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Abstract

We introduce RAFT-Stereo, a new deep architecture
for rectified stereo based on the optical flow network
RAFT [35]. We introduce multi-level convolutional GRUs,
which more efficiently propagate information across the
image. A modified version of RAFT-Stereo can per-
form accurate real-time inference. RAFT-stereo ranks first
on the Middlebury leaderboard, outperforming the next
best method on 1px error by 29% and outperforms all
published work on the ETH3D two-view stereo bench-
mark. Code is available at https://github.com/
princeton-vl/RAFT-Stereo.

1. Introduction
Stereo depth estimation is a fundamental vision prob-

lem with direct applications in robotics, augmented real-
ity, photogrammetry, and video understanding problems. In
the standard setup, two frames—a left frame and a right
frame—are provided as input. The task is to estimate a pix-
elwise displacement map between the input images. In rec-
tified stereo, the displacement of each pixel is constrained
to a horizontal line. This displacement map, termed dispar-
ity, can be used alongside camera calibration parameters to
recover depth, a 3D point cloud, or other 3D representations
suitable for the target downstream application.

Early work has focused on two key parts of the prob-
lem: (1) feature matching and (2) regularization. Given
two images, feature matching aims to compute a match-
ing cost between a pair of image patches. Commonly
used methods include mutual information [15], normalized
cross-correlation [14], and the census transform followed
by Hamming distance [11]. Given a set of noisy matches,
regularization aims to recover a consistent depth map sub-
ject to priors such as smoothness and planarity. These two
objectives can be naturally formulated as an optimization
problem, maximizing some measure of visual similarity
subject to priors over 3D geometry.

Optical flow and rectified stereo are closely related prob-
lems. In optical flow, the task is to predict a pixelwise dis-

placement field, such that for every pixel in the first frame,
we can estimate its correspondence in the second frame. In
rectified stereo, the task is the same, except that we have the
additional constraints that the x-displacement is always pos-
itive and the corresponding points lie on a horizontal line—
hence, the y-displacement is always 0.

Despite the similarities between stereo and flow, neu-
ral network architectures for the two tasks are vastly dif-
ferent. In stereo, the predominant approach has been the
use of 3D convolutional neural networks. First a 3D cost
volume is built by enumerating integer disparities, then
use a 3D convolutional network to filter the cost volume
[43, 4, 19, 12, 47, 48]. This formulation leverages stereo
geometry as an inductive prior in network design. However,
using 3D convolutions to process the cost volume comes at
a high computational cost and limits the possible operating
resolution. Specialized approaches are required to operate
at high resolutions [42] such as the mega-pixel images from
the Middlebury dataset [28].

On the other hand, optical flow is typically approached
using iterative refinement. RAFT [35] showed that itera-
tive refinement can be performed entirely at high resolution,
proposing a simple architecture that performed well on stan-
dard flow benchmarks. RAFT first extracts features from
the input images, then builds a 4D cost volume by com-
puting the correlation between all pairs of pixels. Finally,
a GRU-based update operator iteratively updates the flow
field using features retrieved from the correlation volume.

We introduce RAFT-Stereo, a new architecture for two-
view stereo. An overview of our approach is shown in
Fig. 1. The overall design is based on RAFT [35]. First, we
replace the all-pairs 4D correlation volume with a 3D vol-
ume by only computing the visual similarly between pixels
of the same height. Additionally, we introduce multi-level
GRU units that maintain hidden states at multiple resolu-
tions with cross-connections but still generate a single high-
resolution disparity update. This improves the ability of the
update operator to propagate information across the image,
improving the global consistency of the disparity field.

RAFT-Stereo is substantially different from previous
stereo networks. Existing work has commonly relied on 3D
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Figure 1. Correlation features (blue) are extracted from each of the images and are used to construct the correlation pyramid. ”Context”
image features (white) and an initial hidden state are also extracted from the context encoder. The disparity field is initialized to zero. Every
iteration, the GRU(s) (green) use the current disparity estimate to sample from the correlation pyramid. The resulting correlation features,
initial image features and current hidden state(s) are used by the GRU(s) to produce a new hidden state and an update to the disparity.

convolution networks to process stereo cost volumes [43, 4,
19, 12, 47, 48]. In contrast, RAFT-Stereo uses only 2D con-
volutions and a lightweight cost volume constructed using a
single matrix multiplication. By avoiding the high compu-
tation and memory cost of 3D convolutions, RAFT-Stereo
can be directly applied megapixel images without the need
for resizing or processing the image in patches. Further-
more, by using an iterative network, we can easily trade
accuracy for efficiency with early stopping. RAFT-Stereo
also doesn’t require additional complex loss terms, making
it easy to train.

Our main contribution is a new stereo network which
unifies stereo and optical flow approaches. RAFT-Stereo
shows much better cross-dataset generalization than exist-
ing neural networks. When trained only on synthetic data,
our network performs very well on real datasets such as
KITTI [24], ETH3D [29], and Middlebury [28], outper-
forming all other works evaluated in the same setting. Ad-
ditionally, RAFT-stereo is accurate. It ranks first on the
Middlebury leaderboard [28] and outperforms all published
work on the ETH3D leaderboard [29]. Due to its high accu-
racy and good generalization, we believe RAFT-Stereo will
be useful as an off-the-self stereo algorithm.

2. Related Work
The task of predicting disparity between rectified stereo

images is a longstanding problem in computer vision. Early
work focused on designing better matching costs [13, 45]
and efficient inference algorithms [20, 16, 2]. Traditional
stereo pipelines generally consisted of a matching stage and
a filtering stage. In the matching stage, pairwise costs were
computed between images patches. In the optimization and

filtering stages, priors could be imposed to correct erro-
neous matching and recover a consistent disparity map.

Deep learning was first applied to improve matching
costs in the stereo pipeline. Žbontar and LeCun [46] pro-
posed a network for evaluating a matching score between a
pair of image matches. The matching costs were then pro-
cessed using semiglobal matching, consistency checking,
and filtering. Mayer et al. [23] proposed the first end-to-end
trainable stereo matching network, based on the Flownet ar-
chitecture [7], in addition to a large synthetic dataset which
made training convolutional networks for stereo possible.

Inspired by the classical pipeline, many works have
adopted a 3D neural network architecture for end-to-end
stereo matching[43, 4, 19, 12, 47, 48]. GCNet[19] was
one of the first papers to propose this approach. In this
framework, images are first mapped through a 2D convo-
lutional network to obtain a dense feature representation.
Next, a 3D cost volume is constructed over the 2D fea-
ture maps, either through concatenation[19] or correlation
operator[12]. The cost volume is then filtered through a se-
ries of 3D convolutional layers, before being mapped to a
pointwise depth estimate through a differentiable arg-min
operator. Many variations on this design have been pro-
posed, such as using a stacked 3D hourglass to process the
cost volume[4], or designing new aggregation layers to bet-
ter propagate information[47]. The 3D convolutions aim to
act as a differentiable approximation to classical filtering
algorithms such as SGM[16].

While this approach has outperformed traditional
methods such on datasets such as KITTI[24] and
FlyingThings3D[23] the 3D convolutions come at a high
computational cost and often fail to generalize outside the



domain they were trained, meaning that they cannot be
readily used on datasets which don’t have ground truth
training data. There have been several efforts to improve
the generalization ability of deep stereo networks such as
the addition of new network components[48] or generat-
ing additional training data [40]. DSMNet [48] tries to im-
prove the generalization ability of the GA-Net architecture
by normalizing the features used to construct the cost vol-
ume and by utilizing a non-local graph-based filtering ap-
proach which reduces GA-Net’s dependence on local pat-
terns. DSMNet achieves better generalization than prior
works, but still uses 3D convolutions in their architecture
design. This results in a high computational cost and lim-
its the operating resolution of DSMNet. These works have
focused on zero-shot cross dataset generalization. In this
paper, we also evaluate cross dataset generalization on the
ETH3D[29], KITTI [24], and Middlebury [28] datasets.

Another line of work has looked replacing the more
costly components of the 3D networks with more
lightweight modules. Liang et al. [21] first proposed a 2
stage refinement network for stereo. Bi3D [1] proposed es-
timating depth with a series of classification stages. Re-
cently HITNet [34] leveraged the planar geometry of the
scene as an inductive prior in the network design by guiding
the stereo predictions using predicted tiles. In the forward
pass, HITNet’s tile-based method must decide if each pixel
lies on a plane. To learn this behavior, they must impose
several additional loss terms on the angle of the tiles and the
decision weights, as opposed to RAFT-Stereo which solely
uses a standard L1 loss. HITNet also maintains a running
stereo prediction at full resolution, while RAFT-Stereo only
upsamples the stereo prediction at the very end. This makes
RAFT-Stereo more memory efficient, enabling us to predict
full-resolution stereo on megapixel images.

3. Approach
Given a pair of rectified images (IL, IR), we aim to esti-

mate a disparity field d giving the horizontal displacement
for every pixel in IL. Similar to RAFT [35] our approach
is composed of three main components: a feature extractor,
a correlation pyramid, and a GRU-based update operator as
shown in Fig. 1. The update operator iteratively retrieves
features from the correlation pyramid and performs updates
on the disparity field.

3.1. Feature Extraction

We use two separate feature extractors termed the fea-
ture encoder and the context encoder. The feature encoder
is applied to both the left and right images and maps each
image to a dense feature map, which is then used to con-
struct the correlation volume. The network consists of a se-
ries of residual blocks and downsampling layers, producing
feature maps at 1/4 or 1/8 the input image resolution with

256 channels, depending on the number of downsampling
layers used in our experiments. We use instance normaliza-
tion [37] in the feature encoder.

The context encoder has identical architecture to the fea-
ture encoder except we replace instance normalization with
batch normalization [17] and only apply the context encoder
on the left image. The context features are used to initialize
the hidden state of the update operator and also injected into
the GRU during each iteration of the update operator.

3.2. Correlation Pyramid

Correlation Volume: We use the dot product between fea-
ture vectors as a measure of visual similarity. Similar to
how RAFT [35] constructs a 4D correlation volume by
computing the visual similarity between all pairs of pixels,
we restrict computation of the correlation volume to pix-
els which share the same y-coordinate. Given feature maps
f ,g ∈ RH×W×D extracted from IL and IR respectively,
the 3D correlation volume can be computed using a modi-
fication of the 4D volume construction by restricting com-
putation of the inner product to feature vectors which share
the same first index:

Cijk =
∑
h

fijh · gikh, C ∈ RH×W×W
(1)

Like the 4D volume, computation of the 3D volume can
be efficiently implemented using a single matrix multipli-
cation, which can be easily computed on the GPU and takes
up only a small fraction of total runtime.

In rectified stereo, we can typically assume that all dis-
parities are positive; thus, the correlation volume really only
needs to be computed for positive disparities. However, the
advantage of computing the full volume is that the opera-
tion can be implemented using matrix multiplication which
is highly optimized. This simplifies the overall architecture,
allowing us to use common operations instead of requiring
custom GPU kernels.
Correlation Pyramid: We construct a 4 level pyramid of
correlation volumes through repeated average pooling of
the last dimension. The kth level of the pyramid is con-
structed from the volume at level k using 1D average pool-
ing with a kernel size of 2 and a stride of 2 producing a new
volume Ck+1 with dimension H ×W ×W/2k. Each level
of the pyramid has an increased receptive field, but by only
pooling the last dimension, we maintain the high resolution
information present in the original image, which allows us
to recover very fine structures.
Correlation Lookup: To index into the correlation pyra-
mid, we define a lookup operator LC analogous to the one
defined in RAFT. Given a current estimate of disparity d, we
construct a 1D grid with integer offsets around the current
disparity estimate as shown in Fig. 2. The grid is used to
index from each level in the correlation pyramid. Since grid



current disparity estimate Concat

Figure 2. Lookup from the correlation pyramid. We use the current
estimate of disparity to retrieve values from the each level of the
correlation pyramid. We index from each level in the pyramid by
linear interpolating at the current disparity estimate and at integer
offsets, whose size depends on the correlation pyramid level.

values are real numbers, we use linear interpolation when
indexing each volume. The retrieved values are then con-
catenated into a single feature map.

3.3. Multi-Level Update Operator

We predict a series of disparity fields {d1, ...,dN} from
an initial starting point d0 = 0. During each iteration, we
use the current estimate of disparity to index the correla-
tion volume, producing a set of correlation features. These
features are passed through 2 convolutional layers. Simi-
larly, the current disparity estimate is also passed through 2
convolutional layers. The correlation, disparity, and context
features and then concatenated and injected into the GRU.
The GRU updates the hidden state. The new hidden state is
then used to predict the disparity update.

Multiple Hidden States: The original RAFT performs up-
dates entirely at a fixed, high resolution. An issue with this
approach is that the receptive field increases very slowly
with the number of GRU updates. This can be problem-
atic for scenes with large textureless regions with little local
information. We combat this issue by proposing a multi-
resolution update operator which operates on feature maps
at 1/8, 1/16, and 1/32 resolutions simultaneously. In our
experiments, we show that our use of a multi-resolution up-
date operator results in better generalization performance.

The GRUs are cross-connected by using each other’s
hidden states as input as shown in Fig. 3. Correlation lookup
and the final disparity update is performed by the GRU at
the highest resolution. We also experiment with a higher
resolution model, with GRU updates at 1/4, 1/8, and 1/16
the resolution of the input image.
Upsampling: The predicted disparity field is at 1/4 or 1/8
the input image resolution. To output full resolution dis-
parity maps, we use the same convex upsampling method
as RAFT. RAFT-Stereo takes the full resolution disparity
values to be the convex combination of the 3x3 grid
of their coarse resolution neighbors. The convex combi-
nation weights are predicted by the highest resolution GRU.

1/8

1/16

1/32

L

Figure 3. Multilevel GRU. We use a 3-level convolutional GRU
which acts on feature maps at 1/32, 1/16, and 1/8 the input im-
age resolution. Information is passed between GRUs at adjacent
resolutions using upsampling and downsampling operations. The
GRU at the highest resolution (red) performs lookups from the
correlation pyramid and updates the disparity estimate.

3.4. Slow-Fast GRU

A GRU-update to a 1/8 resolution hidden state takes ap-
proximately 4x as many FLOPs compared to updating a
1/16 resolution hidden state. In order to leverage this fact
for faster inference, we train a version of RAFT-Stereo in
which we update the 1/16 and 1/32 resolution hidden states
several times for every single update to the 1/8 resolution
hidden state. On KITTI resolution images with 32 GRU
updates, this simple change reduces the runtime of RAFT-
Stereo from 0.132s to 0.05s, a 52% decrease. See table 6.

This modification allow us to achieve performance com-
petitive with state-of-the-art approaches for stereo vision
in real-time with RAFT-Stereo (See section 4.7), with a
method that runs an order of magnitude faster.

3.5. Supervision

We supervised on the l1 distance between the predicted
and ground truth disparity over the full sequence of predic-
tions, {d1, ...,dN}, with exponentially increasing weights.
Given ground truth disparity dgt, the loss is defined as

L =

N∑
i=1

γN−i||dgt − di||1, where γ = 0.9. (2)

4. Experiments
We evaluate RAFT-Stereo on ETH3D [29], Middle-

bury [28] and KITTI-2015 [24]. Following previous
works, we pretrain our model on the synthetic Sceneflow
datasets [23]. Our method achieves state-of-the-art perfor-
mance on the ETH3D and Middlebury leaderboards and we
outperform existing methods in the zero-shot generalization
setting on ETH3D, KITTI and Middlebury.
Implementation Details: RAFT-Stereo is implemented in
Pytorch [26] and is trained using two RTX 6000 GPUs. All
modules are initialized from scratch with random weights.
During training, we use the AdamW [22] optimizer. We
evaluate RAFT-Stereo after 32 disparity-field updates in our



Figure 4. Results on the ETH3D stereo dataset. RAFT-Stereo is robust to difficulties like textureless surfaces and overexposure.

Method KITTI-15 Middlebury ETH3Dfull half quarter

HD3 [44] 26.5 50.3 37.9 20.3 54.2
gwcnet [12] 22.7 47.1 34.2 18.1 30.1
PSMNet [4] 16.3 39.5 25.1 14.2 23.8
GANet [47] 11.7 32.2 20.3 11.2 14.1
DSMNet [48] 6.5 21.8 13.8 8.1 6.2

Ours 5.74 18.33 12.59 9.36 3.28

Table 1. Synthetic to real generalization experiments. All meth-
ods were trained on SceneFlow[23] and tested on the KITTI-
2015, Middlebury, and ETH3D validation datasets. We report av-
erage results across six independent training runs evaluated after
200k steps. Errors are the percent of pixels with end-point-error
greater than the specified threshold. We use the standard eval-
uation thresholds: 3px for KITTI, 2px for Middlebury, 1px for
ETH3D.

ablation experiments and after 80 updates in table 1.

Training Schedule: Final models are trained on synthetic
data for 200k steps with a batch size of 8, while ablation ex-
periments are trained with a batch size of 6 for 100k steps.
Ablation experiments (see table 6) are run with 16 disparity-
field updates during training, and final results were trained
with 22 updates. We use a one-cycle learning rate sched-
ule [30] with a minimum learning rate of 1e−4. All RAFT-
Stereo experiments were trained on random 360x720 crops
(excluding benchmark submissions) and all experiments,
excluding ablation experiments, were trained using data
augmentation. Specifically: the image saturation was ad-
justed between 0 (greyscale) and 1.4; the right image was
perturbed to simulate imperfect rectification that is com-
mon in datasets such as ETH3D and Middlebury; we stretch
the images and disparity by random factors in the range
[2−0.2, 20.4] in order to simulate a range of possible dispar-
ity distributions.

4.1. Zero-Shot Generalization

We evaluate RAFT-Stereo’s ability to generalize from
synthetic training data to unseen real-world datasets. This

Method all foregr. backgr.

AcfNet [49] 1.89 3.80 1.51
AMNet [10] 1.84 3.43 1.53
OptStereo [38] 1.82 3.43 1.50
GANet-deep [47] 1.81 3.46 1.48
SUW-Stereo [27] 1.80 3.45 1.47
GANet + DSMNet [48] 1.77 3.23 1.48
CSPN [5] 1.74 2.88 1.51
LEAStereo [6] 1.65 2.91 1.40

Ours 1.96 2.89 1.75

Table 2. Results on the KITTI-2015 [24] leaderboard. Only pub-
lished results are included. Best results for each evaluation metric
are bolded, second best are underlined. At the time of submission,
RAFT-Stereo ranks second on the percentage of erroneous (EPE
> 3.0 px) foreground pixels among published methods.

ability is critical as there exist no large-scale real-world
datasets for training. In table 1, we report RAFT-Stereo’s
generalization from Sceneflow [23] directly to the KITTI-
15, ETH3D and Middlebury validation sets, and compare
to other methods in the same zero-shot setting.

Across all three validation datasets, RAFT-Stereo
exhibits state-of-the-art performance in the zero-shot
synthetic-to-real setting. RAFT-Stereo is trained for 200k
iterations using data augmentation.

4.2. KITTI

We submit RAFT-Stereo to the KITTI-2015 stereo
benchmark [24]. At the time of writing this paper, RAFT-
Stereo ranks second on the percentage of erroneous fore-
ground pixels on the KITTI-2015 Stereo leaderboard (See
table 2) among published methods. For the KITTI leader-
board, we fine-tuned our method for 5k iterations on the
KITTI training set using 320x1000 random crops, a mini-
mum learning rate of 1e−5, and data augmentation.



4.3. ETH3D

The ETH3D dataset is too small for training, so we di-
rectly evaluate our model trained on the SceneFlow dataset.
To generalize from Sceneflow to ETH3D, we simulate
ETH3D’s image distribution by fine tuning the network
on additional greyscale Sceneflow images with gamma ad-
justment to simulate the often-overexposed black-and-white
images in ETH3D. On the validation set, we note the accu-
racy increase from applying a large number of GRU itera-
tions which can be performed without additional memory
cost. To obtain our final validation results in table 1 and
in table 3, we run RAFT-Stereo for 80 iterations. We show
qualitative results on ETH3D in Fig. 4. Using only syn-
thetic training data, RAFT-Stereo ranks 1st on the ETH3D
two-view stereo leaderboard[29] among published meth-
ods, achieving a bad 1-pixel error (% of pixels with end-
point-errors greater than 1px) of 2.44, outperforming the
next best result of 2.69 by 9.3%.

4.4. Middlebury

RAFT-Stereo ranks first on the Middlebury Test set
leaderboard, with a bad 2px error of 4.74%, a 26% reduc-
tion in error over the next best end-to-end deep learning
method. See table 4. The Middlebury dataset provides 23
high resolution image pairs for training and/or validation, as
well as versions with alternate lighting. After pre-training
on Sceneflow [23], we fine-tune on 384x1000 random crops
of the 23 Middlebury traning images for 4000 steps with a
batch size of 2, using 22 update iterations during training,

Method bad 0.5 (%) bad 1.0 (%) bad 2.0 (%) AvgErr

HSM[42] 10.88 4.00 1.36 0.28
NOSS-ROB [18] 10.99 3.30 1.29 0.31
iResNet[25] 10.26 3.68 1.00 0.24
AdaStereo [31] 10.22 3.09 0.65 0.24
HIT-Net [34] 7.83 2.79 0.80 0.20

Ours 7.04 2.44 0.44 0.18

Table 3. Results on the ETH3D test set leaderboard. At the time of
submission, RAFT-Stereo ranks first across every evaluation met-
ric among all published methods. For all metrics, lower is better.

and 32 at inference.
RAFT-Stereo is extremely memory efficient, and is

therefore able to output full-resolution (1900x3000) dense
optical flow. This is in contrast to 33 of the remaining 34
best methods on the leaderboard, which require upsampling
their output from half-resolution. To further reduce mem-
ory, we also adapt RAFT’s memory efficient correlation
implementation to 3D, where correlation features are com-
puted on-the-fly. We refer the reader to section 3.2 in RAFT
[35] for more information. Beyond the aforementioned hor-
izontal image stretching, saturation adjustment and vertical
perturbation of the right image, we do no additional data
augmentation to adapt to the Middlebury dataset. Fig. 5
shows qualitative results of RAFT-Stereo on Middlebury.

4.5. Synthetic Datasets

In order to improve zero-shot generalization perfor-
mance, we train additional versions of RAFT-Stereo us-
ing additional synthetic data. As real-world stereo cor-
respondence training data is difficult to obtain en masse,
most stereo correspondence works such as PSMNet [4] and
DSMNet [48] leverage synthetic training data, specifically
only the Sceneflow dataset, for training.

The overall structure of the 3D scenes in Sceneflow,
however, is not representative of other real-world datasets
to which we hope to generalize. To remedy this, we inves-
tigate three additional publicly available synthetic datasets
and demonstrate that combining them with Sceneflow can
improve zero-shot generalization performance. We show in
table 5 that certain combinations of datasets benefit gener-
alization to specific validation datasets.

Falling Things: Falling things [36] is a photo-realistic syn-
thetic dataset of miscellaneous objects placed sporadically
around a scene. Originally intended as an object detection
and 3D pose estimation dataset, Falling Things provides
61.5K image pairs for training stereo correspondence meth-
ods. We demonstrate that the use of this dataset improves
generalization performance, specifically to the KITTI and
Middlebury datasets.

Tartan Air: Tartan Air [39] is a publicly available photo-
realistic synthetic dataset of simulation environments mod-

Methods AvgErr MedErr bad 0.5 (%) bad 1.0 (%) bad 2.0 (%) bad 4.0 (%)

EdgeStereo [32] 2.68 0.72 55.6 32.4 18.7 10.8
HSM-Net [8] 2.07 0.56 50.7 24.6 10.2 4.83
LEAStereo [6] 1.43 0.53 49.5 20.8 7.15 2.75
MC-CNN [9] 2.63 0.44 40.1 16.1 6.35 3.81
LocalExp [33] 2.24 0.43 38.7 13.9 5.43 3.69
CRLE [41] 2.25 0.42 38.1 13.4 5.75 3.90
HITNet [34] 1.71 0.40 34.2 13.3 6.46 3.81
NOSS-ROB [18] 2.08 0.42 38.2 13.2 5.01 3.46

Ours 1.27 0.26 27.7 9.37 4.74 2.75

Table 4. Results on the Middlebury test set leaderboard compared to the top performing methods. Lower is better for all metrics.



Figure 5. Results on the Middlebury [28] test set compared to the top end-to-end deep learning approaches. We also report the 1px error
of each output in the corner. RAFT-Stereo is able to recover extremely fine details that other approaches cannot, such as the spokes of the
bike wheel, the individual leaves of the plant, and sharp object boundaries.

Sceneflow [23] Falling Things [36] Tartan Air [39] Sintel Stereo [3] ETH3D KITTI-15 Middlebury (Full)

X - - - 4.44 6.37 23.40
- X - - 26.93 6.13 25.39
- - X - 4.62 5.87 26.28
X X - - 25.2 5.88 20.95
X X X - 7.65 5.76 20.65
X X X X 5.65 5.62 21.99

Table 5. Synthetic data generalization experiments. All experiments were run twice with different weight initializations and the validation
performances were averaged. Data were balanced so that each dataset represents an equal proportion of the training data. Experiments
were done using RAFT-Stereo with a single hidden-state with random cropping and vertical perturbation of the right image.

eled after real-world settings. This dataset was intended
primarily as a SLAM dataset, but also provides 296K im-
age pairs for training stereo correspondence methods. In
our experiments, we show that Tartan Air generalizes well
to KITTI and to ETH3D.

Sintel-Stereo: The Sintel dataset [3] exists primarily as a
synthetic dataset for training optical flow methods. In addi-
tion to optical flow training data, they also provide 2.1K
image pairs for training stereo correspondence methods.
While training a RAFT-Stereo exclusively on this dataset
caused it to overfit, we found that leveraging Sintel-Stereo
together with all three other synthetic datasets gave excel-
lent generalization performance, specifically in that it im-
proves generalization to the ETH3D dataset.

4.6. Ablations

GRU Levels: RAFT-Stereo maintains and updates multiple
hidden states at multiple resolutions, typically 1/8, 1/16 and
1/32 resolutions as show in figure 3. Each hidden state is up-
dated using a dedicated GRU which uses the adjacent hid-
den states as context in addition to specific context features
for that resolution. Using multiple hidden states increases
the runtime but results in better performance overall.

Backbone: RAFT-Stereo uses separate backbones in order
to extract correlation features and context features for the
GRU updates. We show that using a single backbone to
produce both the correlation features and context features
leads to faster inference without incurring any decrease in
performance. We use a single-backbone architecture in the
real-time version of RAFT (See section 4.7 and Fig. 6).

Resolution: RAFT-Stereo updates its running estimate of



Experiment Method FlyingThings3D Runtime (s) Parameters

# GRU Levels. 3 Levels 9.40 0.132 11.23M
1 Level 9.64 0.091 9.46M

Backbone Single Backbone 9.37 0.121 10.75M
Sep. Backbones 9.40 0.132 11.23M

Resolution 1/4th 7.92 0.338 11.12M
1/8th 9.40 0.132 11.23M

Slow-Fast GRU Regular 9.40 0.132 11.23M
Slow-Fast 9.98 0.063 11.23M

Collapsed Cost Volume RAFT - 0.224 5.26M
RAFT-Stereo - 0.132 11.23M

Table 6. Ablation experiments. Settings used in our final model are underlined. See section 4.6 for details. All experiments are run for
100k steps on random 320x720 crops of Sceneflow with vertical perturbations to the right image as the only augmentation. Methods are
evaluated on the held-out FlyingThings3D [23] test set which we used to make all design decisions for our zero-shot generalization / real-
time experiments. We report the 1px error evaluated after 100k steps, averaged across two independent training runs with random weight
initialization. The reported the runtime comparisons were made on 1248x384 resolution images (i.e. KITTI resolution).

the disparity at 1/8 or 1/4 resolution. Maintaining the run-
ning disparity estimate at 1/4 resolution yields significantly
better generalization, but results in slower runtimes and uses
approximately 4x as much GPU memory. This is done by
shrinking the stride in the feature extractors and by predict-
ing a proportionally smaller mask for convex upsampling.

Collapsed Cost Volume: Rather than training a separate
network for estimating stereo correspondence, one option
is to apply an existing optical flow method and project the
predicted flow onto the epipolar line. We show that special-
izing RAFT for stereo by simply collapsing the cost volume
gives significantly faster runtime relative to RAFT.

Slow-Fast: We observe a significant decrease in runtime of
RAFT-Stereo by iterating the lower resolution GRUs more
often and the higher resolution GRUs less often, with a lim-
ited penalty to accuracy. In table 6, the ”Slow-Fast” ver-
sion of RAFT-Stereo updates the lowest, middle and highest
resolution hidden states 30, 20 and 10 times, respectively,
while ”Regular” updates each hidden state 32 times. Both
”Slow-Fast” and ”Regular” use the same model weights

4.7. Real-time Inference

We demonstrate that RAFT-Stereo can be config-
ured to achieve real-time inference on KITTI-resolution
(1248x384) images with competitive performance. By
leveraging Slow-Fast bi-level (1/8 and 1/16 resolution)
GRUs and a single backbone, RAFT-Stereo runs at 26
FPS. Our real-time implementation of RAFT-Stereo’s per-
formance (5.91 D1 error) is competitive with DSMNet [48]
(6.5 D1 error). See Fig. 6. Additionally, we implement our
own bilinear sampler in CUDA as Pytorch’s default imple-
mentation proved to be a runtime bottleneck.

Figure 6. Plot comparing zero-shot generalization from synthetic
data to KITTI-2015. All methods are trained only on Sceneflow
[23], without any fine-tuning. RAFT-Stereo can be configured for
real time inference and achieves competitive performance with the
state-of-the-art stereo methods. Relative to our base model (blue),
our realtime model (teal) uses a shared backbone, two hidden state
resolutions and slow-fast GRUs updating the flow-field at 1/8th
resolution (Sec. 4.7)

5. Conclusions

We have proposed RAFT-Stereo, a new deep architecture
for two-view Stereo based on RAFT [35]. RAFT-Stereo ex-
tends RAFT by leveraging multi-level GRUs to efficiently
pass information across the image. Our approach achieves
state-of-the-art cross-dataset generalization and ranks first
on the Middlebury benchmark and outperforms all pub-
lished work on ETH3D.
Acknowledgements This work is partially supported by the
National Science Foundation under Award IIS-1942981.



References
[1] Abhishek Badki, Alejandro Troccoli, Kihwan Kim, Jan

Kautz, Pradeep Sen, and Orazio Gallo. Bi3d: Stereo depth
estimation via binary classifications. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1600–1608, 2020. 3

[2] Connelly Barnes, Eli Shechtman, Adam Finkelstein, and
Dan B Goldman. Patchmatch: A randomized correspon-
dence algorithm for structural image editing. ACM Trans.
Graph., 28(3):24, 2009. 2

[3] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A nat-
uralistic open source movie for optical flow evaluation. In
A. Fitzgibbon et al. (Eds.), editor, European Conf. on Com-
puter Vision (ECCV), Part IV, LNCS 7577, pages 611–625.
Springer-Verlag, Oct. 2012. 7

[4] Jia-Ren Chang and Yong-Sheng Chen. Pyramid stereo
matching network. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 5410–
5418, 2018. 1, 2, 5, 6

[5] Xinjing Cheng, Peng Wang, and Ruigang Yang. Learning
depth with convolutional spatial propagation network. IEEE
transactions on pattern analysis and machine intelligence,
42(10):2361–2379, 2019. 5

[6] Xuelian Cheng, Yiran Zhong, Mehrtash Harandi, Yuchao
Dai, Xiaojun Chang, Hongdong Li, Tom Drummond, and
Zongyuan Ge. Hierarchical neural architecture search for
deep stereo matching. Advances in Neural Information Pro-
cessing Systems, 33, 2020. 5, 6

[7] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip
Hausser, Caner Hazirbas, Vladimir Golkov, Patrick Van
Der Smagt, Daniel Cremers, and Thomas Brox. Flownet:
Learning optical flow with convolutional networks. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 2758–2766, 2015. 2
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