̃ı, ̃)
in I is interpolated via

(̃ı, ̃) =
1

K
((̂ı, ̂) + s · (1, 0) + t · (0, 1)) (11)

where s and t are the solution of the linear equation

pk = J (̂ı, ̂) + s(J (̂ı+ 1, ̂)− J (̂ı, ̂))
+ t(J (̂ı, ̂+ 1)− J (̂ı, ̂)) (12)

and 1
K is used to rescale the pixel position to the size of

I . Note, that the solution (s, t) exists and does not require
numerical approximations since all values of J as well as
the point pk are located on the same plane.

4.3. Calculating Pixel Rays

A major disadvantage of the approach described in the
previous section is, that it requires one additional image to
be rendered for every calibration pattern position. Espe-
cially for a large resolution scaling factor K and large sam-
ple numbers this is inefficient considering that the camera
setup usually does not change during the creation of one
dataset and therefore the exact same rays are traced through
the camera into the scene for every positional rendering. To
circumvent this redundancy, we propose the rendering of
only two positional images per camera setup - the first one,
Jnear, for a plane located at the start of the cameras DoF
and another one, Jfar, for a plane at the DoF’s end. For



Figure 6. Two plane approach: The colored planes are used to
create positional renderings Jnear and Jfar and the positional in-
formation J(i, j) for a pixel (i, j) is then given by the intersection
of the calibration pattern object and the ray defined by Jnear(i, j)
and Jfar(i, j).

every pixel (i, j) the 3D points Jnear(i, j) and Jfar(i, j)
define a ray in the scene space (compare Fig. 6) similar to
the often used two-plane parametrization of the plenoptic
function. Given the rendering of a calibration pattern I as
before, the corresponding positional image J , as defined in
the previous chapter, can be calculated by intersecting the
pattern plane and the pixel rays, i.e.

J(i, j) = Jnear(i, j) + t · (Jfar(i, j)− Jnear(i, j)) (13)

with t =
< q − Jnear(i, j), n >

< Jfar(i, j)− Jnear(i, j), n >
(14)

where q is an arbitrary point of the calibration pattern plane
and n denotes its normal.
This method for calculating the positional image J requires
only two positional renderings per camera setup instead of
one rendering per calibration pattern image I .

4.4. How-Not-To: Forward Ray Tracing

Instead of rendering whole positional images using com-
putationally expensive backward ray tracing with large
numbers of samples, one might wonder why we do not sim-
ply use forward ray tracing, i.e. tracing rays from the known
positions {pk} to the sensor. This idea is appealing since the
number of required rays would be heavily reduced. How-
ever, this approach only works for scene points that are ei-
ther in focus or create a perfect circle of confusion on the
sensor. In the former case, the rays all hit exactly one sin-
gle pixel on the sensor (for a plenoptic camera with one
microlens type, they might hit unique pixels in different mi-
crolens images) and for the latter one can simply take the
center of the circle of confusion as the ground truth posi-
tion. By treating the sensor as a continuous plane instead of
discretizing it into pixels during the ray tracing, even sub-
pixel accuracy could be reached. However, the shape of the
area of confusion can vary heavily depending on the op-
tical system used for the imaging and it is unclear, which
point could be regarded as ground truth position for arbi-
trary shapes which in addition can be split over multiple

microlens images.
Nevertheless, the forward ray tracing could be used to deter-
mine the areas of the sensor which should be rendered via
backward ray tracing. After rendering a calibration pattern
image I , the positions {pk} could be traced to the contin-
uous sensor plane and after choosing the resolution of J ,
these sensor areas could be discretized into a set of pixels
which are subsequently used for the positional rendering.

5. Evaluation
5.1. Realization in Blender

In order to evaluate our approach, first the model of [7]
for Blender 2.79c was extended by modifying the MLA ma-
terials to support up to three configurable microlens types
as described in section 4.1. With this setup, a calibration
pattern rendering I can easily be created. A corresponding
positional image J , however can not directly be rendered
since the Cycles renderer does not provide the functionality
to only accumulate rays hitting the scene. However, giv-
ing the calibration pattern plane a material that emits posi-
tional information, i.e. c(p(r)) = p(r), and everything else
a purely black material results in a rendering Ĵ with

Ĵ(i, j) =
1∣∣R(i,j)
∣∣
( ∑
r∈R(i,j)

hit

p(r) +
∑

r∈R(i,j)
blocked

p(r)

︸ ︷︷ ︸
=0

)
(15)

which differs from J (see Equation 3) only by the factor
|R(i,j)hit |/|R(i,j)| describing the ratio of rays hitting the
calibration pattern. This factor can be calculated by ren-
dering an additional single channel image Jwhite for which
the calibration pattern plane emits a purely white material
and everything else remains black, i.e. c(p(r)) = 1.0 if
r ∈ R

(i,j)
hit and c(p(r)) = 0.0 otherwise. The resulting

image Jwhite then contains the desired factor,

Jwhite(i, j) =
1∣∣R(i,j)
∣∣
( ∑

r∈R(i,j)
hit

1

︸ ︷︷ ︸
=|R(i,j)hit |

+
∑

r∈R(i,j)
blocked

0

︸ ︷︷ ︸
=0

)
(16)

and accordingly J(i, j) can be calculated by dividing the
three channels of Ĵ(i, j) by Jwhite(i, j).
Unfortunately, this procedure requires a lot of redundant
ray tracing since the same rays are traced into the scene
for Ĵ as for Jwhite. Fortunately, a set point p ∈ R3 on a
plane parameterized by a + u · b + v · c with a, b, c ∈ R3

is uniquely determined by the parameters (up, vp) with
a + up · b + vp · c = p. Thus the rendering of UV coor-
dinates suffices to reconstruct the corresponding 3D point
on the plane. Consequently only two channels are needed
to save the positional information and the third channel of Ĵ



Figure 7. Method 1: Accuracy of interpolated corners for different numbers of samples and different scalings of J . For every combination
of a scaling factor and a number of samples the resulting corners were compared to the reference solution rendered with K = 10 and
102400 samples. The average difference and standard error of mean (SEM) in terms of pixels are shown by the colored bars. Furthermore,
the black dots show the ratio of detected corners corresponding to the respective colored bars.

can be used to store the ray proportion Jwhite. Analogous
to the previous normalization, the positional image in terms
of UV coordinates, JUV is given by dividing the first two
channels of Ĵ by its third channel. The search for ground
truth positions can then be performed by transferring {pk}
into UV coordinates and searching these in JUV .
For the second method the reparametrization of the planes is
not necessary. Placing the two planes parallel to the worlds
coordinate axes results in the points of the same plane hav-
ing one fixed coordinate. This fixed coordinate can be saved
in a small configuration file instead of the image channels of
Jnear and Jfar, thus the freed channel in these images can
again be used to save the ray proportion Jwhite. The final
positional rendering Jnear and Jfar are then calculated by
dividing the two positional channels by the ray proportion
channel and subsequently replacing the latter by the exter-
nally saved fixed coordinate.

5.2. Number of Samples and Resolution

In order to assess the dependency of the resulting ac-
curacy on the number of samples and the positional im-
age resolution, we used a plenoptic camera setup with a
double Gaussian 100mm objective, an MLA-to-sensor dis-
tance of 1.7mm, an MLA-to-main lens distance of 123.3mm
and focal lengths of 1.9mm, 2.1mm and 2.3mm for the
microlenses. The MLA as well as sensor have a size of
21.73mm × 21.73mm and the MLA contains approxi-
mately 100×115 microlenses whereby the larger number of
microlenses in the vertical is a result of the hexagonal order-
ing of the lenses. Furthermore, the thresholds for the con-
straints given in section 4.2 have been empirically chosen

as λd = 0.15 and λα = 10◦. We would like to remark, that
further tests confirmed, that the general conclusions of the
following evaluation also hold for different threshold values
as these mainly regulate the number of positional outliers.
With this setup we rendered multiple images showing a
checkerboard located at different depths with varying an-
gles. For these images we applied our first approach for
different combinations of sample numbers and resolutions.
The results are presented in Fig. 7 where the mean and SEM
of the differences between the determined pixel positions
and the reference positions is shown. These results show,
that increasing the scaling factor K significantly decreases
the error and variance while the number of detected cor-
ners significantly improves. In contrast to this observation,
the number of samples seems to have only a limited impact
in the tested range. The results rendered with 3202 samples
show an average improvement of 0.0028 px for the pixel po-
sitions and 1.6% for the ratio of detected corners, compared
to the results produced with 1282 samples. Only positional
images J rendered with significantly fewer samples seem to
suffer from an imprecision caused by the low sample rate as
the results produced with 642 samples suggest.

5.3. Comparison of the two Methods

The same combinations of sample numbers and resolu-
tions shown in Fig. 7 were also used to evaluate the dif-
ferences between the two proposed approaches. As Fig. 8
shows, the convergence behavior of the two plane approach
with respect to the reference from the previous section is
identical to that of the first method and the means of both
methods only deviate from each other by less than less



Figure 8. Method 2: Accuracy of corners calculated via the two plane method. The resulting corners were compared to the same reference
solution as in Fig. 7. The average difference and SEM in terms of pixels are shown by the colored bars and the black squares show the
absolute difference between the means of both methods for the respective combination of K and number of samples.

than 0.016 px. The remaining fluctuations between the two
methods, which show no clear winner in regards of accu-
racy, are a result of two aspects. Firstly, the two plane
method has the disadvantage of additional intersection cal-
culations which can introduce further precision errors, es-
pecially since the ray tracing is usually done on GPUs with
only single precision. And second, small positional errors
can have different effects in both methods. While this er-
ror is located directly on the calibration pattern plane for
the first method, the impact of a positional error in the two
plane method varies with the pose of the calibration pattern
since the error is located on the near or far plane.
However, since the difference in accuracy is negligible for a
sufficiently large number of samples, the two plane method
is recommended due to the significantly smaller render
time. In our experiments we used two Nvidia Titan X and
with that setup, the rendering of an image I or J with a reso-
lution ofwidth×height pixel and n samples per pixel took
approximately t ≈ width · height ·n · 10−11 minutes. Fur-
thermore, the time needed for searching the positions {pk},
including the calculation of J from Jnear and Jfar in the
second method, is in both cases by several orders of magni-
tude smaller than the rendering time. Accordingly, the two
plane method is significantly faster for every dataset con-
sisting of more than two images per camera setup.

5.4. Conclusion and Limitations

The proposed methods are able to produce highly
accurate, realistic data for the evaluation of calibration
methods and a wide range of cameras. However, they are
limited regarding the geometry of the calibration object.

Throughout this work, it is assumed that the calibration
pattern is placed on a plane, which excludes calibration
objects, like checkerboard cubes, featuring a three dimen-
sional structure. If the scene points {p(r)} that are hit
by the rays r ∈ R(i,j) traced from the pixel (i, j) are not
located on a common plane, the calculation of J(i, j) via
simple averaging as described in Equation 3 is incorrect. To
a limited extent this problem might be avoidable by using
the two plane method. However, it remains to be analyzed
whether the intersection of a more complex scene and the
mean ray of a pixel can be used in the same manner as in
this work.
Another problem of geometrical nature results from the
proposed method for filtering outliers, where it is assumed,
that a small neighborhood of pixels is projected to a grid on
the calibration pattern plane as shown in Fig. 5. While this
assumption holds true for most common camera setups, it is
theoretically possible for an optical system to contain high
frequency distortions which deform the grids even in the
smallest neighborhoods. In this case it is recommended to
skip the filter and simply render J or the two proxy planes
with a significantly larger resolution such that the solution
of the naive approach given by Equation 4 is sufficiently
accurate.
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