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Abstract

We present 3DVNet, a novel multi-view stereo (MVS)
depth-prediction method that combines the advantages of
previous depth-based and volumetric MVS approaches. Our
key idea is the use of a 3D scene-modeling network that it-
eratively updates a set of coarse depth predictions, result-
ing in highly accurate predictions which agree on the un-
derlying scene geometry. Unlike existing depth-prediction
techniques, our method uses a volumetric 3D convolutional
neural network (CNN) that operates in world space on all
depth maps jointly. The network can therefore learn mean-
ingful scene-level priors. Furthermore, unlike existing volu-
metric MVS techniques, our 3D CNN operates on a feature-
augmented point cloud, allowing for effective aggregation
of multi-view information and flexible iterative refinement of
depth maps. Experimental results show our method exceeds
state-of-the-art accuracy in both depth prediction and 3D
reconstruction metrics on the ScanNet dataset, as well as
a selection of scenes from the TUM-RGBD and ICL-NUIM
datasets. This shows that our method is both effective and
generalizes to new settings.

1. Introduction

Multi-view stereo (MVS) is a central problem in com-
puter vision with applications from augmented reality to au-
tonomous navigation. In MVS, the goal is to reconstruct a
scene using only posed RGB images as input. This recon-
struction can take many forms, from voxelized occupancy
or truncated signed distance fields (TSDFs), to per-frame
depth prediction, the focus of this paper. In recent years,
MVS methods based on deep learning [2, 6, 11, 12, 17,
18, 22, 24, 26, 29, 30, 31, 32] have surpassed traditional
MVS methods [9, 21] on numerous benchmark datasets
[5, 13, 15]. In this work, we consider these methods as
falling into two categories, depth estimation and volumetric
reconstruction, each with advantages and disadvantages.

The most recent learning methods in depth estimation

https://github.com/alexrich021/3dvnet

Figure 1: Volumetric methods lack local detail while depth-
based methods lack global coherence. Our method cycli-
cally predicts depth, back-projects into 3D space, volumet-
rically models geometry, and updates all depth predictions
to match, resulting in local detail and global coherence.

use deep features to perform dense multi-view matching ro-
bust to large environmental lighting changes and textureless
or specular surfaces, among other things. These methods
take advantage of well researched multi-view aggregation
techniques and the flexibility of depth as an output modal-
ity. They formulate explicit multi-view matching costs and
include iterative refinement layers in which a network pre-
dicts a small depth offset between an initial prediction and
the ground truth depth map [2, 32]. While these tech-
niques have been successful for depth prediction, most are
constrained to making independent, per-frame predictions.
This results in predictions that do not agree on the under-
lying 3D geometry of the scene. Those that do make joint
predictions across multiple frames use either regularization
constraints [11] or recurrent neural networks (RNNs) [6] to
encourage frames close in pose space to make similar pre-
dictions. However, these methods do not directly operate
on a unified 3D scene representation, and their resulting re-
constructions lack global coherence (see Fig. 1).

Meanwhile, volumetric techniques operate directly on a
unified 3D scene representation by back-projecting and ag-
gregating 2D features into a 3D voxel grid and using a 3D
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convolutional neural network (CNN) to regress a voxelized
parameter, often a TSDF. These methods benefit from the
use of 3D CNNs and naturally produce highly coherent 3D
reconstructions and accurate depth predictions. However,
they do not explicitly formulate a multi-view matching cost
like depth-based methods, generally averaging deep fea-
tures from different views to populate the 3D voxel grid.
This results in overly-smooth output meshes (see Fig. 1).

In this paper, we propose 3DVNet, an end-to-end dif-
ferentiable method for learned multi-view depth prediction
that leverages the advantages of both volumetric scene mod-
eling and depth-based multi-view matching and refinement.
The key idea behind our method is the use of a 3D scene-
modeling network which outputs a multi-scale volumetric
encoding of the scene. This encoding is used with a mod-
ified PointFlow algorithm [2] to iteratively update a set of
initial coarse depth predictions, resulting in predictions that
agree on the underlying scene geometry.

Our 3D network operates on all depth predictions at
once, and extracts meaningful, scene-level priors similar to
volumetric MVS methods. However, the 3D network op-
erates on features aggregated using depth-based multi-view
matching and can be used iteratively to update depth maps.
In this way, we combine the advantages of the two separate
classes of techniques. Because of this, 3DVNet exceeds
state-of-the-art results on ScanNet [5] in nearly all depth
map prediction and 3D reconstruction metrics when com-
pared with the current best depth and volumetric baselines.
Furthermore, we show our method generalizes to other real
and synthetic datasets [10, 23], again exceeding the best re-
sults on nearly all metrics. Our contributions are as follows:

1. We present a 3D scene-modeling network which out-
puts a volumetric scene encoding, and show its effec-
tiveness for iterative depth residual prediction.

2. We modify PointFlow [2], an existing method for
depth map residual predictions, to use our volumetric
scene encoding.

3. We design 3DVNet, a full MVS pipeline, using our 3D
scene-modeling network and PointFlow refinement.

2. Related Works
We cover MVS methods using deep learning, categoriz-

ing them as either depth-prediction methods or volumetric
methods. Our method falls into the first category, but is very
much inspired by volumetric techniques.

Depth-Prediction MVS Methods: With some notable
exceptions [22, 28], nearly all depth-prediction methods fol-
low a similar paradigm: (1) they construct a plane sweep
cost volume on a reference image’s camera frustum, (2) they
fill the volume with deep features using a cost function that
operates on source and reference image features, (3) they

use a network to predict depth from this cost volume. Most
methods differ in their cost metric used to construct the vol-
ume. Many cost metrics exist, including per-channel vari-
ance of deep features [29, 30], learned aggregation using a
network [17, 31], concatenation of deep features [12], the
dot product of deep features [6], and absolute intensity dif-
ference of raw image RGB values [11, 26]. We find per-
channel variance [29] to be the most commonly used cost
metric, and adopt it in our system.

The choice of cost aggregation method results in ei-
ther a vectorized matching cost and thus a 4D cost vol-
ume [2, 12, 17, 29, 30, 31, 32] or a scalar matching cost
and thus a 3D cost volume [6, 11, 26]. Methods with 4D
cost volumes generally require 3D networks for processing,
while 3D cost volumes can be processed with a 2D U-Net-
style [20] encoder-decoder architecture. Some methods op-
erate on the deep features at the bottleneck of this U-Net to
make joint depth predictions for all N frames or a subset
of frames in a given scene. This is similar to our proposed
method, and we highlight the differences.

GPMVS [11] uses a Gaussian Process (GP) constraint
conditioned on pose distance to regularize these deep fea-
tures. This GP constraint only operates on deep features and
assumes Gaussian priors. In contrast, we directly learn pri-
ors from predicted depth maps and explicitly predict depth
residuals to modify depth maps to match. DV-MVS [6] in-
troduces an RNN to propagate information from the deep
features in frame t−1 to frame t given an ordered sequence
of frames. While they do propagate this information in a ge-
ometrically plausible way, the RNN operates only on deep
features similar to GPMVS. Furthermore, the RNN never
considers all frames jointly like our method.

Similar to our method, some networks iteratively predict
a residual to refine an initial depth prediction [2, 32]. We
specifically highlight Point-MVSNet [2], which introduces
PointFlow, a point cloud learning method for residual pre-
diction. Our method is very much inspired by this work.
We briefly describe the differences.

In their work, they operate on a point cloud back-
projected from a single depth map and augmented with
additional points. Features are extracted from this point
cloud using point cloud learning techniques and used in
their PointFlow module for residual prediction. Crucially,
these features do not come from a unified 3D representation
of the scene. Thus the residual prediction is only condi-
tioned on information local to the individual depth predic-
tion and not global scene information. In contrast, our varia-
tion of PointFlow uses our volumetric scene model to condi-
tion residual prediction on information from all depth maps.
For an in depth discussion of differences, see Sec. 3.2.

Volumetric MVS Methods: In volumetric MVS, the
goal is to directly regress a global volumetric representa-
tion of the scene, generally a TSDF volume. We highlight



two methods which inspired our work. Atlas [18] back-
projects rays of deep features extracted from images into a
global voxel grid, pools features from multiple views using
a running average, then directly regress a TSDF in a coarse-
to-fine fashion using a 3D U-Net. NeuralRecon [24] im-
proves on the memory consumption and run-time of Atlas
by reconstructing local fragments using the most recent
keyframes, then fusing the local fragments to a global vol-
ume using an RNN. The reconstructions these methods pro-
duce are pleasing. However, both construct feature volumes
using averaging in a single forward pass, which we believe
is non-optimal. In contrast, our depth-based method allows
us to construct a feature volume using multi-view matching
features and perform iterative refinement.

3. Methods
Our method takes as input N images, denoted {In},

n = 1, . . . , N with corresponding known extrinsic and in-
trinsic camera parameters. Our goal is to predict N depth
maps {Dn} corresponding to the N images. As a pre-
processing step, we define for every image In a set of M
indices {s1, . . . , sM} pointing to which images to use as
source images for depth prediction, and append the refer-
ence index to form the set Sn = {n, s1, . . . , sM}.

Our pipeline is as follows. First, a small depth-prediction
network is used to independently predict initial coarse depth
maps {D0

n} for every frame {In} using extracted image
features {Fn} (Sec. 3.3). Second, we back-project our
N initial depth maps to form a joint point cloud X ⊂ R3

(Sec 3.1). Because each point p ∈ X is associated
with one depth map D0

n that has associated feature maps
{Fs : s ∈ Sn}, we can augment it with a multi-view match-
ing feature aggregated from those feature maps. Third,
our 3D scene-modeling network takes as input this feature-
rich point cloud and outputs a multi-scale scene encoding
V1,V2,V3 (Sec. 3.1). Fourth, we update each depth map
to match this scene encoding using a modified PointFlow
algorithm, resulting in highly coherent depth maps and thus
highly coherent reconstructions (Sec. 3.2). Steps 2-4 can
be run in a nested for-loop, with steps 2 and 3 run in the
outer loop to generate updated scene models with the cur-
rent depth maps and step 4 run in the inner loop to refine
depth maps with the current scene model. We denote the
updated depth map after lo outer loop iterations of scene
modeling and li inner loop iterations of updating as D(lo,li)

n .
Finally, we upsample the resulting refined depth maps to the
size of the original image in a coarse-to-fine manner, guided
by deep features and the original image, to arrive at final
predictions {Dn} for every image {In} (Sec. 3.3).

3.1. 3D Scene Modeling

A visualization of our 3D scene modeling method is
given in the upper half of Fig. 2. As stated previously,

our 3D scene-modeling network operates on a feature rich
point cloud back-projected from {D0

n} or subsequent up-
dated depth maps. To process this point cloud, we adopt a
voxelize-then-extract approach. We first generate a sparse
3D grid of voxels, culling voxels that do not contain depth
points. To avoid losing granular information of the point
cloud, we generate a deep feature for each voxel using a per-
voxel PointNet [1]. The PointNet inputs are the features of
each depth point in the voxel as well as the 3D offset of that
point to the voxel center. Finally, we run a 3D U-Net [20]
on the resulting voxelized feature volume and extract inter-
mediate outputs at multiple resolutions. By nature of con-
struction, this U-Net learns meaningful, scene-level priors.
The result is a multi-scale, volumetric scene encoding.

Point Cloud Formation: We form our point cloud
X ⊂ R3 by back-projecting all depth pixels in all N depth
maps. For our multi-view matching feature associated with
each point p ∈ X, we follow existing work [2, 29] and use
per-channel variance aggregation using the reference and
source feature maps associated with each depth pixel. For
p ∈ X, given that p belongs to depth map D0

n, the equa-
tion for variance feature σ2(p), applied per-channel, is:

σ2(p) =
1

|Sn|
∑
s∈Sn

(
Fs(p̂s)− F∗(p̂∗)

)2
(1)

where p̂s is the projection of p to feature map Fs, Fs(p̂s)
is the bilinear interpolation of Fs to point p̂s, and F∗(p̂∗)
is the average interpolated feature over all indices s ∈ Sn.
Intuitively, if p lies on a surface it is more likely to have
low variance in most feature channels in σ2(p) while if it
doesn’t lie on a surface the variance will likely be high.

Point Cloud Voxelization: To form our initial feature
volume, we regularly sample an initial 3D grid of points
C every r = 8 cm within the axis-aligned bounding box of
point cloud X and define the voxel associated with each grid
point c ∈ C as the 8 cm3 cube with center c. We denote the
set of depth points that fall within a voxel with center c ∈ C
as v(c) = {p ∈ X : ||c − p||∞ <= r

2}. We sparsify
this grid by discarding c ∈ C if no depth points lie within
the associated voxel, denoting this set of grid coordinates
as Ĉ = {c ∈ C : v(c) 6= ∅}. For c ∈ Ĉ, we produce a
feature for the associated voxel using PointNet [1] with max
pooling. The PointNet feature for each voxel is defined as:

fv(c) = 4
p∈v(c)

hθ
(
concat

[
p− c,σ2(p)

])
(2)

where hθ is a learnable multi-layer perceptron (MLP),
concat [q, f ] indicates concatenation of the 3D coordinates
q with the feature channel of f to form a feature with 3 ad-
ditional channels, and 4 is the channel-wise max pooling
operation. The result of this stage is a sparse feature vol-
ume V0 with features given by Eq. 2 and coordinates Ĉ.



Figure 2: Our novel 3D scene modeling and refinement method first constructs a multi-scale volumetric scene encoding from
a set of N input depth maps with corresponding feature maps. It then uses that encoding in a variation of the PointFlow
algorithm [2] to predict a residual for each of the N depth maps. The full method can be run in a nested for-loop fashion,
predicting multiple residuals per depth map in the inner loop and running scene modeling in the outer loop.

Figure 3: Diagram of standard PointFlow hypothesis point
construction and our proposed feature generation, shown in
2D for simplicity. Feature volume in diagram corresponds
to a single scale of our multi-scale scene encoding. Our
key change from the original formulation is to generate hy-
pothesis point features by trilinear interpolation of our volu-
metric scene encoding rather than edge convolutions on the
point cloud from a single back-projected depth map.

Multi-Scale 3D Feature Extraction: In this stage, we
use a sparse 3D U-Net to model the underlying scene ge-
ometry. We use a basic U-Net architecture with skip con-
nections. Group normalization is used throughout. See sup-
plementary material for a more detailed description of our
architecture. Our sparse U-Net takes as input sparse feature
volume V0. From intermediate outputs of the U-Net, we
extract three scales of feature volumes V1, V2, V3 with a
voxel edge length of 4r = 32 cm, 2r = 16 cm, and r = 8
cm, respectively, describing the scene. In this way, we ex-
tract a rich, multi-scale, volumetric encoding of the scene.

3.2. PointFlow-Based Refinement

In this stage, we use our multi-scale scene encoding
V1,V2,V3 from the previous stage in a variation of the
PointFlow algorithm proposed by Chen et al. [2]. The goal
is to refine our predicted depth maps to match our scene
model by predicting a residual for each depth pixel. We
briefly review the core components of PointFlow and the
intuition behind our proposed change.

In PointFlow, a set of points called hypothesis points are
constructed at regular intervals along a depth ray, centered
about the depth prediction associated with the given depth
ray. The blue and red points in Fig. 3 illustrate this. Features
are generated for the hypothesis points. Then, a network
processes these features and outputs a probability score for
every point indicating confidence the given point is at the
correct depth. Finally, the expected offset is calculated us-
ing these probabilities and added to the original depth pre-
diction. Our key innovation is the use of our multi-scale
scene encoding to generate the hypothesis point features.

In the original PointFlow, hypothesis points are con-
structed for a single depth map, augmented with features
using Eq. 1, and aggregated into a point cloud. Note this
point cloud is strictly different from our point cloud as (1) it
is produced using a single depth map, and (2) it includes hy-
pothesis points. Features are generated for each point using
edge convolutions [27] on the k-Nearest-Neighbor (kNN)
graph. Crucially, these edge convolutions never operate on
a unified 3D scene representation in the original PointFlow.
This prevents the offset predictions from learning global
information, which we believe is a critical step for depth
residual prediction. Furthermore, because of the required



Figure 4: Overview of the full 3DVNet pipeline. See Secs. 3.1 and 3.2 for a description of our scene modeling and refinement.

kNN search, this formulation cannot scale to process a joint
point cloud from an arbitrary number of depth maps, there-
fore preventing it from scaling to learn global information.

Inspired by convolutional occupancy networks [19] and
IFNets [3], we instead generate hypothesis features by inter-
polating each scale of our multi-scale scene encoding (see
Fig. 3). With this key change, we use powerful scene-level
priors in our offset prediction conditioned on all N depth
predictions for a given scene. Furthermore, by using the
same encoding to update all N depth predictions, we en-
courage global consistency of predictions. We now describe
in detail our variation of the PointFlow method (see Figs. 2
and 3), using notation similar to the original paper.

Hypothesis Point Construction: For a given back-
projected depth pixel p from depth map Dn, we generate
2h+ 1 point hypotheses {p̃k}:

p̃k = p + kst, k = −h, . . . , h (3)

where t is the normalized reference camera direction of Dn,
and s is the displacement step size.

Feature Generation: We generate a multi-scale feature
for each hypothesis point p̃k using trilinear interpolation to
point p̃k of our sparse features volumes V1,V2,V3, using
0s where features are not defined:

fi(p̃k) = sparse interp(Vi, p̃k), i = 1, 2, 3 (4)

Next, we generate a variance feature σ2(p̃k) for hypothesis
point p̃k using Eq. 1. The final feature for a hypothesis
point is the channel-wise concatenation of these features:

fk(p̃k) = concat
[
f1(p̃k), f2(p̃k), f3(p̃k),σ2(p̃k)

]
(5)

We stack our 2h+ 1 point-hypothesis features to form a 2D
feature H ∈ R(2h+1)×c, where c is the sum of the dimen-
sions of our variance and scene encoding features.

Offset Prediction: We apply a 4 layer 1D CNN followed
by a softmax function to predict a probability scalar for each
point-wise entry in H. The predicted displacement of point
p is then as follows:

∆dp = E(ks) =

h∑
k=−h

ks× Prob(p̃k) (6)

The updated depth for each depth map is the depth of point
p + t∆dp with respect to the camera associated with Dn.

3.3. Bringing It All Together: 3DVNet

In this section, we describe our full depth-prediction
pipeline using our multi-scale volumetric scene modeling
and PointFlow-based refinement, which we name 3DVNet
(see Fig. 4). Our pipeline consists of (1) initial feature ex-
traction and depth prediction, (2) scene modeling and re-
finement, and (3) upsampling of our refined depth map to
the size of the original image. The scene modeling and re-
finement is done in a nested for-loop fashion, extracting a
scene model in the outer loop and iteratively refining the
depth predictions using that scene model in the inner loop.
We fix the input image size of 3DVNet to 320× 256.

2D Feature Extraction: For our 2D feature extraction,
we adopt the approach of Düzçeker et al. [6], and use a 32
channel feature pyramid network (FPN) [16] constructed on
a MnasNet [25] backbone to extract coarse and fine resolu-
tion feature maps of size 80×64 and 160×128 respectively.
For every image In, we denote these Fcn and Ffn.

MVSNet Prediction: For the coarse depth prediction of
image In, we use a small MVSNet [29] using the reference
and source coarse feature maps {Fc

s : s ∈ Sn} to predict
an initial coarse depth D0

n. Our cost volume is constructed
using traditional plane sweep stereo with L = 96 depth hy-
potheses sampled uniformly at intervals of 5 cm starting at
50 cm. Similar to Yu and Gao [32], our predicted depth map
is spatially sparse compared to feature map Fc

n. We fix our
coarse depth map prediction size to 56× 56.

Nested For-Loop Refinement: We denote the updated
depths after scene-modeling iteration lo and PointFlow iter-
ation li as {D(lo,li)

n }. We use initial depth predictions {D0
n}

and coarse feature maps {Fc
n} to generate multi-scale scene

encoding V1, V2, V3. We then run PointFlow refinement
three times with displacement step size s = 5 cm, 5 cm,
and 2.5 cm and h = 3 to get updated depths {D(1,3)

n }. In
early experiments, we found two iterations at 5 cm to be
helpful. We re-generate our scene encoding using updated
depths {D(1,3)

n } and coarse feature maps {Fc
n}. We then

run PointFlow three more times with step sizes s = 5 cm,
5 cm, and 2.5 cm and h = 3 to get updated depths {D(2,3)

n }.



We find our depth maps converge at this point.
Coarse-to-Fine Upsampling: In this stage, we upsam-

ple each refined depth prediction D
(2,3)
n to the size of im-

age In. We find PointFlow refinement does not remove
interpolation artifacts, as this generally requires predicting
large offsets across depth boundaries. We outline a sim-
ple, coarse-to-fine method for upsampling while removing
artifacts. See the right section of Fig. 4. At each step,
we upsample the current depth prediction using nearest-
neighbor interpolation to the size of the next-largest feature
map and concatenate, using the original image In in the fi-
nal step. We then pass the concatenated feature map and
depth through a smoothing network. We use a version of
the propagation network proposed by Yu and Gao [32]. For
every pixel p in depth map D, the smoothed depth D̃ is a
weighted sum of D in the 3× 3 neighborhood about p:

D̃(p) =
∑

q∈[−1,0,1]2
gθ (p,q)D(p + q) (7)

where gθ is a 4 layer CNN that takes as input the concate-
nated feature and depth map and outputs 9 weights for every
pixel p, and gθ (p,q) indexes those weights for the pixel p.
A softmax function is applied to the weights for normal-
ization. We apply this coarse-to-fine upsampling to every
refined depth map {D(2,3)

n } to arrive at a final depth predic-
tion {Dn} for every input image {In}.

4. Experiments

4.1. Implementation and Training Details

Libraries: Our model is implemented in PyTorch using
PyTorch Lightning [7] and PyTorch Geometric [8]. We use
Minkowski Engine [4] as our sparse tensor library. We use
Open3D [33] for both visualization and evaluation.

Training Parameters: We train our network on a sin-
gle NVIDIA RTX 3090 GPU. Our network is trained end-
to-end with a mini-batch size of 2. Each mini-batch con-
sists of 7 images for depth prediction. For our loss function,
we accumulate the average L1 error between ground truth
and predicted depth maps, appropriately downsampling the
ground truth depth map to the correct resolution, for all pre-
dicted, refined, and upsampled depth map at every stage in
our pipeline. Additionally, we employ random geometric
scale augmentation with a factor selected between 0.9 to
1.1 and random rotation about the gravitational axis.

We first train with the pre-trained MnasNet backbone
frozen using the Adam optimizer [14] with an initial learn-
ing rate of 10−3 which is divided by 10 every 100 epochs
(∼1.5k iterations), to convergence (∼1.8k iterations). We
unfreeze the MnasNet backbone and finetune the entire net-
work using Adam and an initial learning rate of 10−4 that is
halved every 50 epochs to convergence (∼1.8k iterations).

4.2. Datasets, Baselines, Metrics, and Protocols

Datasets: To train and validate our model, we use the
ScanNet [5] official training and validation splits. For our
main comparison experiment, we use the ScanNet official
test set, which consists of 100 test scenes in a variety of
indoor settings. To evaluate the generalization ability of our
model, we select 10 sequences from TUM-RGBD [23], and
4 sequences from ICL-NUIM [10] for comparison.

Baselines: We compare our method to seven state
of the art baselines: Point-MVSNet (PMVS) [2], Fast-
MVSNet (FMVS) [32], DeepVideoMVS pair/fusion net-
works (DVMVS pair/fusion) [6], GPMVS batched [11],
Atlas [18], and NeuralRecon [24]. The first five baselines
are depth-prediction methods while the last two are volu-
metric methods. Of these, we consider GPMVS and Atlas
the most relevant depth and volumetric methods respec-
tively, as both use information from all frames simultane-
ously during inference. We use the ScanNet training scenes
to fintetune methods not trained on ScanNet [2, 11, 32].
We report both the finetuned and pretrained results, denoted
with and without “FT”. To account for range differences
between the DTU dataset [13] and ScanNet, we use our
model’s plane sweep parameters with PMVS and FMVS.

Metrics: We use the 2D and 3D metrics presented by
Murez et al. [18] for evaluation. See supplementary for
definitions. Amongst these metrics, we consider Abs-rel,
Abs-diff, and the first inlier ratio metric δ < 1.25 as the
most suitable 2D metrics for measuring depth prediction
quality, and F-score as the most suitable 3D metric for mea-
suring 3D reconstruction quality. Following Düzçeker et
al. [6], we only consider ground truth depth values greater
than 50 cm to account for some methods not being able to
predict smaller depth. We note F-score, Precision, and Re-
call are calculated per-scene and then averaged across all the
scenes. This results in a different F-score than when calcu-
lating from the averaged Precision and Recall reported.

Protocols: For depth-based methods, we fuse predicted
depths using the standard multi-view consistency based
point cloud fusion. Based on results on validation sets,
we modify the implementation of Galliani et al. [9] to
use depth-based multi-view consistency check, rather than
a disparity-based check (see Sec. 3.3 of the supplemen-
tary materials). For volumetric methods, we use marching
cubes to extract a mesh from the predicted TSDF. Following
Murez et al. [18], we trim the meshes to remove geometry
not observed in the ground truth camera frustums. Addi-
tionally, ScanNet ground truth meshes often contain holes
in observed regions. We mask out these holes for all base-
lines to avoid false penalization. All meshes are single layer
to match ScanNet ground truth as noted by Sun et al. [24].

We use the DVMVS keyframe selection. For depth-
based methods, we use each keyframe as a reference im-
age for depth prediction. We use the 2 previous and 2



PMVS
PMVS

FMVS
FMVS DVMVS DVMVS

GPMVS
GPMVS

Atlas
Neural-

Ours
(FT) (FT) pair fusion (FT) Recon

SCANNET
Abs-rel ↓ 0.389 0.085 0.274 0.084 0.069 0.061 0.121 0.062 0.062 0.063 0.040

Abs-diff ↓ 0.668 0.168 0.444 0.165 0.142 0.127 0.214 0.124 0.116 0.099 0.079
Abs-inv ↓ 0.148 0.048 0.145 0.050 0.044 0.038 0.066 0.039 0.044 0.039 0.026

Sq-rel ↓ 0.798 0.046 0.463 0.045 0.026 0.021 0.860 0.022 0.040 0.039 0.015
RMSE ↓ 1.051 0.267 0.776 0.267 0.220 0.200 0.339 0.199 0.238 0.206 0.154

δ < 1.25 ↑ 0.630 0.922 0.732 0.922 0.949 0.963 0.890 0.960 0.935 0.948 0.975
δ < 1.252 ↑ 0.768 0.981 0.857 0.979 0.989 0.992 0.971 0.992 0.971 0.976 0.992
δ < 1.253 ↑ 0.859 0.994 0.915 0.993 0.997 0.997 0.990 0.998 0.985 0.989 0.997

Acc ↓ 0.093 0.039 0.059 0.043 0.059 0.067 0.077 0.057 0.078 0.058 0.051
Comp ↓ 0.303 0.256 0.184 0.212 0.145 0.128 0.150 0.111 0.097 0.108 0.075

Prec ↑ 0.651 0.738 0.570 0.707 0.595 0.557 0.486 0.604 0.607 0.636 0.715
Rec ↑ 0.317 0.433 0.486 0.454 0.489 0.504 0.453 0.565 0.546 0.509 0.625

F-score ↑ 0.409 0.529 0.511 0.541 0.524 0.520 0.459 0.574 0.573 0.564 0.665
TUM-RGBD

Abs-rel ↓ 0.318 0.111 0.273 0.113 0.117 0.095 0.102 0.093 0.163 0.106 0.076
Abs-diff ↓ 0.642 0.275 0.573 0.281 0.339 0.273 0.243 0.239 0.404 0.167 0.210
δ < 1.25 ↑ 0.662 0.858 0.694 0.851 0.838 0.886 0.874 0.891 0.816 0.912 0.912

F-score ↑ 0.115 0.145 0.150 0.154 0.141 0.162 0.157 0.170 0.129 0.117 0.181
ICL-NUIM

Abs-rel ↓ 0.614 0.107 0.303 0.095 0.106 0.114 0.107 0.066 0.110 0.123 0.050
Abs-diff ↓ 1.469 0.262 0.707 0.245 0.278 0.322 0.290 0.176 0.332 0.303 0.120
δ < 1.25 ↑ 0.311 0.877 0.659 0.894 0.878 0.847 0.855 0.965 0.833 0.709 0.980

F-score ↑ 0.064 0.144 0.382 0.246 0.173 0.150 0.241 0.323 0.194 0.055 0.440

Table 1: Metrics for three datasets (ScanNet, TUM-RGBD, and ICL-NUIM). Bold indicates best performing method, un-
derline the second best. White rows indicate 2D depth metrics while gray rows indicate 3D metrics. Vertical lines separate
depth-based methods, volumetric methods, and our method. “FT” denotes method was finetuned on ScanNet. Our method
outperforms all other baseline methods by a wide margin on most metrics.

next keyframes as source images (4 source images total).
For depth-based methods, we resize the output depth map
to 640 × 480 using nearest-neighbor interpolation. For
volumetric methods, we use the predicted mesh to render
640× 480 depth maps for each keyframe.

4.3. Evaluation Results and Discussion

See Tab. 1 for 2D depth and 3D geometry metrics on
all datasets. Our method outperforms all baselines by a
wide margin on most metrics. Notably, our Abs-rel error on
ScanNet is 0.021 less than the DVMVS fusion, the second
best method, while the Abs-rel of the third, fourth, and fifth
best methods are all within 0.002 of DVMVS fusion. Simi-
larly, Our ScanNet F-score is 0.09 more than GPMVS (FT),
the second best method, while the F-score is within 0.001 of
GPMVS (FT) for Atlas, the third best method. This demon-
strates the significant quantitative increase in both depth and
reconstruction metrics of our method. Results on additional
datasets show the strong generalization ability of our model.

We include qualitative results on ScanNet. See Figs. 5
and 6. See Sec. 4 of the supplementary materials for ad-
ditional qualitative results. Our depth maps are visually
pleasing, with clearly defined edges. They are comparable

in quality to those of GPMVS and DVMVS fusion while
being quantitatively more accurate. Our reconstructions are
coherent like volumetric methods, without the noise present
in other depth-based reconstructions, which we believe is a
result of our volumetric scene encoding and refinement.

We do note one benefit of Atlas is its ability to fill large
unobserved holes. Though not reflected in the metrics, this
leads to qualitatively more complete reconstructions. Our
system relies on depth maps and thus cannot do this as de-
signed. However, as a result of averaging across image fea-
tures, Atlas produces meshes that are overly smooth and
lack detail. In contrast, our reconstructions contain sharper,
better defined features than purely volumetric methods. Fi-
nally, we note our system cannot naturally be run in an on-
line fashion, requiring availability of all frames prior to use.

4.4. Ablation and Additional Studies

Does Iterative Refinement Help? We study the effect
of each inner and outer loop iteration of our depth refine-
ment. See Tab. 2. We exceed state-of-the-art metrics after
2 iterations. 3 additional iterations add continued improve-
ment, confirming the effectiveness of iterative refinement.
By 5 iterations, our metrics have converged, with depth sta-



Figure 5: Qualitative depth results on ScanNet. Our method produces sharp details with well defined object boundaries.

Figure 6: Qualitative reconstruction results on ScanNet for the four best-performing methods. Our technique produces
globally coherent reconstructions like purely volumetric methods while containing the local detail of depth-based methods.

lo li Abs-rel Abs-diff δ < 1.25 F-score
0 0 0.070 0.137 0.949 0.559
1 1 0.050 0.100 0.965 0.651
1 2 0.044 0.088 0.971 0.661
1 3 0.043 0.086 0.972 0.664
2 1 0.041 0.081 0.974 0.668
2 2 0.040 0.079 0.975 0.667
2 3 0.040 0.079 0.975 0.665

Table 2: Metrics as a function of number of inner
PointFlow-refinement iterations (denoted li) and number of
outer-loop scene-modeling passes (denoted lo).

Model Abs-rel Abs-diff δ < 1.25 F-score
no 3d 0.067 0.134 0.952 0.551

single scale 0.041 0.080 0.973 0.662
avg feats 0.043 0.082 0.975 0.656

full 0.040 0.079 0.975 0.665

Table 3: Metrics for our ablation study. See Sec. 4.4 for
descriptions of each condition.

bilizing and F-score decreasing slightly. Interestingly, the
final iteration appears slightly detrimental.

Does Multi-Scale Scene Modeling Help? To test this,
we (1) completely remove our multi-scale scene encoding
from the PointFlow refinement, and (2) only use the coars-
est scale V3, respectively denoted “no 3D” and “single
scale” in Tab. 3. Without any scene-level information, our

refinement breaks down, indicating the scene modeling is
essential. The single scale model does slightly worse, con-
firming the effectiveness of our multi-scale encoding.

Do Multi-View Matching Features Help? We use
a per-channel average instead of variance aggregation for
each point in our feature-rich point cloud, denoted “avg
feats” in Tab. 3. Most metrics, notably the F-score, suf-
fer. This supports our hypothesis that multi-view matching
is more beneficial for reconstruction than averaging.

For additional studies, see the supplementary material.

5. Conclusion

We present 3DVNet, which uses the advantages of both
depth-based and volumetric MVS. We perform experiments
with 3DVNet to show depth-based iterative refinement and
multi-view matching combined with volumetric scene mod-
eling greatly improves both depth-prediction and recon-
struction metrics. We believe our 3D scene-modeling net-
work bridges an important gap between depth prediction,
image feature aggregation, and volumetric scene modeling
and has applications far beyond depth-residual prediction.
In future work, we will explore its use for segmentation,
normal estimation, and direct TSDF prediction.
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