
ar
X

iv
:2

01
0.

02
48

8v
3

 [c
s.

C
V

]
25

 O
ct

 2
02

0

RANP: Resource Aware Neuron Pruning at Initialization for 3D CNNs

Zhiwei Xu1,3 Thalaiyasingam Ajanthan1 Vibhav Vineet2 Richard Hartley1

1Australian National University and Australian Centre for Robotic Vision
2Microsoft Research, Redmond, USA

3Data61, CSIRO, Australia

{zhiwei.xu,thalaiyasingam.ajanthan,richard.hartley}@anu.edu.au

vibhav.vineet@microsoft.com

Abstract

Although 3D Convolutional Neural Networks (CNNs)

are essential for most learning based applications involving

dense 3D data, their applicability is limited due to exces-

sive memory and computational requirements. Compress-

ing such networks by pruning therefore becomes highly de-

sirable. However, pruning 3D CNNs is largely unexplored

possibly because of the complex nature of typical pruning

algorithms that embeds pruning into an iterative optimiza-

tion paradigm. In this work, we introduce a Resource Aware

Neuron Pruning (RANP) algorithm that prunes 3D CNNs at

initialization to high sparsity levels. Specifically, the core

idea is to obtain an importance score for each neuron based

on their sensitivity to the loss function. This neuron impor-

tance is then reweighted according to the neuron resource

consumption related to FLOPs or memory. We demon-

strate the effectiveness of our pruning method on 3D seman-

tic segmentation with widely used 3D-UNets on ShapeNet

and BraTS’18 as well as on video classification with Mo-

bileNetV2 and I3D on UCF101 dataset. In these experi-

ments, our RANP leads to roughly 50%-95% reduction in

FLOPs and 35%-80% reduction in memory with negli-

gible loss in accuracy compared to the unpruned networks.

This significantly reduces the computational resources re-

quired to train 3D CNNs. The pruned network obtained by

our algorithm can also be easily scaled up and transferred

to another dataset for training.

1. Introduction

3D image analysis is important in various real-world

applications including scene understanding [1, 2], object

recognition [3, 4], medical image analysis [5, 6, 7], and

video action recognition [8, 9]. Typically, sparse 3D data

can be represented using point clouds [10] whereas volu-

metric representation is required for dense 3D data which

arises in domains such as medical imaging [11] and video

segmentation and classification [1, 8, 9]. While efficient

0.5 1 1.5 2 2.5 3 3.5
FLOPs (G)

1

2

3

4

5

6

7

8

9

10

M
em

or
y

(M
B

)

Full
SNIP NP
Random NP
Layer-wise NP
RANP-f (ours)

x10

x100

3D-UNet on BraTS'18

(478.13G, 3628MB)
(233.11G, 2999.64MB)

3D-UNet on ShapeNet
(237.85G, 997MB)

I3D on UCF101

(27.88G, 201.28MB)

(26.31G, 195.62MB)

(126.22G, 833.2MB)

Figure 1: Bottom-left is the best. Comparison of neuron

pruning methods. “Full” and “SNIP NP” are not drawn by

scale but with their FLOPs (G) and memory (MB) values

next to the markers. Our RANP-f performs best with large

resource reductions while maintaining the accuracy. More

details are in Table 2.

neural network architectures can be designed for sparse

point cloud data [12, 13], conventional dense 3D Convo-

lutional Neural Network (CNN) is required for volumetric

data. Such 3D CNNs are computationally expensive with

excessive memory requirements for large-scale 3D tasks.

Therefore, it is highly desirable to reduce the memory and

FLOPs required to train 3D CNNs while maintaining the

accuracy. This will not only enable large-scale applications

but also 3D CNN training on resource-limited devices.

Network pruning is a prominent approach to compress

a neural network by reducing the number of parameters

or the number of neurons in each layer [14, 15, 16, 17].

However, most of the network pruning methods aim at 2D

CNNs while pruning 3D CNNs is largely unexplored. This

is mainly because pruning is typically targeted at reduc-

ing the test-time resource requirements while computational

requirements of training time are as large as (if not more

http://arxiv.org/abs/2010.02488v3

than) the unpruned network. Such pruning schemes are not

suitable for 3D CNNs with dense volumetric data where

training-time resource requirement is prohibitively large.

In this work, we introduce a Resource1 Aware Neuron

Pruning (RANP) that prunes 3D CNNs at initialization. Our

method is inspired by, but superior to, SNIP [18] which

prunes redundant parameters of a network at initialization

and only tests with small scale 2D CNNs for image classi-

fication. With the same characteristics of effectively prun-

ing at initialization without requiring large computational

resources, RANP yields better-pruned networks compared

to SNIP by removing neurons that largely contribute to the

high resource requirement. In our experiments on video

classification and more challenging 3D semantic segmenta-

tion, with minimal accuracy loss, RANP yields 50%-95%

reduction in FLOPs and 35%-80% reduction in memory

while only 5%-51% reduction in FLOPs and 1%-17% re-

duction in memory are achieved by SNIP NP.

The main idea of RANP is to prune based on a neuron

importance criterion analogous to the connection sensitiv-

ity in SNIP. Note that, pruning based on such a simple cri-

terion as SNIP has the risk of pruning the whole layer(s) at

extreme sparsity levels especially on large networks [19].

Even though an orthogonal initialization that ensures layer-

wise dynamical isometry is sufficient to mitigate this issue

for parameter pruning on 2D CNNs [19], it is unclear if this

could be directly applied to neuron pruning on 3D CNNs.

To tackle this and improve pruning, we introduce a resource

aware reweighting scheme that first balances the mean value

of neuron importance in each layer and then reweights the

neuron importance based on the resource consumption of

each neuron. As evidenced by our experiments, such a

reweighting scheme is crucial to obtain large reductions in

memory and FLOPs while maintaining high accuracy.

We firstly evaluate our RANP on 3D semantic segmeta-

tion on a sparse point-cloud dataset, ShapeNet [10], and

a dense medical image dataset, BraTS’18 [11, 20], with

widely used 3D-UNets [5]. We also evaluate RANP on

video classification using UCF101 with MobileNetV2 [21]

and I3D [22]. Our RANP-f significantly outperforms other

neuron pruning methods in resource efficiency by yield-

ing large reductions in computational resources (50%-95%

FLOPs reduction and 35%-80% memory reduction)

with comparable accuracy to the unpruned network (Fig. 1).

Furthermore, we perform extensive experiments to

demonstrate 1) scalability of RANP by pruning with a

small input spatial size and training with a large one, 2)

transferability by pruning using ShapeNet and training on

BraTS’18 and vice versa, 3) lightweight training on a sin-

gle GPU, and 4) fast training with increased batch size.

1We concretely define “resource” as FLoating Point Operations per sec-

ond (FLOPs) and memory required by one forward pass.

2. Related Work

Previous works of network pruning mainly focus on

2D CNNs by parameter pruning [18, 17, 14, 15, 23] and

neuron pruning [24, 16, 25, 26, 27, 28]. While a ma-

jority of the pruning methods use the traditional prune-

retrain scheme with a combined loss function of pruning

criteria [17, 16, 26], some pruning at initialization meth-

ods is able to reduce computational complexity in training

[18, 29, 30, 31, 32]. While very few are for 3D CNNs

[33, 34, 35], none of them prune networks at initialization,

and thus, none of them effectively reduce the training-time

computational and memory requirements of 3D CNNs.

2D CNN pruning. Parameter pruning merely sparsi-

fies filters for a high learning capability with small models.

Han et al. [17] adopted an iterative method of removing pa-

rameters with values below a threshold. Lee et al. [18] re-

cently proposed a single-shot method with connection sen-

sitivity by magnitudes of parameter mask gradients to retain

top-κ parameters. These filter-sparse methods, however, do

not directly yield large speedup and memory reductions.

By contrast, neuron pruning, also known as filter pruning

or channel pruning, can effectively reduce computational

resources. For instance, Li et al.[25] used l1 normaliza-

tion to remove unimportant filters with connecting features.

He et al.[16] adopted a LASSO regression to prune net-

work layers with reconstruction in the least square manner.

Yu et al.[24] proposed a group-wise 2D-filter pruning from

each 3D-filter by a learning-based method and a knowl-

edge distillation. Structure learning based MorphNet [36]

and SSL [37] aim at pruning activations with structure con-

straints or regularization. These approaches only reduce the

test-time resource requirement while we focus on reducing

those of large 3D CNNs at training time.

3D CNN pruning. To improve the efficiency on 3D

CNNs, some works like SSC [12] and OctNet [38] use effi-

cient data structures to reduce the memory requirement for

sparse point-cloud data. However, these approaches are not

useful for dense data, e.g., MRI images and videos, and the

resource requirement remains prohibitively large.

Hence, it is desirable to develop an efficient pruning for

3D CNNs that can handle dense 3D data which is com-

mon in real applications. Only very few works are rele-

vant to 3D CNN pruning. Molchanov et al.[33] proposed a

greedy criteria-based method to reduce resources via back-

propagation with a small 3D CNN for hand gesture recog-

nition. Zhang et al.[34] used a regularization-based pruning

method by assigning regularization to weight groups with

4× speedup in theory. Recently, Chen et al.[35] converted

3D filters into frequency domain to eliminate redundancy in

an iterative optimization for convergence. Being a parame-

ter pruning method, this does not lead to large FLOPs and

memory reductions, e.g., merely a 2× speedup compared to

our 28× (ref. Sec. 5.3). In summary, these methods embed

pruning in the iterative network optimization and require

extensive resources, which is inefficient for 3D CNNs.

Pruning at Initialization. While few works adopted

pruning at initialization, some achieved impressive success.

SNIP [18] is the first single-shot pruning method that pre-

sented a high possibility of pruning networks at initializa-

tion with minimal accuracy loss in training, followed by

many recent works on single-shot pruning [29, 30, 31, 32].

But none are for 3D CNNs pruning.

In addition to being a parameter pruning approach, the

benefits of SNIP was demonstrated only on small-scale

datasets [18], such as MNIST and CIFAR-10. Therefore, it

is unclear that whether these benefits could be transposed to

3D CNNs applied to large-scale datasets. Our experiments

indicate that, while SNIP itself is not capable of yield-

ing large resource reduction on 3D CNNs, our RANP can

greatly reduce the computational resources without causing

network infeasibility. Furthermore, we show that RANP en-

joys strong transferability among datasets and enables fast

and lightweight training of large 3D volumetric data seg-

mentation on a single GPU.

3. Preliminaries

We first briefly describe the main idea of SNIP [18]

which removes redundant parameters prior to training.

Given a dataset D = {(xi,yi)}Si=1 with input xi and

ground truth yi and the sparsity level κ, the optimization

problem associated with SNIP can be written as

min
c,w

L(c⊙w;D) = min
c,w

1

S

S
∑

i=1

ℓ (c⊙w, (xi,yi)) ,

s.t. w ∈ R
m, c ∈ {0, 1}m, ‖c‖0 ≤ κ ,

(1)

where w is denoted a m-dimensional vector of parameters,

c is the corresponding binary mask on the parameters, ℓ(·)
is the standard loss function (e.g., cross-entropy loss), and

‖ · ‖0 denotes l0 norm. The mask cj ∈ {0, 1} for param-

eter wj denotes that the parameter is retained in the com-

pressed model if cj = 1 and otherwise it is removed. In

order to optimize the above problem, they first relax the bi-

nary constraint on the masks such that c ∈ [0, 1]m. Then an

importance function for parameter wj is calculated by the

normalized magnitude of the loss gradient over mask cj as

sj =
|gj (w;D)|

∑m

k=1 |gk (w;D)|
,where gj (w;D) = ∂L(c⊙w;D)

∂cj

∣

∣

∣

c=1

.

(2)

Then, only top-κ parameters are retained based on the pa-

rameter importance, called connection sensitivity in [18],

s defined above. Upon pruning, the retained parame-

ters are trained in the standard way. It is interesting

to note that, even though having the mask c is easier

to explain the intuition, SNIP can be implemented with-

out these additional variables by noting that gj (w;D) =

Figure 2: Flowchart of RANP algorithm. The refining gen-

erates a new yet slim network for resource-efficient training.

(∂L (w;D) /∂wj)wj [19]. This method has shown re-

markable results in achieving > 95% sparsity on 2D im-

age classification tasks with minimal loss of accuracy. Such

a parameter pruning method is important, however, it can-

not lead to sufficient computation and memory reductions

to train a deep 3D CNN on current off-the-shelf graphics

hardware. In particular, the sparse weight matrices cannot

efficiently reduce memory or FLOPs, and they require spe-

cialized sparse matrix implementations for speedup. In con-

trast, neuron pruning directly translates into practical gains

of reducing both memory and FLOPs. This is crucial in

3D CNNs due to their substantially higher resource require-

ment compared to 2D CNNs.

4. Resource Aware NP at Initialization
To explain the proposed RANP, we first extend the SNIP

idea to neuron pruning at initialization. Then we discuss a

resource aware reweighting strategy to further reduce the

computational requirements of the pruned network. The

flowchart of our RANP algorithm is shown in Fig. 2.

Before introducing our neuron importance, we first

consider a fully-connected feed-forward neural network

for the simplicity of notations. Consider weight matri-

ces Wl ∈ R
Nl×Nl−1 , biases bl ∈ R

Nl , pre-activations

hl ∈ R
Nl , and post-activations xl ∈ R

Nl , for layer

l ∈ K = {1, . . . ,K}. Now the feed-forward dynamics is

xl = φ
(

hl
)

, where hl = Wlxl−1 + bl , (3)

where the activation function φ : R → R has element-

wise nonlinearity and the network input is denoted by x0.

Now we introduce binary masks on neurons (i.e., post-

activations). The feed-forward dynamics is then modified

to include this masking operation as

xl = cl ⊙ φ
(

hl
)

, where cl ∈ {0, 1}Nl , ∀l ∈ K , (4)

where neuron mask clu = 1 indicates neuron xl
u is retained

and otherwise pruned. Here, neuron pruning can be written

as the following optimization problem

min
w

L(c,w;D) = min
c,w

1

S

S
∑

i=1

ℓ (c,w; (xi,yi)) ,

s.t. w ∈ R
m, c ∈ {0, 1}n, ‖c‖0 ≤ κ ,

(5)

where n is the total number of neurons and ℓ(c, ·; ·) denotes

a standard loss function of the feed-forward mapping with

neuron masks c defined in Eq. 4. This can be easily ex-

tended to convolutional and skip-concatenation operations.

As removing neurons could largely reduce memory and

FLOPs compared to merely sparsifying parameters, the core

of our approach is benefited by removing redundant neu-

rons from the model. We use an influence function concept

developed for parameters to establish neuron importance

through the loss function, to locate redundant neurons.

4.1. Neuron Importance

Note that, neuron importance can be derived from the

SNIP-based parameter importance discussed in Sec. 3. An-

other approach is to directly define neuron importance as the

normalized magnitude of the neuron mask gradients analo-

gous to parameter importance.

Neuron Importance with Parameter Mask Gradients.

The first approach to calculate neuron importance depends

on the magnitude of parameter mask gradients, denoted as

Magnitude of Parameter Mask Gradients (MPMG). Thus,

the importance of neuron xl
u is

slu = f
(

|glu1|, . . . , |g
l
uNl−1

|
)

, (6)

where gluv = ∂L (c⊙w;D) /∂cluv with cluv as the mask

of parameter wl
uv . Refer to Eq. 2. Here, f(·) : RNl−1 →

R is a function mapping a set of values to a scalar. We

choose f(·) = sum(·) with alternatives, i.e., mean and max

functions, in Appendix D. Now, we set neuron masks as 1

for neurons with top-κ largest neuron importance.

Neuron Importance with Neuron Mask Gradients.

Another approach is to directly compute mask gradients

on neurons and treat their magnitudes as neuron impor-

tance, denoted as Magnitude of Neuron Mask Gradients

(MNMG). The neuron importance of xl
u is calculated by

slu =

∣

∣

∣

∣

∂L (c,w;D)

∂clu

∣

∣

∣

∣

c=1

∣

∣

∣

∣

. (7)

Noting that a non-linear activation function φ(·) in CNN

including but not limited to ReLU can satisfy φ(ch) =
cφ(h), ∀c ≥ 0. Given such a homogeneous function, the

calculation of neuron importance with neuron masks can be

derived from parameter mask gradients in the form of

∂L (c,w;D)

∂clu

∣

∣

∣

∣

c=1

=

Nl−1
∑

v=1

∂L (c⊙w;D)

∂cluv

∣

∣

∣

∣

c=1

. (8)

Details of the influence of such an activation function on

neuron importance are provided in Appendix B. These two

approaches for neuron importance are in a similar form that

while MPMG is by the sum of magnitudes, MNMG is by

the magnitude of the sum of parameter mask gradients. It

can be implemented directly from parameter gradients.

The neuron importance based on MPMG or MNMG ap-

proach can be used to remove redundant neurons. However,

(a) Vanilla NP Eq. 6 (b) Weighted NP Eq. 9

(c) RANP-f Eq. 10

1 3 5 7 9 11 13 15
Layer

0

25

50

75

100

N
eu

ro
n

R
at

io
 (

%
)

Vanilla NP
RANP-f

(d) Retain ratio

Figure 3: ShapeNet: neuron importance of 3D-UNet be-

comes balanced and resource-aware from (a) to (c) at neu-

ron sparsity 78.24%. Blue: neuron importance; red: mean

values. More illustrations are in Appendix D.

they could lead to an imbalance of sparsity levels of each

layer in 3D network architectures. As shown in Table 2, the

computational resources required by vanilla neuron prun-

ing are much higher than those by other sparsity enforc-

ing methods, e.g., random neuron pruning and layer-wise

neuron pruning. We hypothesize that this is caused by the

layer-wise imbalance of neuron importance which unilater-

ally emphasizes on some specific layer(s) and may lead to

network infeasibility by pruning the whole layer(s). This

behavior is also observed in [19], and orthogonal initializa-

tion is thus recommended to solve the problem for 2D CNN

pruning, which however cannot result in balanced neuron

importance in our case, see results in Appendix D.

In order to resolve this issue, we propose resource aware

neuron pruning (RANP) with reweighted neuron impor-

tance, and the details are provided below.

4.2. Resource Aware Reweighting

To tackle the imbalanced neuron importance issue above,

we first weight the neuron importance across layers.

Weighting neuron importance of xl
u can be expressed as

s̃lu =
maxKk=1 s̄

k

s̄l
slu , where s̄k = 1

Nk

∑Nk

u=1 s
k
u, ∀ k ∈ K .

(9)

Here, s̄l is the mean neuron importance of layer l and s̃lu
is the updated neuron importance. This helps to achieve

the same mean neuron importance in each layer, which

largely avoids underestimating neuron importance of spe-

cific layer(s) to prevent from pruning the whole layer(s).

To further reduce the memory and FLOPs with mini-

mal accuracy loss, we then reweight the neuron importance

s̃lu by available resource, i.e., memory or FLOPs. This

reweighting counts on the addition of weighted neuron im-

portance and the effect of the computational resource, de-

noted as RANP-[m|f], where “m” is for memory and “f” is

for FLOPs . We represent the importance of this available

resource in layer l as τl, refer to Appendix C for details.

The reweighted neuron importance of neuron xl
u by fol-

lowing weighted addition variant RANP-[m|f] is

ŝlu = (1 + λ softmax(−τl)) s̃
l
u =

(

1 + λ
e−τl

∑K

k=1 e
−τk

)

s̃lu ,

(10)

where coefficient λ > 0 helps to control the effect of re-

source on neuron importance. This effect represented by

softmax constrains the values into a controllable range [0,1],

making it easy to determine λ and function a high resource

influence with a small resource occupation.

We demonstrate the effect of this reweighting strategy

over vanilla pruning in Fig. 3. In more detail, vanilla neu-

ron importance tends to have high values in the last few

layers, making it highly possible to remove all neurons of

such as the 7th and 8th layers. Weighting the importance

in Fig. 3b makes the distribution of importance balanced

with the same mean value in each layer. Furthermore, since

some neurons have different numbers of input channels,

each layer requires different FLOPs and memory. Consid-

ering the effect of computational resources on training, we

embed them into neuron importance as weights.

In Fig. 3c, the last few layers require larger computa-

tional resources than the others, and thus their neurons share

lower weights, see the tendency of mean values. Vividly,

neuron ratio in Fig. 3d indicates a more balanced distribu-

tion by RANP-f than vanilla NP. For instance, very few neu-

rons are retained in the 8th layer by vanilla NP, resulting

in low accuracy and low maximum neuron sparsity. With

reweighting by RANP-f, however, more neurons can be re-

tained in this layer. Moreover, in Table 2, while weighted

NP achieves high accuracy, its computational resource re-

ductions are small. In contrast, RANP-f largely decreases

the computational resources with a small accuracy loss.

Then, with reweighted neuron importance by Eq. 10 and

s̈κ as the κth reweighted neuron importance in a descending

order, the binary mask of neuron xl
u can be obtained by

clu = 1[ŝlu − s̈κ ≥ 0] . (11)

As mentioned in Sec. 2, our RANP is more effective

in reducing memory and FLOPs than SNIP-based pruning

which merely sparsifies parameters but needs high memory

required by dense operations in training. RANP can eas-

ily remove neurons and all involved input channels at once,

leading to huge reductions of input and output channels of

the filter. Pseudocode is provided in Appendix A.

5. Experiments

We evaluated RANP on 3D-UNets for 3D semantic seg-

mentation and MobileNetV2 and I3D for video classifica-

tion. Experiments are on Nvidia Tesla P100-SXM2-16GB

GPUs in PyTorch. More results are in Appendix D. Our

code is available at https://github.com/zwxu064/RANP.git.

5.1. Experimental Setup

3D Datasets. For 3D semantic segmentation, we

adopted the large-scale 3D sparse point-cloud dataset,

ShapeNet [10], and dense biomedical MRI sequences,

BraTS’18 [11, 20]. ShapeNet consists of 50 object part

classes, 14007 training samples, and 2874 testing samples.

We split it into 6955 training samples and 7052 validation

samples as [12] to assign each point/voxel with a part class.

BraTS’18 includes 210 High Grade Glioma (HGG) and

75 Low Grade Glioma (LGG) cases. Each case has 4 MRI

sequences, i.e., T1, T1 CE, T2, and FLAIR. The task is to

detect and segment brain scan images into 3 categories: En-

hancing Tumor (ET), Tumor Core (TC), and Whole Tumor

(WT). The spatial size is 240×240×155 in each dimension.

We adopted the splitting strategy of cross-validation in [39]

with 228 cases for training and 57 cases for validation.

For video classification, we used video dataset, UCF101

[40] with 101 action categories and 13320 videos. 2D spa-

tial dimension from images and temporal dimension from

frames are cast as dense 3D inputs. Among the 3 official

train/test splits, we used split-1 which has 9537 videos for

training and 3783 videos for validation.

3D CNNs. For 3D semantic segmentation on ShapeNet

(sparse data) and BraTS’18 (dense data), we used the stan-

dard 15-layer 3D-UNet [5] including 4 encoders, each con-

sists of two “3D convolution + 3D batch normalization +

ReLU”, a “3D max pooling”, four decoders, and a confi-

dence module by softmax. It has 14 convolution layers with

33 kernels and 1 layer with 13 kernel.

For video classification, we used the popular Mo-

bileNetV2 [21, 41] and I3D (with inception as backbone)

[22] on UCF101. MobileNetV2 has a linear layer and 52

convolution layers while 18 of them are 33 kernels and the

rest are 13. I3D has a linear layer and 57 convolution layers,

19 of which are 33 kernels, 1 is 73, and the rest are 13.

Hyper-parameters in learning. For ShapeNet, we set

learning rate as 0.1 with an exponential decay rate γ = 0.04
by 100 epochs; batch size is 12 on 2 GPUs; spatial size for

pruning and training is 643 while the spatial size for training

is 1283 in Sec. 5.7; optimizer is SGD-Nesterov [42] with

weight decay 0.0001 and momentum 0.9.

For BraTS’18, learning rate is 0.001, decayed by 0.1 at

150th epoch with 200 epochs; optimizer is Adam[43] with

weight decay 0.0001 and AMSGrad[44]; batch size is 2 on 2

GPUs; spatial size for pruning is 963 and 1283 for training.

For UCF101, we adopted similar setup from [41] with

learning rate 0.1, decayed by 0.1 at {40, 55, 60, 70}th
epoch; optimizer by SGD with weight decay 0.001; batch

size 8 on one GPU. Spatial size for pruning and training

is 1122 for MobileNetV2 and 2242 for I3D; 16 frames are

https://github.com/zwxu064/RANP.git

Table 1: Vanilla NP by max neuron sparsity. “Metric” is

mIoU for ShapeNet, ET for BraTS’18, top-1 for UCF101.

“Param” and “Mem” are in MB. MPMG-sum is vanilla NP

for large resource reductions and small metric loss.

Dataset (Model) Manner Sparsity Param GFLOPs Mem Metric

ShapeNet

(3D-UNet)

Full[5] 0 62.26 237.85 997.00 83.79±0.21

MNMG-sum 66.93 4.29 100.34 783.14 83.65±0.02

MPMG-sum 78.24 2.54 55.69 557.32 83.26±0.14

BraTS’18

(3D-UNet)

Full[5] 0 15.57 478.13 3628.00 72.96±0.60

MNMG-sum 81.32 0.35 73.50 1933.20 64.48±1.10

MPMG-sum 78.17 0.55 104.50 1936.44 71.94±1.68

UCF101

(MobileNetV2)

Full[21] 0 9.47 0.58 157.47 47.08±0.72

MNMG-sum 39.89 4.66 0.43 120.01 1.03±0.002

MPMG-sum 33.15 6.35 0.55 155.17 46.32±0.79

UCF101

(I3D)

Full[22] 0 47.27 27.88 201.28 51.58±1.86

MNMG-sum 32.87 20.00 16.03 125.17 49.02±3.33

MPMG-sum 25.32 29.93 25.76 192.42 51.57±1.46

used for the temporal size. Note that in [41] networks for

UCF101 had higher performance since they were pretrained

on Kinetics600, while we directly trained on UCF101. A

feasible train-from-scratch reference could be [40].

For Eq. 10, we empirically set the coefficient λ as 11 for

ShapeNet, 15 for BraTS’18, and 80 for UCF101. Glorot ini-

tialization [45] was used for weight initialization. Note that

we used orthogonal initialization [46] to handle imbalanced

layer-wise neuron importance distribution [19] but obtained

lower maximum neuron sparsity.

In addition, loss function and metrics are in Appendix A.

5.2. Maximum Neuron Sparsity by Vanilla NP

We selected MPMG-sum and MNMG-sum for vanilla

neuron importance for comparison. All neurons of the last

convolutional layer are retained for the given classes.

In Table 1, MPMG-sum for ShapeNet achieves the

largest neuron sparsity 78.24% by reducing 76.59% FLOPs,

95.92% parameters, and 44.10% memory with 0.53% accu-

racy loss. Meanwhile, for BraTS’18, MNMG-sum achieves

the largest neuron sparsity 81.32% but has up to 8.48% ac-

curacy loss. MPMG-sum, however, has the largest neuron

sparsity 78.17% but smaller accuracy loss with decreased

78.14% FLOPs, 96.46% parameters, and 46.63% memory.

Hence, we selected MPMG-sum as vanilla NP consid-

ering the trade-off between the maximum neuron sparsity

and the accuracy loss. This is applied to all methods related

to weighted neuron pruning and RANP in our experiments.

Results of mean and max are in Appendix D.

5.3. Evaluation of RANP on Pruning Capability

Random NP retains κ neurons with neuron indices ran-

domly shuffled. Layer-wise NP retains neurons using the

same retain rate as κ in each layer. For SNIP-based param-

eter pruning, the parameter masks are post-processed by re-

moving redundant parameters and then making sparse filters

3Since 2 layers of the pruned MobileNetV2 by MNMG-sum have only

1 neuron due to the imbalanced layer-wise neuron importance distribution.

dense, which is denoted as SNIP NP. For a fair comparison

with SNIP NP, we used the maximum parameter sparsity

98.98% for ShapeNet , 98.88% for BraTS’18, 86.26% for

MobileNetV2, and 81.09% for I3D.

ShapeNet. Compared with random NP and layer-wise

NP in Table 2, the maximum reduced resources by vanilla

NP are much less due to the imbalanced layer-wise distribu-

tion of neuron importance. Weighted neuron importance by

Eq. 9, however, further reduces 18.3% FLOPs and 29.6%

memory with 0.14% accuracy loss.

Reweighting by RANP-f and RANP-m further reduces

FLOPs and memory on the basis of weighted NP. Here,

RANP-f can reduce 96.8% FLOPs, 95.3% parameters, and

73.7% memory over the unpruned networks. Furthermore,

with a similar resource in Table 3, RANP achieves ∼0.5%

increase in accuracy. Note that a too-large λ can addition-

ally reduce the resources but at the cost of accuracy.

BraTS’18. In Table 2, RANP-f achieves 96.5% FLOPs,

95.1% parameters, and 80% memory reductions. It further

reduces 18.3% FLOPs and 33.3% memory over vanilla NP

while increasing -1.21% ET, 5.11% TC, and 0.77% WT.

With a similar resource in Table 3, RANP achieves higher

accuracy than random NP and layer-wise NP.

Additionally, Chen et al.[35] achieved 2× speedup on

BraTS’18 with 3D-UNet. In comparison, our RANP-f has

roughly 28× speedup, which is theoretically evidenced by

the reduced FLOPs from 478.13G to 16.97G in Table 2.

UCF101. In Table 2, for MobileNetV2, RANP-f reduces

55.2% FLOPs, 49% parameters, and 44.1% memory with

around 1% accuracy loss. Meanwhile, for I3D, it reduces

49.9% FLOPs, 43.5% parameters, and 35.3% memory with

around 2% accuracy increase. The RANP-based methods

can reduce much more resources than other methods.

5.4. Resources and Accuracy with Neuron Sparsity

Here, we further studied the tendencies of resources and

accuracy with an increasing neuron sparsity level from 0 to

the maximum one with network feasibility.

Resource Reductions. In Figs. 4a-4d, RANP, marked

with (w), achieves much larger FLOPs and memory reduc-

tions than vanilla NP, marked with (w/o), due to the bal-

anced distribution of neuron importance by reweighting.

Specifically, for ShapeNet, RANP prunes up to 98.57%

neurons while only up to 78.24% by vanilla NP in Fig. 4a.

For BraTS’18, RANP can prune up to 96.24% neurons

while only up to 78.17% neurons can be pruned by vanilla

NP in Fig. 4b. For UCF101, RANP can prune up to 80.83%

neurons compared to 33.15% on MobileNetV2 in Fig. 4c,

and 85.3% neurons compared to 25.32% on I3D in Fig. 4d.

Accuracy with Pruning Sparsity. For ShapeNet in

Fig. 4e, the 23-layer 3D-UNet achieves a higher mIoU than

the 15-layer one. Extremely, when pruned with the maxi-

mum neuron sparsity 97.99%, it can achieve 78.10% mIoU.

With the maximum neuron sparsity 98.57%, however, the

Table 2: Evaluation of neuron pruning capability. All models are trained from scratch for 100 epochs on ShapeNet and

UCF101, 200 on BraTS’18. Metrics are calculated by the last 5 epochs. “sparsity” is max parameter sparsity for SNIP

NP and max neuron sparsity for others. Among the neuron pruning methods, we marked bold the best and underlined

the second best. “↓” denotes reduction in %. Overall, our RANP-f performs best with large reductions of main resource

consumption (GFLOPs and memory) with negligible accuracy loss.

Dataset Model Manner Sparsity(%) Param(MB) GFLOPs Memory(MB) Metrics(%)

mIoU

ShapeNet

[10]
3D-UNet

Full[5] 0 62.26 237.85 997.00 83.79±0.21

SNIP[18] NP 98.98 5.31 (91.5↓) 126.22 (46.9↓) 833.20 (16.4↓) 83.70±0.20

Random NP

78.24

3.05 (95.1↓) 10.36 (95.6↓) 267.95 (73.1↓) 82.90±0.19

Layer-wise NP 2.99 (95.2↓) 11.63 (95.1↓) 296.22 (70.3↓) 83.25±0.14

o
u

rs

Vanilla NP 2.54 (95.9↓) 55.69 (76.6↓) 557.32 (44.1↓) 83.26±0.14

Weighted NP 2.97 (95.2↓) 12.06 (94.9↓) 301.56 (69.8↓) 83.12±0.09

RANP-m 3.39 (94.6↓) 6.68 (97.2↓) 214.95 (78.4↓) 82.35±0.24

RANP-f 2.94 (95.3↓) 7.54 (96.8↓) 262.66 (73.7↓) 83.07±0.22

ET TC WT

BraTS’18

[11, 20]
3D-UNet

Full[5] 0 15.57 478.13 3628.00 72.96±0.60 73.51±1.54 86.79±0.35

SNIP[18] NP 98.88 1.09 (93.0↓) 233.11 (51.2↓) 2999.64 (17.3↓) 73.33±1.89 71.98±2.15 86.44±0.39

Random NP

78.17

0.75 (95.2↓) 22.59 (95.3↓) 817.59 (77.5↓) 67.27±0.99 71.62±1.20 74.16±1.33

Layer-wise NP 0.75 (95.2↓) 24.09 (95.0↓) 836.88 (77.0↓) 69.74±1.33 71.49±1.62 86.38±0.39

o
u

rs

Vanilla NP 0.55 (96.5↓) 104.50 (78.1↓) 1936.44 (46.6↓) 71.94±1.68 69.39±2.29 84.68±0.78

Weighted NP 0.79 (95.0↓) 22.40 (95.3↓) 860.64 (76.3↓) 71.50±0.63 75.05±1.19 84.05±0.65

RANP-m 0.87 (94.4↓) 13.47 (97.2↓) 506.97 (86.0↓) 66.70±2.94 62.99±2.38 82.90±0.41

RANP-f 0.76 (95.1↓) 16.97 (96.5↓) 729.11 (80.0↓) 70.73±0.66 74.50±1.05 85.45±1.06

Top-1 Top-5

UCF101

[40]

MobileNetV2

Full[21] 0 9.47 0.58 157.47 47.08±0.72 76.68±0.50

SNIP[18] NP 86.26 3.67 (61.3↓) 0.54 (6.9↓) 155.35 (1.3↓) 45.78±0.04 75.08±0.17

Random NP

33.15

4.58 (51.6↓) 0.34 (41.4↓) 106.68 (32.3↓) 44.74±0.36 74.69±0.58

Layer-wise NP 4.56 (51.8↓) 0.33 (43.1↓) 106.92 (32.1↓) 44.90±0.36 75.54±0.34

o
u

rs

Vanilla NP 6.35 (32.9↓) 0.55 (5.2↓) 155.17 (1.5↓) 46.32±0.79 75.42±0.60

Weighted NP 4.82 (49.1↓) 0.30 (48.3↓) 100.33 (36.3↓) 46.19±0.51 75.72±0.30

RANP-m 4.87 (48.6↓) 0.27 (53.4↓) 84.51 (46.3↓) 45.11±0.41 75.53±0.37

RANP-f 4.83 (49.0↓) 0.26 (55.2↓) 88.01 (44.1↓) 45.87±0.41 75.75±0.30

I3D

Full[22] 0 47.27 27.88 201.28 51.58±1.86 77.35±0.63

SNIP[18] NP 81.09 30.06 (36.4↓) 26.31 (5.6↓) 195.62 (2.8↓) 52.38±3.55 78.32±3.24

Random NP

25.32

26.36 (44.2↓) 16.45 (41.0↓) 145.07 (27.9↓) 52.42±2.52 79.05±2.06

Layer-wise NP 26.67 (43.6↓) 16.93 (39.3↓) 150.95 (25.0↓) 52.77±1.99 78.41±1.07

o
u

rs

Vanilla NP 29.93 (36.7↓) 25.76 (7.6↓) 192.42 (4.4↓) 51.57±1.46 78.07±1.34

Weighted NP 26.57 (43.8↓) 15.56 (44.2↓) 142.57 (29.2↓) 54.09±0.82 79.26±0.61

RANP-m 26.75 (43.4↓) 14.08 (49.5↓) 130.44 (35.2↓) 52.11±3.05 77.54±2.64

RANP-f 26.69 (43.5↓) 13.98 (49.9↓) 130.22 (35.3↓) 54.27±2.88 79.27±2.13

Table 3: In addition to Table 2, with similar GFLOPs or memory on 3D-UNets, our RANP-f achieves the highest accuracy.

Manner
ShapeNet BraTS’18

Sparsity Param GFLOPs Mem mIoU Sparsity Param GFLOPs Mem ET TC WT

Random NP 81.01 2.27 ∼7.54 253.12 82.66±0.23 81.08 0.56 ∼16.97 685.77 61.09±1.87 68.94±2.44 78.89±2.47

Layer-wise NP 82.82 1.84 ∼7.54 255.67 82.82±0.26 83.50 0.46 ∼16.97 700.64 70.50±0.63 74.27±0.95 83.63±0.92

Random NP 78.83 2.87 9.57 ∼262.66 82.86±0.45 80.90 0.57 17.95 ∼729.11 68.45±1.11 70.67±1.21 75.02±0.79

Layer-wise NP 82.81 1.94 8.14 ∼262.66 82.52±0.13 82.45 0.51 17.31 ∼729.11 70.45±1.03 69.27±1.95 82.42±0.68

RANP-f(ours) 78.24 2.94 7.54 262.66 83.07±0.22 78.17 0.76 16.97 729.11 70.73±0.66 74.50±1.05 85.45±1.06

15-layer 3D-UNet achieves only 61.42%.

For BraTS’18 in Fig. 4f, the 23-layer 3D-UNet does not

always outperform the 15-layer one and has a larger fluc-

tuation which could be caused by the limited training sam-

ples. Nevertheless, even in the extreme case, the 23-layer

3D-UNet has small accuracy loss. Clearly, RANP makes it

feasible to use deeper 3D-UNets without the memory issue.

For UCF101 in Figs. 4g-4h, RANP-f achieves <3% ac-

curacy loss at 70% neuron sparsity, indicating its effective-

ness of greatly reducing resources with small accuracy loss.

5.5. Transferability with Interactive Model

In this experiment, we trained on ShapeNet with a trans-

ferred 3D-UNet by RANP on BraTS’18 with 80% neuron

Table 4: Transfer learning by 23-layer 3D-UNets interac-

tively pruned and trained between ShapeNet and BraTS’18.

Accuracy loss from RANP-f to T-RANP-f is negligible.

“T”: transferred.

Manner
ShapeNet BraTS’18

mIoU(%) ET(%) TC(%) WT(%)

Full[5] 84.27±0.21 74.04±1.45 75.11±2.43 84.49±0.74

RANP-f(ours) 83.86±0.15 71.13±1.43 72.40±1.48 83.32±0.62

T-RANP-f(ours) 83.25±0.17 72.74±0.69 73.25±1.69 85.22±0.57

sparsity. Interactively, with the same neuron sparsity, a

transferred 3D-UNet by RANP on ShapeNet was applied

to train on BraTS’18. Results in Table 4 demonstrate that

training with transferred models crossing different datasets

can largely maintain high or higher accuracy.

0 20 40 60 80 100
Neuron Sparsity (%)

0

20

40

60

80

100

P
ru

ni
ng

 R
at

io
 (

%
)

FLOPs(w)
Param(w)
Memory(w)
FLOPs(w/o)
Param(w/o)
Memory(w/o)

78.20 98.57

(a) ShapeNet/3D-UNet

0 20 40 60 80 100
Neuron Sparsity (%)

0

20

40

60

80

100

P
ru

ni
ng

 R
at

io
 (

%
)

FLOPs(w)
Param(w)
Memory(w)
FLOPs(w/o)
Param(w/o)
Memory(w/o)

96.2478.17

(b) BraTS’18/3D-UNet

0 20 40 60 80
Neuron Sparsity (%)

0

20

40

60

80

100

P
ru

ni
ng

 R
at

io
 (

%
)

FLOPs(w)
Param(w)
Memory(w)
FLOPs(w/o)
Param(w/o)
Memory(w/o)

33.15 80.83

(c) UCF101/MobileNetV2

0 20 40 60 80
Neuron Sparsity (%)

0

20

40

60

80

100

P
ru

ni
ng

 R
at

io
 (

%
)

FLOPs(w)
Param(w)
Memory(w)
FLOPs(w/o)
Param(w/o)
Memory(w/o)

25.32 85.3

(d) UCF101/I3D

(e) ShapeNet/3D-UNet (f) BraTS’18/3D-UNet (g) UCF101/MobileNetV2 (h) UCF101/I3D

Figure 4: With minimal accuracy loss, more resources are reduced with (w) reweighting by RANP-f than without (w/o) by

vanilla NP. (a)-(d) are resources reductions (w) and (w/o) reweighting; (e)-(h) are accuracy and sparsity. Best view in color.

Table 5: ShapeNet: a deeper 23-layer 3D-UNet is achiev-

able on a single GPU with 80% neuron pruning.

Manner Layer Batch GPU(s) Sparsity(%) mIoU(%)

Full 15 12 2 0 83.79±0.21

Full 23 12 2 0 84.27±0.21

RANP-f(ours) 23 12 1 80 84.34±0.21

5.6. Lightweight Training on a Single GPU

RANP with high neuron sparsity makes it feasible to

train with large data size on a single GPU due to the largely

reduced resources. We trained on ShapeNet with the same

batch size 12 and spatial size 643 in Sec. 5.1 using a 23-

layer 3D-UNet with 80% neuron sparsity on a single GPU.

With this setup, RANP-f reduces ∼ 35× GFLOPs (from

259.59 to 7.39) and ∼ 3.9× memory (from 1005.96MB to

255.57MB), making it feasible to train on a single GPU in-

stead of 2 GPUs. It achieves a higher mIoU, 84.34±0.21%,

than the 15-layer and 23-layer full 3D-UNets in Table 5.

The accuracy increase is due to the enlarged batch size

on each GPU. With limited memory, however, training a

23-layer full 3D-UNet on a single GPU is infeasible.

5.7. Fast Training with Increased Batch Size

Here, we used the largest spatial size 1283 of one sam-

ple on a single GPU and then extended it to RANP with

increased batch size from 1 to 4 to fully fill GPU capacity.

The initial learning rate was reduced from 0.1 to 0.01 due to

the batch size decreased from 12 in Table 5. This is to avoid

an immediate increase in training loss right after 1st epoch

due to the unsuitably large learning space.

In Fig. 5a, RANP-f enables increased batch size 4 and

achieves a faster loss convergence than the full network. In

Fig. 5c, the full network executed 6 epochs while RANP-

f reached 26 epochs. Vividly shown by training time in

Figs. 5b and 5d, RANP-f has much lower loss and higher

accuracy than the full one. This greatly indicates the practi-

cal advantage of RANP on fastening training convergence.

0 1 2 3 4
Iteration 104

0

2

4

T
ra

in
 L

os
s Full

RANP-f

(a)

0 10 20 30 40
Time (hour)

0

2

4

T
ra

in
 L

os
s Full

RANP-f

(b)

0 5 10 15 20 25 30
Epoch

50

60

70

80

V
al

 m
Io

U
(%

)

Full
RANP-f

(c)

0 10 20 30 40
Time (hour)

40

60

80

100

V
al

 m
Io

U
(%

)

Full RANP-f

(d)

Figure 5: ShapeNet: a faster convergence on a single GPU

with 23-layer 3D-UNet and increased batch size due to the

largely reduced resources by RANP-f. Batch size is 1 for

“Full” and 4 for “RANP-f”. Experiments run for 40 hours.

6. Conclusion

In this paper, we propose an effective resource aware

neuron pruning method, RANP, for 3D CNNs. RANP

prunes a network at initialization by greatly reducing re-

sources with negligible loss of accuracy. Its resource aware

reweighting scheme balances the neuron importance distri-

bution in each layer and enhances the pruning capability

of removing a high ratio, say 80% on 3D-UNet, of neu-

rons with minimal accuracy loss. This advantage enables

training deep 3D CNNs with a large batch size to improve

accuracy and achieving lightweight training on one GPU.

Our experiments on 3D semantic segmentation using

ShapeNet and BraTS’18 and video classification using

UCF101 demonstrate the effectiveness of RANP by pruning

70%-80% neurons with minimal loss of accuracy. More-

over, the transferred models pruned on a dataset and trained

on another one are succeeded in maintaining high accuracy,

indicating the high transferability of RANP. Meanwhile, the

largely reduced computational resources enable lightweight

and fast training on one GPU with increased batch size.

Acknowledgement

We would like to thank Ondrej Miksik for valuable dis-

cussions. This work is supported by the Australian Centre

for Robotic Vision (CE140100016) and Data61, CSIRO.

Appendix

We first provide the pseudocode of our RANP algorithm,

then discuss our selection of MPMG-sum as vanilla NP, and

justify our reweighting scheme against orthogonal initial-

ization with more ablation experiments.

A. Pseudocode of RANP Procedures

In Alg. 1, we provide the pseudocode of the pruning pro-

cedures of RANP. In Alg. 2, we used a simple half-space

method to automatically search for the max neuron sparsity

with network feasibility. Note that this searching cannot

guarantee a small accuracy loss but merely to decide the

maximum pruning capability. The relation between prun-

ing capability and accuracy was studied in the experimental

section in the main paper and Table 6.

Loss Function and Metrics. Due to the page limita-

tion, we provide loss functions and metrics used in our ex-

periments. Standard cross-entropy function was used as the

loss function for ShapeNet and UCF101. For BraTS’18, the

weighted function in [39] is

L = Lce + αLdice = Lce + α
1

C

C
∑

i=1

2|Pi ∩Gi|

|P|+ |G|
, (12)

where α = 0.25 is an empiric weight for dice loss, P

is prediction, G is ground truth, and C is the number of

classes. Meanwhile, ShapeNet accuracy was measured by

mean IoU over each part of object category [47] while IoU

by |P∩G|/|P∪G|was adopted for BraTS’18. For UCF101

classification, top-1 and top-5 recall rates were used.

B. Impacts of the Activation Function

(a) Pre-activations (b) Post-activations

Figure 6: Pre-activations and post-activations, where x are

layer inputs, w are weights, c are neuron masks, φ(·) is an

activation function, h are hidden values, and y are outputs.

In the following, we first establish the relation between

MPMG and MNMG for calculating neuron importance

given a homogeneous activation function φ(·) that includes

but not limited to ReLU used in the 3D CNNs. Then we

analyze the impact of such an activation function on the cal-

culation of neuron importance by derivating the mask gra-

dients on post-activations and pre-activations illustrated in

Figs. 6b and 6a respectively.

Proposition 1 For a network activation function φ(w):
R → R being a homogeneous function of degree 1 satis-

fying φ(cw) = cφ(w), ∀c ≥ 0, the neuron mask gradient

equals the sum of parameter mask gradients of this neuron.

Proof: Given a neuron mask c1 before the activation func-

tion φ(·) in Fig. 6a and the output of the 1st neuron as yl1,

we have

yl1 = φ(cl1 ⊙ hl
1)

= φ
(

cl1 ⊙
(

xl−1
1 wl

11 + xl−1
2 wl

12 + xl−1
3 wl

13

))

= φ
(

cl1x
l−1
1 wl

11 + cl1x
l−1
2 wl

12 + cl1x
l−1
3 wl

13

)

.

(13)

The gradient of loss L over the neuron mask cl1 is

∂L

∂cl1
=

∂L

∂yl1

∂yl1
∂cl1

=
∂L

∂yl1

(

xl−1
1 wl

11 + xl−1
2 wl

12 + xl−1
3 wl

13

)

.

(14)

Meanwhile, if setting masks on weights of this neuron di-

rectly, we can obtain

yl1 = φ(cl11x
l−1
1 wl

11 + cl12x
l−1
2 wl

12 + cl13x
l−1
3 wl

13) , (15)

then the gradient of weight mask, e.g., cl11, from loss is

∂L

cl11
=

∂L

∂yl1

∂yl1
∂cl11

=
∂L

∂yl1
xl−1
1 wl

11 . (16)

Similarly,

∂L

∂cl11
+

∂L

∂cl12
+

∂L

∂cl13

=
∂L

∂yl1

(

xl−1
1 wl

11 + xl−1
2 wl

12 + xl−1
3 wl

13

)

.

(17)

Clearly, Eq. 14 equals Eq. 17. Hence, the neuron mask

gradients can be calculated by parameter mask gradients.

To this end, the proof is done.

Furthermore, given such a homogeneous activation func-

tion in Prop. 1, the importance of a post-activation equals

the importance of its pre-activation. In more detail, for post-

activations in Fig. 6b, output yl1 is

yl1 = cl1 ⊙ φ(hl
1)

= cl1 ⊙ φ
(

xl−1
1 wl

11 + xl−1
2 wl

12 + xl−1
3 wl

13

)

.
(18)

Algorithm 1: Pruning Procedures of RANP-[f|m].

Input: Dataset D = {(xi,yi)}Si=1 with B samples per batch, neuron sparsity κ, resource importance {τl}, coefficient

λ > 0, and parameter masks c = {cluv}, where layer l ∈ K = {1, ...,K}, and neuron u ∈ Nl = {1, ..., Nl}.
Output: Binary neuron masks ĉ = {ĉlu}.

1 for batch t ∈ {1, ..., ⌊S/B⌋} do

2 Dt ← {(xi,yi)}tBi=(t−1)B+1 ⊲mini-batch

3 gluv ← ∂L(c⊙w;Dt)/∂cluv ⊲parameter mask gradient, Eq. 2

4 gluv ← |g
l
uv|, for MPMG ⊲parameter mask importance, Eq. 6

5 ∇cluv
+
← gluv, ∀u ∈ Nl, ∀v ∈ Nl−1 ⊲gradient accumulation

6 ∇cluv ← ∇c
l
uv/⌊S/B⌋, ∀u ∈ Nl, ∀v ∈ Nl−1, ∀l ∈ K ⊲average on mini-batch

7 slu ← |
∑Nl−1

v=1 ∇c
l
uv|, ∀u ∈ Nl, ∀l ∈ K ⊲vanilla neuron importance, Eq. 8

8 s̄l ←
∑

u∈Nl
slu/Nl, ∀l ∈ K ⊲mean neuron importance, Eq. 9

9 s̃lu ← (maxj∈K s̄j/s̄l)slu, ∀u ∈ Nl, ∀l ∈ K ⊲weighting, Eq. 9

10 ŝlu ← (1 + λe−τl/
∑

j∈K e−τj)s̃lu, ∀u ∈ Nl, ∀l ∈ K ⊲reweighting, Eq. 10

11 {s̈u} ← SortDescending
(

{ŝlu}
)

, ∀u ∈ Nl, ∀l ∈ K ⊲sorting in descending

12 ĉlu ← 1[ŝlu − s̈κ ≥ 0], ∀u ∈ Nl, ∀l ∈ K ⊲binary neuron mask, Eq. 11

Algorithm 2: Auto-Search for Max Neuron Spar-

sity .

Input: Dataset D, layerwise resource usage τ w.r.t.

FLOPs or memory, coefficient λ > 0, lower

and upper sparsity κmin and κmax, threshold

δ = 1e− 4. “feasible network” means not

all neurons are removed in each layer.

Output: Max neuron sparsity κ∗.

1 Initilize κmin ← 0, κmax ← 1
2 while (κmax − κmin > δ) do

3 κ = 0.5 (κmin + κmax)
4 y = NeuronPruning(D, τ , λ, κ) ⊲Alg. 1

5 if y == 0(feasible network) then

6 κmin ← κ
7 else

8 κmax ← κ

9 κ∗ = κ

Since the activation function satisfies cφ(w) = φ(cw),

yl1 = φ(cl1x
l−1
1 wl

11 + cl1x
l−1
2 wl

12 + cl1x
l−1
3 wl

13) . (19)

The neuron importance determined by neuron mask cl1 is

∂L

∂cl1
=

∂L

∂yl1

∂yl1
∂cl1

=
∂L

∂yl1

(

xl−1
1 wl

11 + xl−1
2 wl

12 + xl−1
3 wl

13

)

.

(20)

Clearly, Eq. 20 equals Eq. 14. Now, the importance of

pre-activations and post-activations is the same given such

a homogeneous activation function.

C. Resource Aware Reweighting Scheme

As described in Sec. 4.2 in the main paper, the reweight-

ing of RANP is conducted by first balancing the layer-

wise distribution of neuron importance and then adopting

resource importance τl for layer l ∈ K to further reduce re-

sources. Since FLOPs and memory are the main resources

of 3D CNNs, τl is defined by FLOPs or memory as follows.

Generally, given input dimension of the lth layer

(xin, xh, xw, xd)
3, neuron dimension (fout, fin, fh, fw, fd),

and output dimension (yin, yh, yw, yd) with xin = fin and

fout = yin, the resource importance in terms of FLOPs or

memory is defined by

FLOPs: τl = [(fhfwfd + fhfwfd − 1) fin

+fin − 1 + 1|bias] yinyhywyd

=(2fhfwfdfin − 1 + 1|bias) yinyhywyd, (21a)

Memory: τl = yinyhywyd, (21b)

where (fhfwfd) is the number of operations of multiplica-

tions of filter4 and layer input, (fhfwfd−1) is for additions

of values from the multiplications, (fin) is for multiplica-

tions over all fin filters, (fin − 1) is for additions of val-

ues from all these multiplications, (1|bias) is for an addition

when the neuron has a bias, and (yinyhywyd) is for all ele-

ments of the layer output.

D. More Ablation Study

In this section, we add more experimental results for the

analysis of selecting MPMG-sum as vanilla NP, Glorot ini-

tialization for network initialization compared with orthog-

3The dimension order follows that of PyTorch.
4Here, we refer a 3D filter with dimension (fh, fw, fd).

onal initialization [19] to handle the imbalanced layer-wise

distribution of neuron importance, and visualization of neu-

ron distribution by RANP for BraTS’18 in addition to that

for ShapeNet in the main paper.

Figures in this sections are for 3D-UNets on ShapeNet

and BraTS’18 because 3D-UNets used in our experiments

typically clarify the neuron imbalance and memory issues

and are clear for illustration with a limited number of layers,

i.e., 15 layers, while MobileNetV2 and I3D have more than

55 layers but many are not typical 3D convolutional layers

with 33 kernel size filters.

D.1. MPMG­sum as Vanilla Neuron Pruning

In Sec. 5.2 in the main paper, we select MPMG-sum as

vanilla neuron pruning for the trade-off between compu-

tational resources and accuracy. To give a comprehensive

study of this selection, we demonstrate detailed results of

mean, max, and sum operations of MPMG and MNMG in

Table 6. Note that we relax the sum operation in Eq. 8 in

the main paper to mean, max, and sum.

In Table 6, we aim at obtaining the maximum neu-

ron sparsity due to the target of reducing the computa-

tional resources at an extreme sparsity level with mini-

mal accuracy loss. Vividly, for ShapeNet, MPMG-sum

achieves the largest maximum neuron sparsity 78.24%

among all with only∼0.53% accuracy loss. Differently, for

BraTS’18, MNMG-sum has the largest maximum neuron

sparsity 81.32%; however, the accuracy loss can reach up

to ∼8.48%. In contrast, while MPMG-sum has the second-

largest maximum neuron sparsity 78.17%, the accuracy loss

is much smaller than MNMG-sum. For UCF101, it is sur-

prising that many manners have low accuracy. As we anal-

yse the reason in the footnote in Table 6, with the extreme

neuron sparsity, some layers of the pruned networks have

only 1 neuron retained, losing sufficient features for learn-

ing, and thus, leading to low accuracy.

Hence, considering the comprehensive performance of

reducing resources and maintaining the accuracy, MPMG-

sum is selected as vanilla NP. Note that any neuron sparsity

greater than the maximum neuron sparsity will make the

pruned network infeasible by pruning the whole layer(s).

3For MobileNetV2 pruned by MPMG-mean, MPMG-max, MNMG-

max, and MNMG-sum, the accuracy is very low because 1) the neuron

sparsity here is the extreme (largest) value, a larger one will make network

infeasible by removing whole layer(s) and 2) the distribution of neuron

importance is rather imbalanced possibly caused by the high mixture of 13

kernels and 33 in MobileNetV2.

In the pruned networks, we observe that, for MPMG-mean, MPMG-

max, and MNMG-max, the last convolutional layer has only 1 neuron re-

tained; for MNMG-sum, 2 convolutional layers have only 1 neuron re-

tained. Note that, this imbalance issue can be greatly alleviated by the

reweighting of our RANP, while we select MPMG-sum as vanilla NP

merely according to the results in Table 6.

D.2. Initialization for Neuron Imbalance

The imbalanced layer-wise distribution of neuron im-

portance hinders pruning at a high sparsity level due to

the pruning of the whole layer(s). For 2D classification

tasks in [19], orthogonal initialization is used to effectively

solve this problem for balancing the importance of param-

eters; but it does not improve our neuron pruning results in

3D tasks and even leads to a poor pruning capability with

a lower maximum neuron sparsity than Glorot initializa-

tion [45]. This is briefly mentioned in Sec. 4.1 in the main

paper. Here, we compare the resource reducing capability

using Glorot initialization and orthogonal initialization.

Resource reductions. In Table 7, vanilla neuron pruning

(i.e., MPMG-sum) with Glorot initialization, i.e., vanilla-

xn, achieves smaller FLOPs and memory consumption than

those with orthogonal initialization, i.e., vanilla-ort, except

FLOPs with 3D-UNet on ShapeNet and I3D on UCF101.

This exception of I3D on UCF101 is possibly caused by the

high ratio of 13 kernel size filters in I3D, i.e., 37 out of 57

convolutional layers, because those 13 kernel size filters can

be regarded as 2D filters on which orthogonal initialization

can effectively deal with [19]. While this ratio is also high

in MobileNetV2, i.e., 34 out of 52 convolutional layers, it is

unnecessary to have the same problem as I3D since it is also

affected by the number of neurons in each layer. Note that

since 3D-UNets used are all with 33 kernel size filters, the

orthogonal initialization for 3D-UNet in most cases is infe-

rior to Glorot initialization according to our experiments.

Meanwhile, in Table 7, this gap between vanilla-ort and

vanilla-xn is very small on MobileNetV2 and I3D.

Nevertheless, with RANP-f and Glorot initialization, i.e.,

RANP-f-xn, more FLOPs and memory can be reduced than

using orthogonal initialization, i.e., RANP-f-ort.

Balance of Neuron Importance Distribution. More

importantly, with reweighting by RANP in Fig. 7, the val-

ues of neuron importance are more balanced and stable than

those of vanilla neuron importance. This can largely avoid

network infeasibility without pruning the whole layer(s).

Now, we analyse the neuron distribution from the obser-

vation of neuron importance values and network structures.

Fig. 8 illustrates a detailed comparison between orthogo-

nal and Glorot initialization by each two subfigures in col-

umn of Fig. 7. In Figs. 8a-8c, vanilla neuron importance by

Glorot initialization is more stable and compact than that

by orthogonal initialization. After applying the reweighting

scheme of RANP-f, the importance tends to be in a similar

tendency, shown in Figs. 8b-8d. Consequently, in Figs. 8e-

8f, neuron ratios are more balanced after the reweighting

than without reweighting, especially the 8th layer. Thus, we

choose Glorot initialization as network initialization. Note

that we adopt the same neuron sparsity for these two initial-

ization experiments in Table 7 and Fig. 8.

Table 6: More results of vanilla NP in addition to Table 1 in the main paper. Main resource consumption (GFLOPs and

memory) are considered but not parameters whose resource consumption is much smaller than memory. Among the neuron

pruning methods, we marked bold the best and underlined the second best. Overall, we selected MPMG-sum as vanilla NP

and the corresponding neuron sparsity for large resource reductions with small accuracy loss.

Dataset Model Manner Sparsity(%) Param(MB) GFLOPs Memory(MB) Metrics(%)

mIoU

ShapeNet 3D-UNet

Full[5] 0 62.26 237.85 997.00 83.79±0.21

MPMG-mean 68.10 5.08 110.14 819.97 83.33±0.18

MPMG-max 70.24 4.54 107.38 809.88 83.79±0.10

MPMG-sum 78.24 2.54 55.69 557.32 83.26±0.14

MNMG-mean 63.03 4.23 112.95 834.98 83.46±0.13

MNMG-max 73.93 3.67 103.57 796.44 83.51±0.08

MNMG-sum 66.93 4.29 100.34 783.14 83.65±0.02

ET TC WT

BraTS’18 3D-UNet

Full[5] 0 15.57 478.13 3628.00 72.96±0.60 73.51±1.54 86.79±0.35

MPMG-mean 65.64 1.48 226.86 3038.27 73.51±0.82 73.28±1.14 87.15±0.43

MPMG-max 75.78 0.83 189.43 2812.53 73.67±0.98 72.73±1.70 86.44±0.71

MPMG-sum 78.17 0.55 104.50 1936.44 71.94±1.68 69.39±2.29 84.68±0.78

MNMG-mean 63.85 1.08 176.76 2790.64 73.35±0.70 73.38±0.94 87.21±0.38

MNMG-max 80.05 0.59 169.99 2676.05 72.52±1.91 72.40±1.74 84.63±0.60

MNMG-sum 81.32 0.35 73.50 1933.20 64.48±1.10 68.47±1.59 80.71±1.07

Top-1 Top-5

UCF101

MobileNetV2

Full[21] 0 9.47 0.58 157.47 47.08±0.72 76.68±0.50

MPMG-mean 26.31 4.39 0.55 156.00 2.98±0.14 5 14.04±0.14

MPMG-max 29.48 3.96 0.54 155.38 3.49±0.12 13.64±0.10

MPMG-sum 33.15 6.35 0.55 155.17 46.32±0.79 75.42±0.60

MNMG-mean 38.91 2.79 0.50 147.69 29.13±0.92 62.93±1.37

MNMG-max 50.33 2.59 0.53 153.45 2.84±0.06 13.40±0.23

MNMG-sum 39.89 4.66 0.43 120.01 1.03±0.00 5.76±0.00

I3D

Full[22] 0 47.27 27.88 201.28 51.58±1.86 77.35±0.63

MPMG-mean 16.47 31.57 26.50 196.51 51.88±2.00 77.98±1.46

MPMG-max 19.83 30.06 26.31 195.62 52.44±1.25 78.08±1.27

MPMG-sum 25.32 29.93 25.76 192.42 51.57±1.46 78.07±1.34

MNMG-mean 35.36 16.69 15.37 124.85 49.26±0.96 75.70±1.49

MNMG-max 40.27 17.86 23.73 184.77 44.90±1.19 74.43±1.26

MNMG-sum 32.87 20.00 16.03 125.17 46.90±1.26 74.02±1.25

D.3. Visualization of Balanced Neuron Distribution
by RANP

In Fig. 9, neuron importance by MPMG-sum is more bal-

anced than by MNMG-sum, which avoids pruned networks

by MPMG-sum to be infeasible, that is at least 1 neuron will

be retained in each layer.

In addition to the distribution of retained neuron ratios in

Fig. 2 in the main paper for ShapeNet, which is also shown

in the first row of Fig. 10, the last row of Fig. 10 is for

BraTS’18. Moreover, Fig. 11 illustrates the distribution of

neurons retained in each layer by vanilla neuron pruning

(i.e., vanilla NP) and RANP-f compare to the full network.

Clearly, upon pruning, neurons in each layer are largely

reduced except the last layer where all neurons are retained

for the number of segmentation classes. In Fig. 11, vanilla

NP has very few neurons in, e.g., the 8th layer, resulting

in low accuracy or network infeasibility. By contrast, the

neuron distribution by RANP-f is more balanced to improve

the pruning capability.

References

[1] H. Zhang, K. Jiang, Y. Zhang, Q. Li, C. Xia, and X. Chen,

“Discriminative feature learning for video semantic segmen-

tation,” International Conference on Virtual Reality and Vi-

sualization, 2014.

[2] C. Zhang, W. Luo, and R. Urtasun, “Efficient convolutions

for real-time semantic segmentation of 3D point cloud,”

3DV, 2018.

[3] S. Ji, W. Xu, M. Yang, and K. Yu, “3D convolutional neural

networks for human action recognition,” TPAMI, 2013.

[4] R. Hou, C. Chen, R. Sukthankar, and M. Shah, “An efficient

3D CNN for action/object segmentation in video,” BMVC,

2019.

[5] O. Cicek, A. Abdulkadir, S. Lienkamp, T. Brox, and O. Ron-

neberger, “3D U-Net: Learning dense volumetric segmenta-

tion from sparse annotation,” MICCAI, 2016.

[6] F. Zanjani, D. Moin, B. Verheij, F. Claessen, T. Cherici,

T. Tan, and P. With, “Deep learning approach to semantic

segmentation in 3D point cloud intra-oral scans of teeth,”

Proceedings of Machine Learning Research, 2019.

(a) ShapeNet, Vanilla NP-ort (b) ShapeNet, Vanilla NP-xn (c) ShapeNet, RANP-f-ort (d) ShapeNet, RANP-f-xn

(e) BraTS’18, Vanilla NP-ort (f) BraTS’18, Vanilla NP-xn (g) BraTS’18, RANP-f-ort (h) BraTS’18, RANP-f-xn

Figure 7: Neuron importance of 15-layer 3D-UNet by MPMG-sum with orthogonal and Glorot initialization. Blue: neuron

values; red: mean values. By vanilla NP, orthogonal initialization does not result in a balanced neuron importance distribution

compared to Glorot initialization whereas by our RANP-f, the values are more balanced and resource aware on FLOPs,

enabling pruning at the extreme sparsity.

2 4 6 8 10 12 14
Layer

0.2
0.4
0.6
0.8

1
1.2

V
al

ue

Vanilla-ort
Vanilla-xn

(a) ShapeNet

2 4 6 8 10 12 14
Layer

1.6
1.8

2
2.2
2.4

V
al

ue

RANP-f-ort
RANP-f-xn

(b) ShapeNet

2 4 6 8 10 12 14
Layer

0.02

0.04

0.06

V
al

ue

Vanilla-ort
Vanilla-xn

(c) BraTS’18

2 4 6 8 10 12 14
Layer

0.4

0.5

0.6

V
al

ue

RANP-f-ort
RANP-f-xn

(d) BraTS’18

1 3 5 7 9 11 13 15
Layer

0

25

50

75

100

N
eu

ro
n

R
at

io
 (

%
) Vanilla-ort

Vanilla-xn
RANP-f-ort
RANP-f-xn

(e) ShapeNet

1 3 5 7 9 11 13 15
Layer

0

25

50

75

100

N
eu

ro
n

R
at

io
 (

%
) Vanilla-ort

Vanilla-xn
RANP-f-ort
RANP-f-xn

(f) BraTS’18

Figure 8: Comparison of neuron distribution with orthogonal and Glorot initialization before and after reweighting. (a)-(d)

are neuron importance values. (e)-(f) are neuron retained ratios. Vanilla versions (both orthogonal and Glorot initializations)

prune all the neuron in layer 8, leading to network infeasibility while our RANP-f versions have a balanced distribution of

retained neurons.

[7] J. Kleesiek, G. Urban, A. Hubert, D. Schwarz, K. Hein,

M. Bendszus, and A. Biller, “Deep MRI brain extraction: A

3D convolutional neural network for skull stripping,” Neu-

roImage, 2016.

[8] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar,

and L. Fei-Fei, “Large-scale video classification with convo-

lutional neural networks,” CVPR, 2014.

[9] K. Simonyan and A. Zisserman, “Two-stream convolutional

networks for action recognition in videos,” NeurIPS, 2014.

[10] L. Yi, V. Kim, D. Ceylan, I. Shen, M. Yan, H. Su, C. Lu,

Q. Huang, A. Sheffer, and L. Guibas, “A scalable active

framework for region annotation in 3D shape collections,”

SIGGRAPH Asia, 2016.

(a) ShapeNet, MNMG-sum (b) ShapeNet, MPMG-sum (c) BraTS’18, MNMG-sum (d) BraTS’18, MPMG-sum

Figure 9: MNMG-sum and MPMG-sum on ShapeNet and BraTS’18 with max neuron sparsity in Table 6. Blue: neuron

values; red: mean values. Clearly, neuron importance distribution by MPMG-sum is more balanced than by MNMG-sum.

(a) ShapeNet, Vanilla NP Eq. 6 (b) ShapeNet, Weighted NP Eq. 9 (c) ShapeNet, RANP-f Eq. 10

1 3 5 7 9 11 13 15
Layer

0

25

50

75

100

N
eu

ro
n

R
at

io
 (

%
)

Vanilla NP
RANP-f

(d) ShapeNet, Retain ratio

(e) BraTS’18, Vanilla NP Eq. 6 (f) BraTS’18, Weighted NP Eq. 9 (g) BraTS’18, RANP-f Eq. 10

1 3 5 7 9 11 13 15
Layer

0

25

50

75

100

N
eu

ro
n

R
at

io
 (

%
)

Vanilla NP
RANP-f

(h) BraTS’18, Retain ratio

Figure 10: Balanced neuron importance distribution by MPMG-sum on ShapeNet and BraTS’18. Neuron sparsity is 78.24%

on ShapeNet and 78.17% on BraTS’18. Blue: neuron values; red: mean values.

1 3 5 7 9 11 13 15
Layer

0

100

200

300

400

500

N
eu

ro
ns

Full
Vanilla NP
RANP-f

(a) ShapeNet

1 3 5 7 9 11 13 15
Layer

0

50

100

150

200

250

N
eu

ro
ns

Full
Vanilla NP
RANP-f

(b) BraTS’18

Figure 11: Layer-wise neuron distribution of 3D-UNets.

[11] B. Menze, A. Jakab, and S. B. et al, “The multimodal brain

tumor image segmentation benchmark (brats),” IEEE Trans-

actions on Medical Imaging, 2015.

[12] B. Graham, M. Engelcke, and L. Maaten, “3D semantic seg-

mentation with submanifold sparse convolutional networks,”

CVPR, 2018.

[13] C. Qi, H. Su, K. Mo, and L. Guibas, “Pointnet: Deep learning

on point sets for 3D classification and segmentation,” CVPR,

Table 7: Impact of parameter initialization on neuron prun-

ing. “ort”: orthogonal initialization; “xn”: Glorot initializa-

tion; “f”: FLOPs. “Sparsity” is the least max neuron spar-

sity among all manners to ensure the network feasibility.

RANP-f with Glorot initialization achieves the least FLOPs

and memory consumption.

Dataset(Model) Manner Sparsity(%) Param(MB) GFLOPs Mem(MB)

ShapeNet

(3D-UNet)

Full[5] 0 62.26 237.85 997.00

Vanilla-ort 70.53 4.40 72.65 630.00

Vanilla-xn 70.53 4.56 73.22 618.35

RANP-f-ort 70.53 5.40 21.73 366.29

RANP-f-xn 70.53 5.52 15.06 328.66

BraTS’18

(3D-UNet)

Full[5] 0 15.57 478.13 3628.00

Vanilla-ort[19] 72.20 0.95 159.91 2240.33

Vanilla-xn 72.20 0.92 130.28 2109.19

RANP-f-ort 72.20 1.24 33.28 967.56

RANP-f-xn 72.20 1.29 23.31 850.56

UCF101

(MobileNetV2)

Full[21] 0 9.47 0.58 157.47

Vanilla-ort[19] 30.21 6.80 0.56 155.71

Vanilla-xn 30.21 6.77 0.55 155.48

RANP-f-ort 30.21 5.12 0.32 105.88

RANP-f-xn 30.21 5.19 0.28 94.50

UCF101

(I3D)

Full[22] 0 47.27 27.88 201.28

Vanilla-ort[19] 24.24 30.56 25.83 192.70

Vanilla-xn 24.24 30.64 25.85 192.88

RANP-f-ort 24.24 27.39 15.94 144.10

RANP-f-xn 24.24 27.38 14.63 133.80

2017.

[14] Y. Guo, A. Yao, and Y. Chen, “Dynamic network surgery for

efficient dnns,” NeurIPS, 2016.

[15] X. Dong, S. Chen, and S. Pan, “Learning to prune deep neu-

ral networks via layer-wise optimal brain surgeon,” NeurIPS,

2017.

[16] Y. He, X. Zhang, and J. Sun, “Channel pruning for acceler-

ating very deep neural networks,” ICCV, 2017.

[17] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both

weights and connections for efficient neural network,”

NeurIPS, 2015.

[18] N. Lee, T. Ajanthan, and P. Torr, “SNIP: Single-shot network

pruning based on connection sensitivity,” ICLR, 2019.

[19] N. Lee, T. Ajanthan, S. Gould, and P. Torr, “A signal propa-

gation perspective for pruning neural networks at initializa-

tion,” ICLR, 2020.

[20] S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki,

J. Kirby, J. Freymann, K. Farahani, and C. Davatzikos, “Ad-

vancing the cancer genome atlas glioma MRI collections

with expert segmentation labels and radiomic features,” Na-

ture Scientific Data, 2017.

[21] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and

L. Chen, “Mobilenetv2: Inverted residuals and linear bot-

tlenecks,” CVPR, 2018.

[22] J. Carreira and A. Zisserman, “Quo vadis, action recogni-

tion? a new model and the Kinetics dataset,” CVPR, 2017.

[23] C. Chen, F. Tung, N. Vedula, and G. Mori, “Constraint-aware

deep neural network compression,” ECCV, 2018.

[24] N. Yu, S. Qiu, X. Hu, and J. Li, “Accelerating convolutional

neural networks by group-wise 2D-filter pruning,” IJCNN,

2017.

[25] H. Li, A. Kadav, I. D. H. Samet, and H. Graf, “Pruning filters

for efficient convnets,” arXiv preprint arXiv:1608.08710,

2016.

[26] R. Yu, A. Li, C. Chen, J. Lai, V. Morariu, X. Han, M. Gao,

C. Lin, and L. Davis, “NISP: Pruning networks using neuron

importance score propagation,” CVPR, 2018.

[27] Z. Huang and N. Wang, “Data-driven sparse structure selec-

tion for deep neural networks,” ECCV, 2018.

[28] Y. He, J. Lin, Z. Liu, H. Wang, L. Li, and S. Han, “Amc:

Automl for model compression and acceleration on mobile

devices,” ECCV, 2018.

[29] M. Zhang and B. Stadie, “One-shot pruning of recur-

rent neural networks by jacobian spectrum evaluation,”

arXiv:1912.00120, 2019.

[30] C. Li, Z. Wang, X. Wang, and H. Qi, “Single-shot channel

pruning based on alternating direction method of multipli-

ers,” arXiv:1902.06382, 2019.

[31] J. Yu and T. Huang, “Autoslim: Towards one-shot architec-

ture search for channel numbers,” arXiv:1903.11728, 2019.

[32] C. Wang, G. Zhang, and R. Grosse, “Picking winning tickets

before training by preserving gradient flow,” ICLR, 2020.

[33] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz,

“Pruning convolutional neural networks for resource effi-

cient inference,” ICLR, 2017.

[34] Y. Zhang, H. Wang, Y. Luo, L. Yu, H. Hu, H. Shan, and

T. Quek, “Three dimensional convolutional neural network

pruning with regularization-based method,” ICIP, 2019.

[35] H. Chen, Y. Wang, H. Shu, Y. Tang, C. Xu, B. Shi, C. Xu,

Q. Tian, and C. Xu, “Frequency domain compact 3D convo-

lutional neural networks,” CVPR, 2020.

[36] A. Gordon, E. Eban, O. Nachum, B. Chen, H. Wu, T. Yang,

and E. Choi, “Morphnet: Fast & simple resource-constrained

structure learning of deep networks,” CVPR, 2018.

[37] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning

structured sparsity in deep neural networks,” NeurIPS, 2016.

[38] G. Riegler, A. Ulusoy, and A. Geiger, “OctNet: Learning

deep 3D representations at high resolutions,” CVPR, 2017.

[39] P. Kao, T. Ngo, A. Zhang, J. Chen, and B. Manjunath,

“Brain tumor segmentation and tractographic feature extrac-

tion from structural MR images for overall survival predic-

tion,” Workshop on MICCAI, 2018.

[40] K. Soomro, A. Zamir, and M. Shah, “UCF101: A dataset of

101 human action classes from videos in the wild,” CRCV-

Techinal Report, 2012.

[41] O. Kopuklu, N. Kose, A. Gunduz, and G. Rigoll, “Resource

efficient 3D convolutional neural networks,” ICCVW, 2019.

[42] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the im-

portance of initialization and momentum in deep learning,”

ICML, 2013.

[43] D. Kingma and J. Ba, “Adam: A method for stochastic opti-

mization,” ICLR, 2015.

[44] S. Reddi, S. Kale, and S. Kumar, “On the convergence of

adam and beyond,” ICLR, 2018.

[45] X. Glorot and Y. Bengio, “Understanding the difficulty of

training deep feedforward neural networks,” International

Conference on Artificial Intelligence and Statistics (AIS-

TATS), 2010.

[46] A. Saxe, J. McClelland, and S. Ganguli, “Exact solutions

to the nonlinear dynamics of learning in deep linear neural

networks,” ICLR, 2014.

[47] L. Yi, L. Shao, and M. Savva, “Large-scale 3D shape re-

construction and segmentation from shapenet core55,” arXiv

preprint arXiv:1710.06104, 2017.

