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Figure 1: RidgeSfM efficiently marries the classic SfM pipelines with recent deep approaches. Like
classic SfM, it employs a large scale bundle adjustment over hundreds of frames. Similar to deep methods,
it is capable of harnessing geometry priors from a large dataset with geometric annotations. We release the
source code at https://github.com/facebookresearch/RidgeSfM.

Abstract

We consider the problem of simultaneously estimating a dense depth map and camera pose for a large
set of images of an indoor scene. While classical SfM pipelines rely on a two-step approach where cameras
are first estimated using a bundle adjustment in order to ground the ensuing multi-view stereo stage, both
our poses and dense reconstructions are a direct output of an altered bundle adjuster. To this end, we
parametrize each depth map with a linear combination of a limited number of basis "depth-planes" predicted
in a monocular fashion by a deep net. Using a set of high-quality sparse keypoint matches, we optimize
over the per-frame linear combinations of depth planes and camera poses to form a geometrically consistent
cloud of keypoints. Although our bundle adjustment only considers sparse keypoints, the inferred linear
coefficients of the basis planes immediately give us dense depth maps. RidgeSfM is able to collectively align
hundreds of frames, which is its main advantage over recent memory-heavy deep alternatives that can align
at most 10 frames. Quantitative comparisons reveal performance superior to a state-of-the-art large-scale
SfM pipeline.

1 Introduction
Estimating the 3D structure and camera motion from image sequences is a traditional task that attracted the
computer vision community since its inception. Modern Structure-from-Motion (SfM) systems [36, 38] are
robust and able to reconstruct thousands if not millions of photos from significantly heterogeneous image
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Figure 2: An overview of RidgeSfM. (a) The key component is an efficient linear parametrization of depth
maps using a linear combination of basis depth planes Bµ(I), Bσ(I) (predicted by a CNN) with coefficients β.
(b) The linear parametrization allows to execute a memory efficient bundle adjustment (BA) that only considers
sparse keypoint matches and, thus, can align thousands of frames. Once BA optimizes the coefficients β
and extrinsics R, T , we can efficiently recover dense depth D = Bµ(I) +Bσ(I)β. Our BA thus indirectly
optimizes over dense depth.

collections. Suprisingly, since the the seminal works from [13, 1, 30, 39], there has been little change to the
fundamentals of the SfM pipeline.

This comes as an even bigger surprise after deep learning revolutionized most of the classic CV tasks -
SfM did not enjoy the benefits of deep learning to the extent other subfields have, and classic SfM building
blocks have prevailed. While there have been many efforts to boost reconstruction algorithms with deep
learning [45, 42, 4, 56, 43], due to their memory requirements, they only consider small-scale setups with
a handful of images that are incomparable to the vast scenes that classic SfM bundle adjusters can process.
Omitting the global optimization step constitutes a significant drawback since any short-term tracking system
will eventually drift without loop closure.

In this paper, we aim at achieving a more harmonious marriage between deep learning (DL) and the
classic SfM pipelines. Departing from the standard DL approach which considers losses defined over dense
pixel-wise predictions, we tap into the classic idea of utilizing only sparse keypoint matches, as their low
memory footprint is the main enabler of global optimization. However, we still employ CNNs in order to learn
powerful priors from annotated data.

The crux of our method lies in predicting the allowed factors of variation of 3D positions of image points.
More specifically, instead of employing the standard direct monocular regression of depth for each image,
we task our deep network to predict an intermediate representation of dense depth in the form of a set of
basis "depth-planes" that span the modes of ambiguity of the true image depth. Importantly, our per-frame
depth maps are simple linear combinations of the basis planes, bringing several benefits that summarize our
contributions:

First, the optimized depth prediction is constrained to lie on a compact manifold represented with a small
number of scalar coefficients of the basis planes. This alleviates the need for ad-hoc depth regularizers, such
as TV-norms.

Second, the linearity of our representation allows us to optimize reprojection losses for only a small set of
sparse keypoints in each frame without the need to keep the entire basis depth planes and intermediate CNN
features in memory. This brings tremendous memory savings and allows us to run bundle adjustment at a
similar scale to classic SfM pipelines.

Third, once our BA finishes, we can apply the returned basis coefficients to the depth planes to obtain the
dense depth maps in a straightforward fashion. This is more efficient than classic SfM pipelines which require
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additional multi-view stereo processing to recover dense reconstructions.
Our empirical evaluation on the ScanNet dataset reveals that RidgeSfM outperforms a popular representa-

tive of a classic SfM pipeline (COLMAP [36]) in a large-scale global adjustment regime. Its performance is
on par with deep memory-heavy alternatives for pair-wise image matching.

2 Related Work
Structure-from-Motion Structure-from-Motion (SfM) constitutes the most classic line of work that targets
recovering the 3D structure of a scene and tracking of the camera. Starting from the early works that
focused on limited numbers of images [27, 3], modern SfM pipelines evolved into mature systems capable
of reconstructing thousands [17, 31, 37, 49, 13, 1] if not millions of photos of various in/outdoor scenes. A
particularly popular SfM pipeline that effectively combines the fundamental findings from the body of previous
work, COLMAP, was built by Schoenberger et al. [36, 38]. It follows the nowadays standard design pattern:
1) Geometrically verified keypoint matches are established between pairs of images. 2) The estimated matches
and relative camera motions are fed into an incremental “bundle adjustment” (BA) that globally optimizes
the camera positions and triangulates a sparse 3D point cloud of the scene. 3) Multi-View Stereo utilizes the
inferred absolute cameras to produce dense depth maps.

SLAM Related to SfM are SLAM methods that aim at real-time tracking of a moving camera. PTAM [22]
was one of the first practical systems that allowed real-time tracking and mapping using a pair of reconstruction
and tracking threads. PTAM was later extended to dense reconstructions in DTAM [28]. LSD-SLAM [12] is
another notable example of a method capable of semi-dense reconstruction and tracking. Finally, DSO [11]
attained a good trade-off between speed and accuracy by directly optimizing photometric error evaluated at
sparse keypoints.

The aforementioned classic SLAM and SfM systems are carefully “hand-engineered” methods that, despite
being the current methods of choice in practice, have a limited ability to leverage priors learnable from
large geometry-annotated datasets. The next paragraph discusses methods that constitute promising future
learning-based directions.

Deep learning of geometry. The success of deep learning brought an expected invasion of deep networks
to the SfM/SLAM domain. Initial approaches have focused solely on monocular depth estimation [10, 23,
47, 24, 25], or on estimating the camera pose [2, 21, 19, 20, 48]. Deep CNNs were also leveraged to describe
image pixels for better matching in standard SfM pipelines [53, 8, 54, 40].

However, the most relevant approaches focus on reconstruction of both ego-motion and depth. DeMoN
[45] predicts disparities with the FlowNet architecture [18] to ground its predictions. BA-Net, DeepTAM
and LS-Net [5, 41, 55] proposed iterative architectures capable of geometrically aligning a pair of images.
CNN-SLAM [42] and DVSO [51] studied the use of deep monocular depth predictors for improving the
performance of existing SLAM pipelines. More recently, 3DVO [50] proposed an architecture that allowed to
handle several types of reconstruction ambiguities. Several methods have also explored unsupervised learning
of depth and ego-motion from videos [56, 52, 16, 15, 46].

Notably, CodeSLAM [4] and BA-Net [41] are similar to our method in the parametrization of depth maps
using a latent code which is later refined with the cameras.

Unfortunately, all the aforementioned deep methods suffer from large memory consumption which
prevents executing a global bundle adjustment over thousands of frames. This is because they consider dense
reconstruction errors that, apart from limiting applicability to small camera motions, require complicated
decoding or matching networks to be stored in GPU memory at reconstruction time. In constrast, RidgeSfM
optimizes all scene cameras jointly because it restricts its optimization to a set of sparse matches in the bundle.
Importantly, although we consider losses evaluated at sparse landmarks, the linearity of our latent depth
parametrization allows us to simultaneously solve for the dense depth of each scene image.

Image keypoints. Sparse set of keypoints that can be matched across images are a crucial building block
of the standard SfM pipeline. Classic examples include SIFT [26] and ORB [34]. Deep learning approaches
include LF-Net [29], D2-Net [9], R2D2 [32], and SuperPoint [7].
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3 Task and naming conventions
Given a set of images of a scene {Ii|Ii ∈ R3×H×W }Ni=1 of height H and width W , the goal of our work is
estimating the parametrization of the absolute orientation (extrinsics) of the per-frame cameras {(Ri, Ti)|Ri ∈
SO(3), Ti ∈ R3}Ni=1 as well as the depth maps {(Di|Di ∈ RH×W }Ni=1.

We will follow the ensuing convention. By sampling Di at a pixel location y ∈ {1, ...,W}×{1, ...,H} we
can identify y’s depth value dy ∈ R. Per-pixel depth, together with the calibration matrix Ki ∈ R3×3 of Ii’s
camera, allows to back-project each pixel y to its corresponding 3D point x(dy) = K−1i dy[y[1], y[2], 1]

T in
the camera coordinates. Here z[k] is an operator that retrieves k-th value of a vector z. The camera calibration
matrices Ki are assumed to be known. A point xc ∈ R3 in the coordinates of camera i is mapped to scene
coordinates xw ∈ R3 with xw = Rix

c + Ti.

4 Depth parametrization
For SfM pipelines, the parametrization of the extrinsics {Ri, Ti} is straightforward, but the same cannot be
claimed for the per-frame depths Di. Since the set of plausible depth maps forms a low dimensional manifold,
measures have to be taken to ensure compactness of the representation of Di.

A classic solution is to employ a regularizer, such as TV-norm, that ensures spatial smoothness. Such
regularizer typically entails a cumbersome hyperparameter tuning and only indirectly enforces the depth maps
to follow their natural manifold. Furthermore, these depth regularizers are hand-engineered functions that do
not allow to learn priors from datasets with geometric annotations.

In order to deal with the latter, recently, Bloesch et. al [4] proposed to parametrize depths with a trained
deep non-linear mapping φCodeSLAM(βi) = Di, where βi ∈ RK is a low dimensional latent depth code. While
this greatly improves the generated depth maps, a major disadvantage is the substantial memory footprint due
to φCodeSLAM being a heavy de-convolutional network, which has to be evaluated during every step of the SfM
optimization.

Parametrizing depth with mean and factors of variation. In order to deal with the aforementioned issues
and obtain a learnable memory-efficient latent depth parametrization, RidgeSfM, similar to [41], parametrizes
depth maps in a linear fashion as a weighted combination of depth basis planes. Our parametrization function
φ takes the form:1

vec(Di) = φ(βi, Ii) = Bµ(Ii) +Bσ(Ii)βi, (1)

where βi ∈ RK is a set of linear coefficients that are used to adjust Di. The predicted mean depth Bµ(Ii) ∈
RHW and factors of variation Bσ(Ii) ∈ RK×HW are the outputs of a small convolutional network B.

This formulation has two main advantages: 1) After Bµ(Ii) and Bσ(Ii) are predicted from Ii, one can
erase the intermediate tensors of networkB from memory and alter the depthDi by only optimizing over βi. 2)
As K � HW , our depth code βi forms a compact geometric bottleneck that is unlikely to result in unnatural
depth values: we can optimize the coefficients for a sparse set of keypoints and then safely extrapolate to
optimized dense depth maps.

Learning depth uncertainty with Ridge Regression Loss. Our deep network B is related to modern deep
monocular depth predictors. While the inherent ambiguity of monocular depth estimation is considered as a
limiting factor that makes the problem underconstrained and thus hard to solve, the linearity of eq. (1) allows
us to easily train the network B.

Given a training image I annotated with a ground truth depth map D?, we exploit the monocular depth
prediction ambiguity by letting our network predict the basis vectors Bµ(I), Bσ(I) and solving for a β? that
leads to a good approximation of D? by employing Ridge Regression:

β? = argmin
β∈RK

‖φ(β, I)−D?‖22 + λ‖β‖22 (2)

= (Bσ(I)ᵀBσ(I) + λIK)−1Bσ(I)ᵀ(D? −Bµ(I)).
1Note that we reshape depth Di ∈ RH×W to a vector vec(Di) ∈ RHW to simplify the notation.

4



Given β?, we train our network B to minimize the following loss function:

Ldepth(I|B,D?) = (3)

‖Bµ(I)−D?‖22 + ‖Bµ(I) +Bσ(I)β? −D?‖
+ λ‖β?‖22 + ‖RowVar(Bσ(I))− 1‖1,

where RowVar(Bσ(I)) denotes the sample variance of the rows of Bσ(I). This encourages the network to put
the best-guess prediction Bµ(I) close to the ground truth, to construct Bσ(I) such that D? ≈ D = φ(β?, I)
with ‖β?‖22 small. This way, the basis Bµ/σ(I) is predicted such that it spans the most significant modes of
uncertainty of the depth map D for image I .

Training data and network architecture. The depth prediction networkB is trained using batched gradient
descent to optimize the loss Ldepth averaged over a large dataset of images and depth maps. Here we use 1412
scenes from the ScanNet RGBD dataset for training. The architecture of B is based on U-Net [33], built with
inverted residual building blocks [35]. Full details are in the supplementary.

5 Ridge Structure from Motion
The input to RidgeSfM is a sequence of images. For each image Ii, we extract a sparse set of keypoint location
yj ∈ Ii, and a corresponding collection of feature vectors. We also use the trained depth network to predict the
depth and factors of variation Bµ/σ(Ii).

RidgeSfM, similar to classic SfM pipelines, then reconstructs scenes in two steps. First, egomotions
between pairs of frames are estimated and then a global bundle adjustment procedure is carried out.

5.1 Pairwise RidgeSfM
Given a pair of images (Ii, Ij), we use the values of Bµ/σ(Ii/j) at the keypoint locations to estimate the
corresponding relative camera motion Rij ∈ SO(3), Tij ∈ R3.

Weakly verified matches. We create set of weakly verified matchesMij = {(ymi , ymj )|ymi ∈ Ii, ymj ∈
Ij}Mm=1 as follows. We first search for nearest-neighbor pairs of keypoints in feature space. We then remove any
pairs that fail the crosscheck critera, or that are considered outliers by OpenCV’s findFundamentalMat
LMedS function.

Pairwise RidgeSfM alignment of matched keypoints. Let bµmi (Ii) ∈ R and bσmi (Ii) ∈ RK denote per-
pixel basis vectors obtained by sampling Bµ(Ii) and Bσ(Ii) respectively at location ymi . Given b(µ/σ)mi ,
we can obtain the per-pixel depth with dmi (βi, Ii) = βᵀ

i b
σm
i (Ii) + bµmi (Ii). Finally, dmi (βi, Ii) is used to

backproject pixel ymi to its 3D camera coordinates with xmi (βi, Ii) = K−1i dmi (βi, Ii)
[
ymi , 1]

T . Then, pairwise
RidgeSfM solves for {Rij , Tij , βi, βj} by minimizing the pairwise alignment loss Lpw:

Lpw(Mij) =

M∑
m=1

`mij + λ(‖βi‖22 + ‖βj‖22);

`mij = ‖Rijxmi (βi, Ii) + Tij − xmj (βj , Ij)‖22, (4)

We minimize Lpw with coordinate descent by alternating two steps until convergence: 1) Given βi, βj we solve
for Rij , Tij using Umeyama’s rigid alignment algorithm [44]; 2) Given Rij , Tij eq. (4) reduces to a simple
ridge regression problem which allows to solve for βi, βj . The algorithm is initialized with βi = βj = 0,
corresponding to the depth network’s predicted mean depth.
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Egomotion estimation by progressive growing of matches. The 3D alignment procedure is not robust to
outliers, so we use RANSAC to build a subsetMI

ij ⊂Mij of strongly geometrically verified inlier matches.
Starting withMI

ij consisting of M = 3 matches randomly drawn fromMij , we alternate between (i)
optimizing Lpw(MI

ij), and (ii) increasing the number of active matches M by a multiplicative factor: we
increase M by re-selectingMI

ij to be the subset of matchesMij that are most closely aligned (i.e. their
`mij is small) given the current estimate of {Rij , Tij , βi, βj}. The process stops when the alignment error
maxm∈MI

ij
`mij exceeds a precision threshold. Full details are in supplementary material.

5.2 Bundle-adjustment with RidgeSfM
Given a procedure for pairwise matching that returns sets of inlier matchesMI

ij as well as relative camera
motions, we propose to use a bundle adjuster to collectively estimate absolute camera orientations and dense
depths for all images in a scene, as detailed below.

Broadly, we minimize the following bundle adjustment loss Lbundle:

min
{Ri},{Ti},{βi}

∑
(i,j)∈I

Lmatches
ij (Ri, Rj , Ti, Tj , βi, βj)

+ Lpose
ij (Ri, Rj , Ti, Tj), (5)

where the outer sum is carried over the set I of all pairs of images with a significant set of verified matches
MI

ij . We represent the absolute rotations Ri as cumulative products of rotations each stored in Tait-Bryan
angles; and translations Ti as cumulative sums of 3-dimensional vectors.

The first term Lmatches
ij , which enforces consistency of the 3D locations of matched points, is defined as

follows:

Lmatches
ij =

∑
m∈MI

ij

σ(umij ) eij + λu σ(−umij ); (6)

eij = ‖[Rixmi (βi, Ii) + Ti]− [Rjx
m
j (βj , Ij) + Tj ]‖2,

where σ is the logistic function, umij ∈ R are auxiliary variables that limit the effect of bad matches, and
λu = 0.3 is the strength of the regularizer σ(−umij ) preventing the trivial solution of σ(umij ) = 0 everywhere.
Importantly, since the number of matches between pairs of images is significantly lower than the number of
image pixels, Lmatches

ij can be integrated over a large number of image pairs I allowing to optimize βi, and
conversely dense depths Di, in a large-scale regime.

The second term Lpose
ij aids the convergence of the scene cameras. More specifically, it minimizes the

discrepancy between the absolute camera orientations (Ri, Ti) and and the relative cameras poses (Rij , Tij)
predicted by pairwise RidgeSfM:

Lpose
ij = ‖Ri −RjRij‖1 + ‖Ti −RjTij − Tj‖1. (7)

Optimization. The Adam optimizer is used, with weight decay applied to the βi. To improve convergence,
we first minimize the Lpose

ij losses incrementally for 6|I| iterations; at step t we optimize their partial sum
over the first min(dt/5e, |I|) elements of I, sorted by j. We then optimize the full scene loss eq. (5) until
convergence.

6 Experiments
In this section we quantitatively and qualitatively evaluate our method. Starting with a description of the
utilized benchmark, we then present experiments evaluating the global bundle adjustment procedure which
collectively aligns hundreds of frames from an indoor scene. Since virtually all existing deep alternatives, such
as [41, 55, 4, 50], do not allow for such large-scale evaluation due to their ample memory-consumption, for
completeness, we compare to these method on a small-scale task of aligning image pairs.
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Method COLMAP SfM pipeline RidgeSfM using SuperPoint features

Skip rate 1 3 10 30 1 3 10 30

Camera rotation (degrees) 22.12 11.17 9.85 29.85 7.09 7.84 7.35 12.84
Camera center (m) 0.973 0.597 0.540 1.085 0.296 0.314 0.331 0.489
Depth map L1 err. (m) 0.941 0.763 0.727 1.184 0.221 0.234 0.243 0.322
Depth map RMSE (m) 1.138 1.012 0.990 1.386 0.305 0.332 0.343 0.432
PCL L1 err. (m) 0.647 0.642 0.639 0.860 0.209 0.258 0.303 0.454
PCL RMSE (m) 0.821 0.885 0.906 1.081 0.289 0.345 0.393 0.569

Successful reconstructions 99% 100% 98% 81% 100% 100% 100% 100%

Table 1: Quantitative comparison with COLMAP on large-scale bundle adjustment on the ScanNet
dataset. For COLMAP, evaluation is based on the available reconstructed frames for scenes where recon-
struction was at least partially successful. For RidgeSfM, the evaluation uses all frames in and all scenes.

Ablation Lbundle =
∑
�
��
�H

HHH
Lmatches
ij + Lpose

ij ���
��XXXXXSuperPoint SIFT features

Skip rate 1 3 10 30 1 3 10 30

Camera rotation (deg.) 7.22 9.14 9.10 25.05 7.78 9.1 9.08 19.16
Camera center (m) 0.306 0.344 0.395 0.853 0.318 0.377 0.420 0.676
Depth map L1 err. (m) 0.236 0.250 0.269 0.382 0.229 0.259 0.274 0.422
Depth map RMSE (m) 0.331 0.357 0.379 0.493 0.314 0.359 0.376 0.533
PCL L1 err. (m) 0.224 0.297 0.386 0.881 0.224 0.309 0.387 0.677
PCL RMSE (m) 0.307 0.383 0.474 1.017 0.304 0.398 0.478 0.811

Table 2: Ablation study on ScanNet. Left: Result using only the pairwise pose loss Lpose, rather than the
full bundle adjustment loss Lbundle. Right: Results for RidgeSfM but with SuperPoint features replaced with
SIFT features.

Benchmark dataset. ScanNet [6] is a dataset of RGB videos frames with matching depth maps, camera
locations, and camera intrinsics, captured with a hand-held scanning device. There are 1513 training scenes,
and 100 test scenes. We use the first 1412 scenes from the training set to train the depth prediction network.
We evaluate RidgeSfM on the remaining scenes that are not seen during training. We consider the supplied
camera poses as ‘ground truth’, as they were calculated using the sensor depth-supervised bundle adjustment.

Evaluation of bundle adjustment. To test RidgeSfM on large sequences of images, we selected sequences
of up to 300 images from the ScanNet test videos. For each of the 100 test scenes, we picked random starting
points, and sampled every k-th frame with the skip rate k = 1, 3, 10 and 30, for a total of 400 test cases.
RidgeSfM is compared to COLMAP [36], a popular SfM pipeline that is widely considered as the current
state-of-the-art.

Using RidgeSfM we reconstruct the camera poses and dense depth maps as explained in Section 5.2. We
use SuperPoint [7] as the keypoint detector. For COLMAP, we first run the sparse reconstruction that tracks
the cameras, and then dense depths are estimated with COLMAP’s multi-view stereo method. Since COLMAP
sometimes fails to estimate camera pose or depth for an image, we exclude these cases from the evaluation.
Note that RidgeSfM does not enjoy this benefit of being able to exclude ambiguous frames from its evaluation;
by design it is forced to reconstruct all pixels, in all frames, for every scene.

For evaluation purposes, given depth maps and camera extrinsics, we generate a dense point cloud of each
scene, which is later aligned with the ground truth using Umeyama’s algorithm [44] that estimates a 7 d.o.f.
similarity transformation. After alignment and rescaling, we report several errors: Camera rotation / center
error denotes the average rotation / distance between the ground truth camera’s rotation / translation matrix
and the prediction. The depth map L1/RMSE denote errors between the ground truth and the estimated depth.
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Error RidgeSfM BA-Net∗ [41] DeMoN∗ [45] Photometric BA∗ Geometric BA∗ DeepV2D † [43]

Depth RMSE (m) 0.33 0.35 0.76 0.79 0.88 0.17

Rotation (degree) 1.94 1.02 3.79 4.41 8.56 0.63
Translation (cm) 7.70 3.39 15.50 21.40 37.00 1.37

Table 3: Pairwise alignment results on the ScanNet image pairs dataset [41]. Columns with ∗ are from [41];
columns with † use the ground-truth median depth to scale each of the predicted depth maps.

Point-cloud (PCL) L1/RMSE are similar to the latter and compute the distance between the per-pixel 3D
coordinates obtained by backprojecting estimated depth using the estimated camera location.

Table 1 demonstrates that RidgeSfM reconstructions are superior to COLMAP in all metrics and test
scenes. Figure 3, and videos in the supplementary material, qualitatively evaluates our reconstructions.

Ablation study. In order to demonstrate the benefits of RidgeSfM’s bundle adjustment from Section 5.2, we
compare the performance of the full optimization minimizing Lbundle, and merely minimizing

∑
(i,j)∈I L

pose
ij

that solely aligns the cameras without optimizing the scene 3D points. For skip-rate k = 30, the full
optimization leads to reductions of 49% / 43% / 12% / 44% in the camera rotation error / camera center error /
depth RMSE / point cloud RMSE respectively. This clearly demonstrates the benefits of our joint optimization
over the latent depth linear codes and camera extrinsics. Table 2 provides a table with full ablation results.

We also consider the effect of replacing the SuperPoint [7] features with classic SIFT [26] features. The
reconstruction quality decreases as expected, although the results are still strong compared to COLMAP. See
again Table 2.

Evaluation of the pairwise alignment. For completeness, we also consider the task of estimating relative
viewpoint change between a pair of images, i.e. the task described in Section 5.1. Note that here we compare
with small-scale deep methods that cannot operate in the large scale regime of the previous experimental
section.

We closely follow the evaluation protocol of BA-Net [41]. We thus consider the set of 2000 pairs of test
images from [41]. Camera movement is generally quite small: 80% of the ground truth translations are less
than 15cm, and 80% of the ground truth rotations are less than five degrees. We report the rotation error which
is the angle between the ground truth relative camera rotation and the prediction; and the translation error
which is the distance of the estimated camera center from the ground truth. Furthermore, RMSE between the
estimated and the ground truth depth is reported.

RidgeSfM is compared to other methods in Table 3. Qualitative results are presented in Figure 4. Results
indicate that RidgeSfM outperforms other comparable methods in terms of depth accuracy. The camera errors
are slightly higher than BA-Net and DeepV2D. One explanation for this is that those methods are trained on
image pairs with similar statistics to the test set, so they can develop a prior that is biased to predicting small
angles of rotation. Another factor to consider is that once an image has been processed once by RidgeSfM, the
keypoints and their factor of variation can be stored compactly to be re-used for additional comparisons to
other images. The marginal overhead of additional pairwise comparisons is small, compared to methods using
dense image comparisons, which is important for scalability.

7 Conclusions
We have proposed RidgeSfM, a novel method for estimating structure from motion that marries classic SfM
pipelines capable of bundle-adjusting huge image collections with deep reconstructors. RidgeSfM’s efficient
linear parametrization of depth allows to execute both pairwise and scene-wise geometry optimization over a
set of sparse matches while simultaneously recovering dense depth in an indirect fashion. The latter allows our
method to collectively align large image collections, which is not possible with the current memory-hungry
deep methods. We perform on par with strongly supervised deep pairwise egomotion estimators and we
significantly outpeform a state-of-the-art SfM pipeline on a large-scale bundle adjustment benchmark.
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Figure 3: Qualitative results comparing the dense scene-wise reconstruction and camera poses of RidgeSfM (1st
column) and the ground truth (2nd column). The 3rd column colors each point of the RidgeSfM reconstruction
proportionally to its depth error (red-highest, blue-lowest). Each of the 3 depicted scenes is visualised from 2
different viewpoints.
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Figure 4: Example results on pairwise matching. Top: Pairs of images with per-pixel correspondences.
Bottom: The inferred scene point clouds and cameras - we have plotted 10% of the pixels. The blue lines show
initial feature matches. Red matches denote the inliers of the Pairwise RidgeSfM alignment.
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Supplementary material
In what follows we provide additional details about RidgeSfM together with supplementary evaluations.
Section A contains information about the architecture of Bµ/σ, Section B describes pairwise RidgeSfM in
more details including qualitative results, Section C provides performance analysis, and Section D details
further qualitative evaluation of RidgeSfM.

Please see https://github.com/facebookresearch/RidgeSfM for videos showing the
RidgeSfM reconstructions for a variety of scenes.

A U-Net architecture
In Table 4 we give the full architecture of the depth basis predictor Bµ/σ from section 4. The computation
cost is 830MFlops (multiply-add compute) operations per image. The run time is 70ms per image (14 fps) for
a single Intel Core i7 3930K CPU core, or 4ms per image (250fps) with an Nvidia GeForce GTX Titan X. The
network was trained on the train set of the ScanNet dataset using an SGD optimizer with momentum, with
learning rate of 10−3 decaying ten-fold whenever the losses plateau.

Table 4: Network architecture Depth prediction U-Net architecture for input with size 240×320. IR(t)× n
denotes a chain of n inverted residual blocks [35] each with expansion factor t.

Layer Input Features Output Features Output Resolution

Conv 4/2 3 16 120× 160
Conv 4/2 16 32 60× 80
IR(t = 4)×2 32 32? 60× 80
Conv 4/2 32 64 30× 40
IR(t = 4)×2 64 64?? 30× 40
Conv 4/2 64 96 15× 20
IR(t = 4)×2 96 96† 15× 20
Conv (4,3)/2 96 128 7× 10
IR(t = 4)×2 128 128‡ 7× 10
Conv (4,3)/2 128 160 3× 5
IR(t = 4)×4 160 160 3× 5
TConv (4,3)/2 160 128 7× 10
IR(t = 2)×2 128‡+128 128 7× 10
TConv (4,3)/2 128 96 15× 20
IR(t = 2)×2 96‡+96 96 15× 20
TConv 4/2 96 64 30× 40
IR(t = 2)×2 64??+64 64 30× 40
TConv 4/2 64 32 60× 80
IR(t = 2)×2 32?+32 32 60× 80
Output 32 1+32 60× 80

B Details on pairwise RidgeSfM
Here, we detail the pairwise egomotion estimation by progressive growing of matches, which was briefly
outlined in section 5.1. In order to increase robustness of the pairwise matching procedure, we employ our
algorithm in an iterative fashion that progressively grows a set of inliers taken from a large pool of tentative
matches.

We first extract SuperPoint [7] features from both images. From these we create an initial set of weakly
verified matches by looking for keypoints which are k-nearest neighbors in the descriptor space and pass the
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Table 5: RidgeSfM-Light Quantitative comparison of RidgeSFM, a variant of RidgeSfM with fewer matching
operations, and COLMAP on the ScanNet test set.

Method RidgeSfM RidgeSfM-Light COLMAP
Skip rate 1 3 1 3 1 3

Average runtime (s) 650 573 236 220 2300 2083

Camera rotation (degrees) 7.09 7.84 8.78 10.36 22.12 11.17
Camera center (m) 0.296 0.314 0.391 0.439 0.973 0.597
Depth map L1 err. (m) 0.221 0.234 0.309 0.350 0.941 0.763
Depth map RMSE (m) 0.305 0.332 0.397 0.455 1.138 1.012
PCL L1 err. (m) 0.209 0.258 0.262 0.356 0.647 0.642
PCL RMSE (m) 0.289 0.345 0.343 0.448 0.821 0.885

Successful recon. 100% 100% 100% 100% 99% 100%

crosschect test. We call this intial set of matchesM0
ij . This set will be filtered using a two stage RANSAC

process.
We first filterM0

ij with OpenCV’s findFundamentalMat function to find the largest subset of matches
Mij ⊂M0

ij consistent with a 3D rotation/translation transform between two images. This initial RANSAC
filtering takes place in the two-dimensional image space without using the predicted depth.

We then use the depth predictions Bµ/σ to filterMij for a second time using the following RANSAC
procedure: 1) Sample an initial subsetMI

ij by picking M := 3 matches fromMij uniformly at random. 2)
Solve for the pairwise alignment by minimizing Lpw(MI

ij) using section 5.1. 3) Given the current estimate of
{Rij , Tij , βi, βj}, we redefineMI

ij to be the set of M := dαMe matches2 {(ymi , ymj )} ⊂ Mij that have the
lowest 3D alignment error `mij ; 4) Repeat steps (1)-(3) while the maximum alignment error `mij between the
matches fromMI

ij is lower than ε = 10cm.
For efficiency, the algorithm can be run in parallel using batching. Accumulating the results of a number

of runs (e.g. 32), we pick the run such that the inlier 2D keypoints cover the largest number of 10× 10 pixel
squares in images Ii and Ij . We discard any pairs of images where less than 30 such squares are covered as
negative matches.

B.1 Qualitative results of pairwise matching
In Figure 4, we presented qualitative results of the pairwise RidgeSfM on the test set of [41]. In Figure 6, we
show pairwise RidgeSfM matches with more substantial camera movements.

C Performance analysis
We ran the reconstruction on a server computer with an Intel Xeon E5-2698 CPU and a Nvidia Quadro GP100
GPU. Reconstructing a typical ScanNet test scene with 300 frames (frame-skip k = 1) takes approximately 11
minutes. The bulk of the time is spent doing pairwise RANSAC matching as we try to match 3000 pairs per
scene. In constrast, COLMAP takes approximately 40 minutes.

To see if we could reduce the amount of time spent matching, which also reduces the computational
complexity of the bundle adjustment, we considered a lighter weight version of RidgeSfM with only pairwise
matches calculated for only 600 pairs. It takes approximately four minutes per scene, whilst maintaining much
of RidgeSfM’s precision. See Table 5 for full details.

D Videos of RidgeSfM reconstructions
To qualitatively evaluate RidgeSfM reconstructions, we:

2We set the multplicative growth rate α = 1.2
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Figure 5: The depth prediction network Top left: an input image. Bottom left: the predicted depth. Middle
and right: We use SVD to reduce the 32 factors-of-variation planes down to 12 planes, and display them as 4
RGB images; each of the 4×3 color planes represents one factor of variation.

1. Form a point cloud by projecting every pixel into 3D space using the predicted depth and camera poses.

2. Each point in the cloud is an element (x, y, z, r, g, b) ∈ R6. To make the point cloud more manageable,
we sample 105 centroids using K-Means.

3. We reproject the centroids back into the predicted camera locations using splat rendering.

Please see https://github.com/facebookresearch/RidgeSfM for videos showing the RidgeSfM
reconstructions for the first four ScanNet test scenes.

D.1 Video from a mobile phone camera
To test if RidgeSfM can be applied to scenes outside of the ScanNet dataset, we captured a video of an
indoor scene using a mobile phone. The video was resized and cropped to 640× 480 so that we can apply
RidgeSfM exactly as we did for the ScanNet test set. We recycle the the Bµ/σ depth prediction network that
was trained of the ScanNet training set. The mobile phone’s camera intrinsics were estimated using OpenCV’s
calibrateCamera function applied to keypoints from a second video of a chess board calibration pattern.
The mobile phone has a narrower field of view, with a focal length of 667 compared to 578 for ScanNet.

D.2 Video from KITTI
We also include sample reconstructions for the KITTI dataset [14]. We trained a depth prediction network on
the KITTI depth prediction training set. We then processed videos from the KITTI Visual Odometry dataset.
We used the ‘camera 2’ image sequences, cropping the input to RGB images of size 1216 × 320. For the
keypoint detector, we used R2D2 [32] instead of SuperPoint [7], as R2D2 is trained on photos of outdoor
scenes.
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Figure 6: Pairwise RidgeSfM results We show here examples of pairwise RidgeSfM matching for images
with less overlap than typically found in the BA-Net [41] test set. Left: Pairs of images with per-pixel
correspondences. Right: The inferred scene point clouds and cameras - we have plotted 10% of the pixels. The
blue lines show initial feature matches. Red matches denote the inliers of the Pairwise RidgeSfM alignment.
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