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Figure 1: Overview of our model which uses joint multimodal space of language and pose to generate an animation condi-

tioned on the input sentence.

Abstract

Generating animations from natural language sentences
finds its applications in a a number of domains such as
movie script visualization, virtual human animation and,
robot motion planning. These sentences can describe differ-
ent kinds of actions, speeds and direction of these actions,
and possibly a target destination. The core modeling chal-
lenge in this language-to-pose application is how to map
linguistic concepts to motion animations.

In this paper, we address this multimodal problem by in-
troducing a neural architecture called Joint Language-to-
Pose (or JL2P), which learns a joint embedding of language
and pose. This joint embedding space is learned end-to-
end using a curriculum learning approach which empha-
sizes shorter and easier sequences first before moving to
longer and harder ones. We evaluate our proposed model
on a publicly available corpus of 3D pose data and human-
annotated sentences. Both objective metrics and human
Jjudgment evaluation confirm that our proposed approach is
able to generate more accurate animations and are deemed

visually more representative by humans than other data
driven approaches.

1. Introduction

Generating animations from natural language descrip-
tions is a first step for movie script visualization [11, 20]
which can later be stitched together while maintaining co-
references in the story-line [38]. These language grounded
animations can also be useful in cases like virtual human
animation [30, 7, 6], robot motion and task planning [ 16, 2].

An animation consists of a sequence of poses, which can
be represented by positions of different joints in the body
such as Root (base of spine), head, shoulder, wrist, knee
and many more.

Pose forecasting conditioned on natural language has
3 major challenges. First, pose and natural language are
very different modalities. The model needs a joint space
where both natural language sentences and poses can be
mapped. The model should also be able to decode an-
imations from this embedding space. Second, different
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Figure 2: Overview of our proposed model Joint Language-to-Pose (or JL2P). Language and pose are mapped to a joint
embedding space Z, which can now be used by a trained pose decoder g4 to generate a pose sequence. At train time both p.
and g, are used to create the joint embedding using a training curriculum. But at inference time z € Z is encoded by p. and
decoded by gq4, giving us a model which can generate a animation (or sequence of poses) from a free form description (or

language).

words of a sentence represent different qualities about the
animation. Verbs and adverbs describe the action and
speed/acceleration of the action; nouns and adjectives de-
scribe locations and directions respectively. The model has
to map these concepts to small pose sequences and then
stitch them to render convincing animations. Third, we
want to see if objective metrics correlate with subjective
metrics for this task as our models are trained using ob-
jective distance metrics, but the quality of generated anima-
tions can only be judged by humans.

In this paper, our two main contributions tackle the mod-
eling challenges of pose and natural language. First, we pro-
pose a model Joint Language-to-Pose (or JL2P) that learns
a joint embedding space of these two modalities. Sec-
ond, we use a training curriculum to help the model em-
phasize more on shorter and and easier sequences first and
longer and harder sequences later. Additionally, to make
the training regimen robust to the outliers in the dataset, we
use Smoooth L1 as the distant metric in our loss function.
Through multiple objective and subjective experiments, we
show that our model can generate more accurate and natural
animations from natural language sentences than other data
driven models.

2. Related Work

Pose Forecasting: Data driven human pose forecasting
attempts to understand the behaviours of the subject from its
history of poses and generates the next sequence of poses.
Short-term predictions [24] focus on modeling joint angles
corresponding to hands, legs, head and torso. Long-term
predictions [10, 31, 24] additionally model the positions of

the human character to generate animations like walking,
running, jumping and crawling.

While some works use different actions (such as running,
kicking, and more) as conditioning variables to generate the
future pose [31, 18], others rely solely on the history of
poses to predict what kind of motion will follow [8]. Pose
forecasting for locomotion is a more commonly researched
topic, where models decide where and when to run/walk
based on low-level control parameters such as trajectory and
terrain [13]. Task based locomotion (such as writing on a
whiteboard, moving a box, and sitting on a box) add the
nuances of transitioning from one task to another, but pose
generation is based on task-specific footstep plans that act
as motion templates [1].

All these approaches are either action specific, or require
a set of low-level control parameters to forecast future pose.
In this work, we aim replace low-level control parameters
with high-level control parameters (e.g. natural language)
to control actions and their speed and direction for the gen-
erated pose.

Image or Speech conditioned pose forecasting: Im-
ages with a human can act as a context to forecast what
comes next. Chao et. al. [5] use one image frame to pre-
dict the next few poses. These generated poses can now be
used to aid the generation of a video [35] or a sequence of
images [19]. An image, a high-level control parameter, has
action information for pose generation, but it does not pro-
vide a fine-grained control on the speed and acceleration of
the motion trajectory.

Speech can also be used to control animations of virtual
characters. Taylor et. al.[32] use a data driven approach to
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Figure 3: Trajectory plots of the generated pose (i.e. Root’s position) viewed from the top. Each box represents a generated
trajectory of the model on the vertical axis and sentence on the horizontal axis. The person starts at the green cross (x) and
ends at the red circle (o) with blue dots (+) denoting equally placed time-steps. All trajectories in each column have the same

scale for fair comparison across models.

model facial animation, while upper body pose forecasting
conditioned on speech inputs has been tackled by Takeuchi
et. al.[30]. But, these pose sequences model the non-verbal
behaviours (such as head nods, pose switches, hand waving
and so on) of the character and do not offer fine-grained
control over the characters next movements.

Language conditioned pose forecasting: Natural lan-
guage sentences consists of verbs describing the actions,
adverbs describing the speed/acceleration of the action, and
nouns with adjectives to describe the direction or target.
This information can help provide a more fine-grained con-
trol over pose generations compared to image or speech.

Statistical models [29, 28] which use bigram models for
natural language have been trained to encode motion se-
quences from sentences. Ahn et. al. [2] use around 2100
hours of youtube videos with annotated text descriptions to
train a pose generation model. Pose sequences extracted
from videos have limited translation and occluded lower
bodies, hence their model only predicts the upper body with
a static Root joint. Some works use 3D motion capture data
instead [26, 34].

Human motions generally have translation of the Root
joint, hence forecasting trajectory is important to get natu-
ral looking animations. Lin et. al [17] generates pose of all
the joints of the body by pretraining a pose2pose autoen-
coder model before mapping language embeddings on the
learned pose space. But the embedding space is not learned

jointly [23] which may limit the generative powers of the
pose decoder. In contrast, our proposed approach learns a
joint embedding space of language and pose using a cur-
riculum learning training regime.

3. Problem Statement

As an example, consider a natural language sentence
which describes a human’s motion: A person walks in
a circle”. The goal of this cross-modal language-to-pose
translation task is to generate an animation representing the
sentence; i.e. an animation that shows a person following a
trajectory of a circle with a walking motion (see figure 1).

Formally, given a sentence, represented by an N-sized
sequence of words X1.x = [21, X2, ...z xN], we want to pre-
dict a T-sized sequence of 3D poses Y1.7 = [y1, Y2, - - - YT
that are coherent with the semantics in the sentence. z; €
RXE is the i word vector with dimension K. y; € R”7*3 is
the pose matrix at time ¢. Rows of y; represent joints of the
skeleton and columns are the xyz-coordinates of each joint.
Tensors X and Y are elements of sets X and ) respectively.

Modeling language-to-pose is done by training a model
[ REXN _y RI*3xT (g predict a pose sequence Y77

Vir = f(X1.n;0) (1)

where O are trainable parameters of the model f.



4. Joint Language-to-Pose

Language-to-pose models should be able to grasp nu-
anced concepts like speed, direction of motion and the kind
of actions from the language and translate them to pose se-
quences (or animations). This requires the model to learn a
multimodal joint space of language and pose. In doing so,
it should also be able to generate sequences that are deemed
correlated to the sentence by humans.

To achieve that objective, we propose Joint Language-
to-Pose (or JL2P) model to learn the joint embedding space.
Given an input sentence, an animation can be sampled from
this model at inference stage.

In this section, a joint embedding space of language and
pose is formalized. This is followed by an algorithm to train
for the joint embedding space and a discussion on the prac-
tical edge cases at inference time for our Joint Language-to-
Pose model.

4.1. Joint Embedding Space for Language and Pose

To learn a joint embedding space of language and pose,
the sentence X .y and pose Y;.r are first mapped to a latent
representation using a sentence encoder p.(X1.n; ®.) and a
pose encoder ¢.(Y7.7; U,.) respectively. These estimate the
latent representation or embeddings z, and z, respectively
in the embedding space Z C R",

Zx = DPe (XlzN; (De) (2)
Zy = Qe (YI:T; \I’e) (3)

Zz, Zy should lie close to each other in Z as they rep-
resent the same concept. To ensure that they do lie close
together, a joint translation loss is constructed (refer to Fig-
ure 2) and trained end to end with a training curriculum.

4.2. Joint Loss Function

Once we have the embedding z, or z,, a pose decoder
qa(; ¥4) is used to generate an animation from the joint em-
bedding space Z. The output of the pose decoder must now
lie close to the pose sequence Y;.7. Hence, using X;.y as
inputs and Y7.7 as outputs, the cross-modal translation loss
is defined as,

Le=d(qa(22;%a), Y1) 4

and using Y7.7 as inputs and Y7.7 as outputs, the uni-modal
translation (or autoencoder) loss is defined as,

Eu =d (qd (Zy; \Ild) 7Y1:T) (5)

where d(z, y) is a function to calculate the distance between
the predicted values and ground truth of pose. ®., ¥, and
W, are trainable parameters of the sentence encoder, pose
encoder and pose decoder respectively.

Combining equations 4 and 5 we get a joint translation
loss,

Lj=LAL, (6)

Jointly optimizing the loss £; pushes z, and z, closer to-
gether improving generalizability and additionally trains the
pose decoder which is useful for inference from the joint
embedding space.

As L; is a mutivariate function in X;.5 and Y;.7, co-
ordinate descent [33] for optimizing the loss function is a
natural choice and is described in Algorithm 1.

4.3. Training Curriculum

Cross modal pose forecasting can be a challenging task
to train [5]. Starting with simpler examples before moving
on to tougher ones can be beneficial to the training process
[4, 37, 36].

The curriculum design commonly used for pose forecast-
ing [5] is adapted for our joint model. We first optimize the
model to predict 2 time steps conditioned on the complete
sentence. This easy task helps the model learn very short
pose sequences like leg motions for walking, hand motions
for waving and torso motions for bending. Once the loss on
the validation set starts increasing, we move on to the next
stage in the curriculum. The model is now given twice the
amount of poses for prediction. The complexity of the task
is increased in every stage till the maximum time-steps (1)
of prediction is reached. We describe the complete training
process in Algorithm 1.

Algorithm 1 Learning language-pose joint embedding

1: procedure INITIALIZATION
2 Xtraina X’uala ytrairu y’ual — SplitData(X7 y)
3 MaxValLoss < inf

4 2

5. procedure CURRICULUM
6 while ¢t < T do

7 for all Xl:N7 Yl:t S Xtrain; ytra,in do

8 r < CoinFlip() // For Coordinate Descent
9

: if r == 0 then
10: 2 < pe(X1.n; @e) //Encoder
11: else
12: z < qe(Y1.4; ¥.) //Encoder
13: Yig qa(z; ¥ 4) //Decoder
14: loss « d(Y7., YM)
15: o, V., U, < UpdateModelParams(loss)
16: ValLoss < CalcValLoss(Xypal, Yval)
17: if ValLoss > MaxValLoss then
18: t <+ 2t
19: MaxValLoss < inf




4.4. Optimization

For the distance metric d(z,y) in Equation 4, 5 and 6,
Smooth L1 loss (similar to Huber Loss [15]) is used which
is defined as,

0.5(x — y)?
|x —y| — 0.5 otherwise

f — 1
SmoothL1(z,y) = { or |z —y| <

(7
In contrast, Lin et. al.[17] uses L2 loss for d(z,y). L2 loss
is more sensitive to outliers than L1 loss due to its linearly
proportional gradient with respect to the error, while L1 loss
has a constant gradient of 1 or -1. But L1 Loss can become
unstable when |z — y| ~ 0, due to oscillating gradients be-
tween 1 and -1. On the other hand, Smooth L1 is continu-
ous and smooth near 0 and more generally for all z,y € R,
hence it is more stable than L1 as a loss function.

5. Experiments

Joint language to pose modeling can be broken down into
three core challenges,

1. Prediction Accuracy by Joint Space: How accurate
is pose prediction from the joint embedding ?

2. Human Judgment: Which of the generated animation
is more representative of the input sentence? Does the
subjective evaluation correlate with the results from
the objective evaluations?

3. Modeling nuanced language concepts: Is the model
able to map nuanced concepts such as speed, direction
and action in the generated animations?

Experiments are designed to evaluate these challenges of
language grounded pose forecasting.

In the following subsections, the dataset and its pre-
processing is briefly discussed which is followed by the
evaluation metrics for both objective and subjective eval-
uations. Finally, design choices of the encoder and decoder
models are described which are used to construct the base-
lines in the final subsection.

5.1. Dataset

Our models are trained an evaluated on KIT Motion-
Language Dataset [25] which combines human motion with
natural language descriptions. It consists of 3911 record-
ings (approximately 11.23 hours) which are re-targeted to a
kinematic model of a human skeleton with 50 DoFs (6 DoF
for the Root joint’s orientation and position, while remain-
ing 44 DoFs for arms legs, head and torso). The dataset also
consists of 6278 English sentences (approximately 8 words
per sentence) describing the recordings. This is more than
the number of recordings as each recording has one or more

descriptions which are annotated by human volunteers. We
use 20% of the data as a randomly sampled held-out set for
evaluating all models.

There is wide variety of motions in this dataset ranging
from locomotion (e.g. walking, running, jogging), perform-
ing (e.g. playing violin/guitar), and gesticulation (e.g. wav-
ing). Many recording have adjectives to further describe the
motion like speed (e.g. fast and slow), direction (left, right
and forward), and number for periodic motions (e.g. walk 4
steps).

We use the pre-processing steps used in Holden et. al.
[14]. All the frames of the motion are transformed such
that body always faces the Z-axis. Joint rotation angles are
transformed to 3D positions is the skeleton’s local frame
of reference with Root as the origin. Root’s position on XZ-
plane and orientation along Y-axis is represented as velocity
instead of absolute values.

Motion sequences are then sub-sampled to a frequency
of 12.5 Hz down from 100Hz. This is low enough to bring
enough variance between 2 time-steps for the decoder to
train for a regression task, while not compromising on the
human’s perception of the animation [5].

5.2. Implementation Details

For pose encoder (g.) a network of Gated Recurrent
Units (GRUs) [9] is used in our model JL2P. The pose de-
coder (ggq) is the same except it has residual connection from
the input to the output layer. This is similar to the pose de-
coder in Lin et. al. [17], except an extra layer to predict
the trajectory (or Trajectory Predictor) is discarded in our
model.

For langauge encoder (p.), a network of Long-Short
Term Memory Units (LSTMs) [12] is used. Each token of
the sentence is converted into a distributional embedding
using a pre-trained Word2Vec model [22]. !

5.3. Baselines

There has been limited work done in the domain of data-
driven cross-modal translation from natural language de-
scriptions to pose sequence generation. The closest work
to our proposed approach is by Lin et. al. [17]%. As
mentioned in Section 2, their model does not follow a train-
ing curriculum and uses L2 loss as the loss function. Thier
model also maps the language embeddings to an existing
embedding space of poses instead of jointly learning it.

We also compare our model JL2P (see Section 4) with
three ablations derived from itself. These ablations study
the 3 main components of the model, joint embedding
space, curriculum learning and Smooth L1 loss:

'We also train a variant of the model with BERT as the language en-
coder, but it did not show any significant improvements.

2As we could not find code or pre-trained models for this work, we
use our own implementation and training on the same data as all other
baselines
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Average Positional Error (APE) in mm

Mean M?::OIV/O Root Torso Head LArm RArm LHip RHip LFoot RFoot
Lin et. al.[17] \ 54.9%** 50.0 151.6 266 354 61.3 61.6 322 321 63.3 63.2
JL2P . 52.2%** 479 1392 242 325 57.3 57.2 30.6  30.7 62.9 63.2
w/o Curriculum
JL2P 51.7* 47.0 145.0 244 328 58.0 57.6 299  30.7 59.3 59.8
w/o L1
JL2P . 50.4 45.7 1433 240 31.0 55.6 54.5 29.7 295 59.0 59.5
w/o Joint Emb.
JL2P 49.5 454 \ 1311 230 314 553 55.0 28.6  29.0 59.2 58.8

Table 1: Average positional error (APE) for JL2P , JL2P w/o Joint Emb., JL2P w/o L1, JL2P w/o Curriculum and Lin et. al..
Lower is better. Our models (JL2P and variants) show consistent increase in accuracy over Lin et. al. across all joints with
the addition of components joint embedding, smooth L1 loss and curriculum learning. Two-tailed pairwise t-test between all

models and JL2P where * * x- p<<0.001, and *x*- p<<0.01.

e JL2P w/o Curriculum - Training curriculum in Sec-
tion 4.3 is dropped.

e JL2P w/o L1 - L2 loss is used instead of Smooth L1
loss as the distance metric d(x, y).

e JL2P w/o Joint Emb. - Instead of joint training as de-
scribed in Section 4.2, autoencoder loss £,, minimized
first followed by optimization of the cross-translation
loss L.

5.4. Objective Evaluation Metrics

All models are evaluated on the held-out set with a metric
Average Position Error (APE). Given a particular joint j, it
can be denoted as APE(j),

APE(p) = 3 lls) = el ®)
y

where y;[7] is the true location and §;[j] € Y is the pre-
dicted location of joint j at time ¢

Another metric, Probability of Correct Keypoints (PCK)
[3, 27], is also used as an evaluation metric.

5.5. User Study: Subjective Evaluation Metric

Joint language to pose generation is a subjective task,
hence a human’s subjective judgment on the quality of pre-
diction is an important metric for this task.

To achieve this, we design a user study which asked hu-
man annotators to rank two videos generated by 2 differ-
ent models but with same sentence as the input. One of

the videos is generated by Lin et. al. and the other is ei-
ther ground truth or generated by JL2P , JL2P w/o Cur-
riculum, JL2P w/o Joint Emb., or JL2P L1. The annota-
tors answer the following question for each pair of videos,
Which of the 2 generated animations is better described by
”<sentence>"?. To ensure that annotators spend enough
time to decide, any annotations which took less than 20 sec-
onds® were rejected. This study subjectively evaluates the
preference of humans for generated animations by different
models.

6. Results and Discussion

In this section we first use objective measures and then
conduct a user study to get a subjective evaluation. Finally,
we probe some qualitative examples to understand the ef-
fectiveness of the model in tackling the core challenges de-
scribed in Section 5.

6.1. Prediction Accuracy by Joint Space

JL2P demonstrates at least a 9% improvement over Lin
et. al. (see Table 1) for all joints. The maximum improve-
ment around 15% is seen in the Root joint. Errors in Root
prediction can lead to a “sliding-effect” of the feet; when
the generation is translating faster than the frequency of the
feet. Improvements in APE scores for long-term prediction,
especially for Root, can help get rid of these artifacts in the
generated animation.

When compared to its variants, JL2P loses maximum
APE value when it is trained without curriculum (or JL2P
w/o Curriculum). As discussed in Section 4.3, learning to

3each video is 8 seconds long at an average. We set a threshold of 20
seconds to give annotators 4 seconds to make their decision.
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Figure 4: Renders of generated animations with a diverse set of sentences as input by our proposed model. Our model is able
to change speed, direction and actions based on changes in the input sentence. Trajectory of the character is drawn with a
blue line which starts at the green cross (x) and ends at the red circle (e).

predict shorter sequences before moving on to longer ones
proves beneficial for pose generation. APE scores go down
by 4%, if L2 loss is used instead of Smooth L1. In an output
space as diverse as pose sequences, it becomes important
to ignore outliers which may drive model to overfit. APE
scores go down only by 1%, if the embedding space is not
trained with the joint loss £;

APE values across time for JL2P of different parts of
the body (Root, Legs, Arms, Torso and Head) are plotted
in Figure 6. Root’s APE scores have the fastest rate of in-
crease, followed by Arms, Legs and then Head, Torso. Two
out of three coordinates of Root are represented as velocity
which accumulates errors when integrated back to absolute
positions; this is probably a contributing factor to the rapid
increase of prediction error over time.

Our final objective metric is PCK. PCK values (for 35<
o <55) on generated animations are compared among JL2P
, its variants and Lin et. al. in Figure 7. JL2P and its abla-
tions show a consistent improvement over Lin et. al. which
further strengthen the claim about the prediction accuracy
by our model’s joint space.

6.2. Human Judgment

Human judgment is quantified by preference scores in
Figure 5. Human preference of all our baseline models and
ground truth are compared against Lin et. al. animations.
JL2P has a preference of 75% which is shy of ground truth
by 10%. Preference scores consistently drop with all the
other variants of JL2P .

Models vs Lin et. al.
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Figure 5: Preference scores of baseline models vs Lin et.
al.. Blue bars denote the preference percentage of mod-
els marked on the horizontal axis. Our models (JL2P and
variants) show consistent rise in preference over Lin et. al.
with the addition of components joint embedding, smooth
L1 loss and curriculum learning. **- p < 0.01 and ***-
p < 0.001 for McNemar’s test [21] on paired nominal data.

JL2P w/o Joint Emb. has the lowest preference score of
60% when ranked against Lin et. al. . It is still more pre-
ferred than Lin et. al. but far more unlikely to be picked
when pitted against JL2P . This is an interesting change
in trend, as removing joint loss from JL2P did not affect
the objective scores significantly, but have lowered its hu-



120
Joint
Root
100
Legs
E Arms
= &0 Torso
£ Head
i 60
=T
c
T 40
=
20 \
o s S —
0 1 2 3 4 5 6 7 8

Time (Mo. of prediction steps)

Figure 6: Plot of mean APE values across time for different
parts of the body (Root, Legs, Arms, Torso and head) for
JL2P. Lower is better. Generating trajectory of the animat-
ing character is harder than the other joints as Root’s APE
blows up after around 500ms
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Figure 7: Plots of average Probability of Correct Keypoint
(PCK) values over multiple values of thresholds (o) for
JL2P , JL2P w/o Joint Emb., JL2P w/o L1, JL2P w/o Cur-
riculum and Lin et. al.. Our model JL2P shows consistent
improvements over other baselines across a large range of
thresholds. Higher values are better.

man preference by a significant fraction. This leads us to
conclude that objective metrics are not enough to judge the
performance of a model. Instead a combination of human
judgment and objective metrics is necessary for evaluating
pose generation models.

6.3. Modeling nuanced language concepts

Root joint decides the trajectory of the animation which
is crucial for translating concepts like speed (e.g. fast, and
slow), direction (e.g. left, right, forward and backward)

from natural language to animation. We plot the trajecto-
ries generated by JL2P, ground truth and Lin et. al. for
different sentences in Figure 3.

Modeling direction: Animations’ trajectory for these
sentences for JL2P is similar to that of the ground truth tra-
jectories. In contrast, Lin et. al.’s trajectories tend to be
semantically incorrect and have a slightly curved forward
motion for these sentences.

Modeling speed: In the sentence, ”A person runs very
fast forward”, JL2P is able to understand that the animation
has to move faster. It is able to walk approximately the
same distance as the ground truth in the same amount of
time, hence has the same speed. In contrast, even though
Lin et. al.’s motion is in the forward direction, it is not able
to maintain the same speed as required by the sentence.

Modeling actions: In figure 4, we plot animations gen-
erated by a diverse set of sentences. JL2P is able to under-
stand the action from the sentences, and is able to generate
an animation corresponding to the action. JL2P is able to
handle many actions ranging from kneeling (with complex
leg motions) to jogging (with periodic hand and leg motion).

We show, via qualitative examples, that our model JL2P
is able to model nuanced language concepts which are then
reproduced in the animations generated at inference time.

7. Conclusions

In this paper, we proposed a neural architecture called
Joint Language-to-Pose (or JL2P), which integrates lan-
guage and pose to learn a joint embedding space in an end-
to-end training paradigm. This embedding space can now
be used to generate animations conditioned on an input de-
scription. We also proposed the use of curriculum learn-
ing approach which forces the model to generate shorter se-
quences before moving on to longer ones. We evaluated
our proposed model on a parallel corpus of 3D pose data
and human-annotated sentences with objective metrics to
measure prediction accuracy, as well as with a user study
to measure human judgment. Our results confirm that our
approach, to learn a joint embedding in a curriculum learn-
ing paradigm by JL2P, was able to generate more accurate
animations and are deemed more visually represented by
humans than the state-of-the-art model.
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