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Figure 1. As shown in the middle figure, we seek to reconstruct 4D second-person human body meshes that are grounded on the 3D scene
captured in an egocentric view. Our method exploits 2D observations from the entire video sequence and the 3D scene context to optimize
human body models over time, and thereby leads to more accurate human motion capture and more realistic human-scene interaction.

Abstract

We introduce a novel task of reconstructing a time se-
ries of second-person' 3D human body meshes from monoc-
ular egocentric videos. The unique viewpoint and rapid
embodied camera motion of egocentric videos raise addi-
tional technical barriers for human body capture. To ad-
dress those challenges, we propose a simple yet effective
optimization-based approach that leverages 2D observa-
tions of the entire video sequence and human-scene inter-
action constraint to estimate second-person human poses,
shapes, and global motion that are grounded on the 3D
environment captured from the egocentric view. We con-
duct detailed ablation studies to validate our design choice.
Moreover, we compare our method with the previous state-
of-the-art method on human motion capture from monocu-

*This work was done when M. Liu was at ETH Ziirich.
We denote the social partner of the camera-wearer as “second-person”
throughout the paper. The same notation was also adopted in [40, 63]

lar video, and show that our method estimates more accu-
rate human-body poses and shapes under the challenging
egocentric setting. In addition, we demonstrate that our ap-
proach produces more realistic human-scene interaction.

1. Introduction

Continuous advancements in the capabilities of Aug-
mented Reality (AR) headsets promise new trends of en-
tertainment, communication, healthcare, and worker pro-
ductivity, and point towards a revolution in how we interact
with the world and communicate with each other. Egocen-
tric vision is a key building block for these emerging ca-
pabilities, as AR experiences can benefit from an accurate
understanding of the user’s perception, attention, and ac-
tions. Substantial progress has been made in understanding
human-object interaction [43, 11, 9, 31, 29, 13, 30, 34, 38]
and social interaction [62, 12, 51, 63, 61] from egocen-
tric videos. However, future intelligent AR headsets should



have the ability to capture the subtle nuances of second-
person body pose and render an interactive 3D avatar that
is grounded in the 3D scene as it is captured from an ego-
centric point of view. To this end, we introduce a novel
task of 4D second-person full body capture from monocu-
lar egocentric videos. As shown in Fig. 1, we seek to re-
construct a time series of 3D second-person body meshes
that are temporally-consistent and grounded on the recon-
structed 3D scene.

3D human body capture from videos is a key challenge
in computer vision, which has received substantial atten-
tion over the years [23, 26, 20, 56]. However, none of the
previous works considered the challenging setting of recon-
structing 3D second-person human body from an egocentric
video”. The unique viewpoints and embodied camera mo-
tions of egocentric video create formidable technical obsta-
cles to 3D body estimation, causing previous SOTA meth-
ods for video-based motion capture to fail. For example,
the close interpersonal distances that characterize social in-
teractions result in partial observation of the second-person
as body parts move in and out of the frame. The egocentric
camera motion creates an additional set of challenges, as
the second-person motion is entangled with the embodied
movement of the camera wearer.

To address these challenges, we propose a simple yet ef-
fective optimization-based method that jointly considers a
time series of 2D observations and 3D scene information.
Our key insight is that the 3D scene provides additional evi-
dence for estimating partially observable human body mod-
els. Previous work [19] used a 3D scanner to obtain high
quality 3D scene reconstructions, however this approach is
not scalable, and is infeasible for outdoor egocentric capture
settings. In contrast, we are the first to show that Structure-
from-Motion (SfM) can provide a valuable 3D scene con-
text for partially observable body estimation. This is par-
ticularly challenging because SfM estimates are up to an
unknown scale, and directly placing the 3D body meshes
into the reconstructed 3D scene and enforcing human-scene
contact will result in unrealistic human-scene interaction.
To overcome this challenge, we carefully design the op-
timization method so that it not only encourages human-
scene contact, but also estimates the relative scale between
3D human body and scene reconstruction.> We further unite
the time series of body models with a temporal prior to re-
cover more plausible global human motion even when the
second-person body captured by the egocentric view is only
partially observable.

Because existing egocentric datasets were not collected
to address the problem of reconstructing the second-person

2We note that another branch of prior work addresses the related but
quite different task of predicting the 3D body pose of the camera-wearer
from egocentric video [40, 21, 64, 53, .

3The prior work [19] did not face the challenge of scale ambiguity be-
cause their 3D scene models came from a 3D scanner.

body pose and shape in 4D, we have collected a new ego-
centric video dataset — EgoMoCap. Interactions between
the first- and second-person in EgoMoCap were structured
to yield a variety of interactions over a variety of interper-
sonal distances, which efficiently cover the variability in
real-world social interactions in a compact number of clips.
In contrast, previous social interaction datasets such as [12]
are naturalistic, but do not systematically cover the range
of interpersonal distances needed for research in 4D cap-
ture. EgoMoCap is annotated with 2D human keypoints at
the frame level. Using EgoMoCap, we compare our body
capture approach with the previous state-of-the-art meth-
ods for human motion capture from monocular videos, and
demonstrate that our method can address the challenging
cases where the second-person human body is partially ob-
servable. Moreover, we demonstrate that our method can
solve the relative scale between 3D scene reconstruction
and 3D human body reconstruction from monocular videos,
and thereby produce more realistic human-scene interac-
tions. Detailed ablation studies highlight the benefits of our
method. In summary, our work makes the following contri-
butions:

* We introduce a novel problem of reconstructing time se-
ries of second-person poses and shapes from egocentric
videos. To the best of our knowledge, we are the first to
capture global human motion grounded in the 3D scene.

* We propose a simple yet effective optimization-based ap-
proach that jointly considers a time series of 2D observa-
tions and 3D scene context for accurate 4D human body
capture. In addition, our approach addresses the scale am-
biguity of 3D reconstruction from monocular videos.

* We conduct detailed experiments on our novel EgoMoCap
dataset and show that our approach can more accurately re-
construct second-person human body, and encourage more
realistic human-scene interaction.

2. Related Work

The most relevant works to ours are prior investigations
of 4D human body reconstruction and human-scene interac-
tion modeling. Our work is also related to recent efforts on
reasoning about social interaction from egocentric videos.
Specifically, we compare our EgoMoCap dataset with other
egocentric human interaction datasets.
4D Human Body Reconstruction. A rich literature has ad-
dressed the topic of human body reconstruction. Previous
approaches [5, 41, 27,22, 3, 36, 52, 45] have demonstrated
great success in inferring 3D human pose and shape from
a single image. More closely-related to this work are prior
efforts that leverage video of a moving peprson to infer a
time series of 3D human body poses and shapes. Alldieck
et al. [2] used optical flow to estimate temporally-coherent
human bodies from monocular videos. Tung et al. [55] in-
troduced a self-supervised learning method that uses opti-



cal flow, silhouettes, and keypoints to estimate SMPL hu-
man body parameters from two consecutive video frames.
Dabral et al. [8] presented a weakly supervised learning
framework for learning 3D human body pose, and adopted
a temporal network to harmonize sequences of 3D pose es-
timations. [24, 42] used a fully convolutional network to
predict 3D human pose from 2D images sequences. Ko-
cabas et al. [26] proposed an adversarial learning framework
to produce realistic and accurate human pose and motion
from video sequences. Tripathi et al. [54] also explored the
knowledge distillation method for 3D human pose predic-
tion. Shimada et al. [49] used a physics engine to capture
physically plausible and temporally stable 3D human mo-
tion. Those previous works assumed a fixed camera view
and fully observable human body. Two works separately
considered either the partial observation setting or moving
camera setting for human body reconstruction. Rockwell et
al. [44] proposed a self-training pipeline for reconstructing
3D human body poses from truncated single image frames.
Huang et al. [20] enforced temporal coherence to recon-
struct body pose from monocular videos with a moving
camera. In contrast, we are the first to tackle the challeng-
ing task of reconstructing time-varying body models from
egocentric video characterized by both partial observability
and significant camera motion.

Other prior works addressed the question of body re-
construction from moving cameras by either combining
video with IMU sensor data or leveraging multiple cam-
eras [50, 20, 59]. [56] jointly optimize the camera pose and
human body model by leveraging IMU sensory data. Wang
et al. [59] proposed to utilize multiple cameras for outdoor
human motion capture. More recently, Guzov et al. [18]
proposed to estimate the full 3D human pose and location
of the camera-wearer within large 3D scenes, by means of
wearable sensors. In contrast to these works, we seek to
estimate the second-person human motion grounded in the
3D scene using only monocular egocentric videos.

Human-Scene Interaction. Several prior works on human-
scene interaction seek to reason about environment affor-
dance [38, 17, 15, 10, 58, 28, 7, 37, 33]. Our work is
more relevant to previous efforts on using the environmen-
tal cues to estimate 3D human body models. Savva et al.
[47] proposed to learn a probabilistic model that captures
how humans interact with the indoor scene from RGB-D
sensors. Li et al. [32] factorized estimating 3D person-
object interactions into an optimal control problem, and
used contact constraints to recover human motion and con-
tact forces from monocular videos. Zhang et al. [65] pro-
posed an optimization-based framework that incorporates
the scale loss to jointly reconstruct the 3D spatial arrange-
ment and shape of humans and objects in the scene from a
single image. Zhang et al. [66, 67] studied the problem of
generating plausible human bodies grounded in 3D scenes.

The most relevant work is PROX, from Hassan et al. [19],
which introduced an optimization based method to use the
3D scene context for estimating more accurate human pose
and shape from a single image. However, our work dif-
fers from PROX on several important aspects: First, PROX
uses the Matterport 3D scanner to pre-scan the 3D scenes,
whereas we use the Structure from Motion (SfM) to recon-
struct the 3D scene geometry, resulting in a more general
and scalable solution for 4D human pose and shape cap-
ture from a single egocentric camera. Second, we show
that our contact term can address the challenging problem
of the relative scale ambiguity between the estimated 3D
human body and the reconstructed 3D scene from monocu-
lar videos, whereas the contact term used in PROX is only
used to improve the physical plausibility. Third, the prob-
lem setting in PROX assumes a static camera with known
3D scene geometry, whereas we capture human motion in
unconstrained environments with a moving egocentric cam-
era, resulting in truncation and severe ego-motion.
Egocentric Social Interaction. Understanding human so-
cial interaction has been the subject of many recent efforts
in egocentric vision [62, 51, 12,61, 63, 63]. Several egocen-
tric datasets have been proposed for the analysis of human
social behavior. The NUS Dataset [39] and JPL Dataset
[46] support more general human interaction classification
tasks. Yonetani et al. [63] collected a paired egocentric
human interaction dataset to study human action and re-
action. Park et al. [50] introduced an RGB-D egocentric
dataset — EgoMotion, for forecasting first-person walking
trajectory. Ng et al. intorduced You2Me dataset [40] to
study the problem of egocentric body pose prediction. Fathi
et al. [12] presented an egocentric video dataset that cap-
tures conversational interactions within a social group, and
therefore limited second-person motion is captured in this
dataset. Recently, the Ego4D social dataset from [16] was
collected for understanding social communication behavior.
In fact, none of those datasets were designed to study the
second-person body pose and human-scene interaction. In
prior datasets, the majority of captured second-person bod-
ies are either largely occluded by objects or frequently trun-
cated by the frustum, which makes their utilization for full
body capture infeasible. In contrast, our EgoMoCap dataset
focuses on outdoor social interaction scenarios where the
second-person body has less occlusion and the Structure-
from-Motion is more robust.

3. Method

We denote an input monocular egocentric video as x =
(x!, ..., 2%) with its frame 2* indexed by time ¢. We estimate
the human body pose and shape at each time step from input
z. Due to the unique viewpoint of egocentric video, the cap-
tured second-person body is partially observable within a
time window. In addition, the second-person body motion is
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Figure 2. Overview of our method. We first reconstruct the 3D scene M using Structure-from-Motion, and estimate the SMPL-X body
model M, from each video frame based on 2D observation. We then transform the human bodies from local image coordinates into 3D
world coordinates. Furthermore, we use the human-scene contact term E¢ and temporal human dynamic prior E7 to reconstruct the time
series of 4D human body poses and shapes that are grounded on the 3D environment. Our proposed method not only encourages more
realistic human-scene interaction by resolving the relative scale between 3D scene reconstruction and 3D human body reconstruction from
monocular videos, but also addresses challenging cases where the second-person human body is partially observable.

entangled with the camera motion, creating additional bar-
riers for the enforcement of temporal coherency. To address
these challenges, we propose an optimization method that
jointly considers the 2D observations of the entire video se-
quence and the 3D scene context in order to more accurately
reconstruct the 4D human body in the presence of partial
observability. We illustrate our method in Fig. 2. Specif-
ically, we first recover the 3D human body at each time
instant from the 2D observation of zf. We then estimate
Structure from Motion [48] (SfM) to project a sequence of
3D body meshes into 3D world coordinates based on the re-
covered global camera motion, and further adopt a contact
term to enforce appropriate human-scene interaction. In ad-
dition, we combine the 2D cues from entire video sequences
for reconstructing temporally-coherent time series of body
poses using a human dynamics prior. In the following sec-
tions, we introduce each component of our method.

3.1. Human Body Model Estimation

We use the differentiable human body model SMPL-
X [41] to represent the body, hands, and facial expression.
SMPL-X produces a body mesh of a fixed topology with
Ny = 10475 vertices, using a compact set of body config-
uration parameters. Specifically, the shape parameter 3 en-
codes variations in height, volume, and body proportions;
encodes the 3D body pose, hand pose, and facial expression
information; and ~ denotes the body translation. Formally,
the SMPL-X function is defined as M (8, 6,). It outputs
a 3D body mesh M, = (V4, F}), where Vj, € RVo>3 and
F}, denote the body vertices and triangular faces. Similar
to [41, 5], we factorize fitting the SMPL-X model to each
video frame as an optimization problem. Formally, we op-
timize (3, 0, ~) by minimizing:

EM(ﬂ’ 9777[{’ JeSt) = EJ(/8707rya K7 Jest)
+ AsEs(B) + MoEo(0), (1)

where K is the intrinsic camera parameters; the shape prior
term Eg(f3) is learned from SMPL-X model body shape
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training data and the pose prior term Fy(60) is learned from
CMU MoCap dataset [1]; Ag and Ay denote the weights
of Eg(8) and Ey(0); E; refers to the energy function that
minimizes the weighted robust distance between the 2D
projection of the body joints, hand joints and face land-
marks, and the corresponding 2D joints estimation from
OpenPose [0, 60]. Ey is given by:

EJ(Bve,Vv L7 Jest)
= Y kiwips(Ux (R, (J'(8)) = Jiwr)s @

joint 1

where J(.) returns 3D joints location based on embedded
shape parameters /3, and Ry, (.) transforms the joints along
the kinematic tree according to the pose 6 and body transla-
tion y; Ik is the 3D to 2D projection function based on
intrinsic parameters K; J.s refers to the 2D joints esti-
mated from OpenPose; w; is the 2D joints detection con-
fident score which accounts for the noise in 2D joint esti-
mation; k; is the per-joint weights for annealed optimiza-
tion as in [41]; ps denotes a robust Geman-McClure error
function [ 4] that downweights outliers, which is given by:
ps(e) = e?/(c% + e?), where e is the residual error, and o;
is the robustness constant, which is chosen empirically.

3.2. Egocentric Camera Representation

To capture 4D second-person bodies that are grounded
on the 3D scene from egocentric videos, we need to take
the embodied camera motion into consideration. Here we
elaborate the egocentric camera representation adopted in
our method. Formally, we denote T, € R*** as the trans-
formation from the human body coordinate to the egocen-
tric camera coordinate, and 7, as the transformation from
the egocentric camera coordinate to the world coordinate.
Note that T, € R*** is derived from the translation pa-
rameter v of SMPL-X model fitting introduced in Sec. 3.1,
while T, is returned from COLMAP Structure from Mo-
tion (SfM) [48]. In order to utilize the 3D scene context and
enforce the temporal coherency on reconstructed human
body meshes, we project the 3D second-person body ver-



tices V}, into world coordinate using human body to world
transformation 75,5, which is given by:

Vo = Ta Vi = Tae TH, Vi 3)

where f/}f refers to the body vertices at time step ¢, repre-
sented in homogeneous coordinate.

3.3. Optimization with 3D Scene

3D Scene Representation. The structure of the 3D scene
constrains and informs human behavior, and therefore 3D
scene context can play an important role in 3D human body
recovery. Human-scene interaction can be described in rela-
tion to 3D surfaces, and therefore we adopt a mesh represen-
tation for the 3D scene. Formally, we denote the 3D scene
mesh as M, = (Vi, Fy), where V, € RMs*3 denotes the
vertices of the scene representation, and Fs denotes the cor-
responding triangular faces. We use the dense environment
reconstruction from COLMAP to obtain M. Specifically,
COLMAP first reconstructs a sparse representation of the
scene and the camera poses of the input images using SfM.
It then calculates the depth and normal maps for all regis-
tered images, and fuses the depth and normal maps into a
dense point cloud with normal information. Finally, Pois-
son Reconstruction is used to generate the 3D scene mesh
representation M.

Human-Scene Contact. Note that the reconstructed 3D
scene from the monocular video is up to a scale. To ad-
dress this scale ambiguity, we design a novel energy func-
tion that not only encourages contact between the human
body and 3D scene, but also estimates the relative scale be-
tween 3D scene mesh A and 3D body mesh M,,. Specif-
ically, we make use of the annotation from [19], where a
candidate set of SMPL-X mesh vertices V. € V}, to contact
with the world were provided. We then multiply an opti-
mizable scale parameter S € R to human body vertices V.
during optimization. Therefore, the energy function for en-
forcing human-scene contact is given by:

Ec(B8,0,7,Vs,S) = )

t
. t
D D pe(min [|Tiy(Sve) = vsll),

i=1 ’UCEVCt

where p. is the robust Geman-McClure error function in-

troduced before, and T7,; is human body to world transfor-
mation introduced in Eq. 3. Note that the scale factor S' is
shared across the video sequence. This is because we es-
timate a consistent 3D shape parameter 6 from the entire
sequence by taking the median of all the shape parameters
obtained from the per-frame SMPL-X model fitting.

3.4. Human Dynamics Prior

Fitting SMPL-X human body model to each video frame
will incur notable temporal inconsistency. Due to drastic
camera motion, this problem is further amplified under ego-
centric scenarios. Here, we propose to use the empirical

human dynamics priors to enforce temporal coherency on
human body models in the world coordinates. Formally, we
have the following energy function:

Er(B,0,7) = ®)

t

Z Z(l - wv)PT((Vﬂ-l - Vui;b) - (sz)b - Vui;;l)),

=2 V
where V!, is the 3D human body vertices at time step 1,
transformed in world coordinate as in Eq. 3; pp is an-
other robust Geman-McClure error function that accounts
for possible outliers; and wi is the confidence score of 2D
human keypoints estimation. As shown in Eq. 5, we design
this energy function to focus on body parts that do not have
reliable 2D observations (caused by the unique egocentric
viewpoint). Notably, we assume a zero acceleration motion
prior. This naive prior was proven to be effective in captur-
ing human motion in the outdoor environment [4].

3.5. Optimization

Putting everything together, we have the following en-
ergy function for our optimization method:

t
Etotat = »_ By + AcEc + ArEr, ©6)
i=1
where EY, denotes the SMPL-X model fitting energy func-
tion for video frame x’; A\¢ and A represent the weights
for human-scene contact term and human dynamic prior
term, respectively. We optimize Eq. 6 using a gradient-
based optimizer Adam [25] w.r.t. SMPL-X body parameters
B, 8,~, scale parameter S, and camera to world transforma-
tion 7T,.. Note that the SfM already provides an initializa-
tion of Ty,., and incorporating T, into the optimization can
further smooth the global second-person human motion.
Note that E; performs model fitting at each time step,
while E~ and E7 optimize a time series of body models. In
addition, E- and Er seek to optimize human body parame-
ters in world coordinates, and the scale ambiguity can cause
the gradients of the contact term to shift the body global
position in the wrong direction. Therefore, we propose a
multi-stage optimization strategy. Specifically, we set A¢
and Ar to be zero, so that the optimizer will only look at
the 2D observations in the first stage. We then set A\¢ to be
0.1, keeping Ar as zero, and freezing T,., so that the op-
timizer will focus on recovering the scale parameter S. At
the final stage, we set Ay to 0.1 and enable the gradients of
T to enforce temporal coherency.

4. Experiments
4.1. Dataset and Metrics

Datasets. To study the problem of second-person human
body reconstruction, we present a new egocentric social in-
teraction dataset — EgoMoCap. This dataset consists of 36



videos sequences from one-on-one interactions between 4
individuals. The camera wearer is equipped with a head-
mounted camera, and the other participant is asked to inter-
act with the camera wearer in a natural manner. The video
sequences were recorded in 1920x1080 resolution at 60 fps
using the GoPro Hero8 camera. This dataset captures 4
types of outdoor human social interactions: Greeting, Tour-
ing, Jogging Together, and Throw and Catch. We further
annotate the captured second-person human bodies with 2D
keypoints via Amazon Mechanical Turk (AMT).
Evaluation Metrics. For our experiments, we evaluate the
human body reconstruction accuracy, motion smoothness,
and the plausibility of the human-scene interaction.

¢ Human Body Reconstruction Accuracy: We acknowl-
edge that the 3D ground truth of human bodies can be
obtained from RGB-D data [19], or Motion Capture Sys-
tems [57, 35]. However, capturing the 3D human body
ground truth in naturalistic outdoor social interaction set-
ting remains a challenge. Therefore, we follow [64, 44] to
evaluate the reconstruction quality using per-joint 2D pro-
jection error (PJE) on the image plane. Specifically, we
report PJE-P on frames with partially observable second-
person body, and PJE-U on frames with mostly untruncated
second-person body (uniform sampled frames). Here, we
evaluate human body poses, even though our method has the
capacity of reconstructing 3D hands and faces, as human-
scene contact used in our method has minor influence on
facial expression and hand pose during social interaction.

* Motion Smoothness: We follow [64] to adopt a physics-
based metric that uses average magnitude of joint accelera-
tions to measure the smoothness of the estimated pose se-
quence. Thus, a lower value indicates that the times series
of body meshes have more consistent human motion. Note
that the motion smoothness is evaluated on 3D human joints
projected in world coordinate. For fair comparison, we nor-
malize the scale factor when reporting the results.

* Plausibility of Human-Scene Interaction: To evalu-
ate whether our method provides more realistic human-
scene interaction, we transform the human body meshes
into 3D world coordinates, render the results as video se-
quences, and further upload them to Amazon Mechanical
Turk (AMT) for a user study. Specifically, we put the ren-
dered results of all compared methods and our method side-
by-side (sample videos can be found in supplementary ma-
terials), and ask the AMT worker to choose the instance that
has the most realistic human-scene interaction.

4.2. Quantitative Results

In this section, we introduce our quantitative experimen-
tal results. We first present detailed ablation studies, and
then compare our method with state-of-the-art for 3D hu-
man body reconstruction from monocular videos.
Ablation Study. We first analyze the functionality of the

Method PJE-P | PJE-U | Smoothness | User Study 1
Eny (SMPLify-X) | 73.14  22.19 5.33 7.4
Ey+Ec 87.74  30.09 5.72 232
En+Er 75.14 2393 2.23 13.7
En+Ec+E7 (Ours)| 66.03  24.03 1.82 55.7

Table 1. Ablation study for our proposed method. We analyze
the role of human dynamic prior Fr and human-scene interaction
term Ec. Note that PJE-P is the core metric to evaluate whether
the method can recover more accurate human body poses and
shapes of partially observable second-person human body. (1/)
indicates higher/lower is better)

terms in Eq. 6. The results are summarized in Table 1.
Er refers to the baseline method that performs per-frame
fitting with 2D observations as in SMPLify-X [41]. Ejs
has undesirable performance on PJE-P, motion smoothness
and human-scene interaction user study. In the second row
Ey + Ee, we report the method that makes use of both
human scene contact term and 2D observations. Though
adding the contact term alone leads to more realistic human-
scene interaction, it compromises the performance on 2D
projection error and motion smoothness by a notable mar-
gin. Ejp; + Erp in the third row refers to the method that
optimizes the 2D observations together with the human dy-
namic prior term Ep. Not surprisingly, Er can signifi-
cantly improve the motion smoothness. It is also worthy
noting that using temporal prior alone can not improve the
reconstruction quality. This suggests that simply enforcing
temporal coherency without 3D scene grounding may cause
the optimization method converging to sub-optimal equi-
librium. In the last row, we present the results of our full
optimization approach. Our method achieves the best per-
formance on motion smoothness and plausibility of human-
scene interaction. An interesting observation is that ours
outperforms Ej; + E7 by a notable margin on motion
smoothness. We speculate that this is because the physical
human scene constraints narrow down the solution space
of model fitting, and thereby leads to more optimal perfor-
mance on temporal coherency. Note that, in the simple case
when the figure is untruncated (PJE-U), Fj; gives good
performance and slightly exceeds the accuracy of our full
method. This is because PJE is a 2D metric, and therefore
favors the method that adopts only 2D projection error as
objective function during optimization. However, when the
2D observation can not be robustly estimated due to partial
observation, our method outperforms other baselines by a
significant margin (66.03 vs. 73.14 in PJE-P). Those results
demonstrate that our method can address the challenge of
partially observable human bodies, and estimate plausible
global human motion grounded on the 3D scene.

Comparison to VIBE. Though many methods have ad-
dressed human body capture from monocular video. In Ta-
ble 2, we compare our approach with a widely-used com-
petitive method — VIBE [26]. Since VIBE does not model
the human-scene constraints, it provides unrealistic human-
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Figure 3. Qualitative comparison between our method and other approaches. The first column is the original video frames; the second
column is the results from SMPIify-X, the third column is the results from VIBE, and the last shows our results. Our approach can address
the challenging cases when the second-person body is partially observable.

Method \ PJE-P| PIJE-UJ| Smoothness|  User Study 1
VIBE [26] 7591 22.45 4.79 17.2
Ours 66.03 24.03 1.85 82.8

Table 2. Experiment results comparison with competitive method
VIBE. (1/{ indicates higher/lower is better)

scene interaction. Moreover, the egocentric camera motion
causes VIBE failing to capture coherent human motion. In
contrast, our method outperforms VIBE on motion smooth-
ness and human-scene interaction plausibility by a large
margin. Though VIBE performs slightly better on PJE-U
(22.45 vs. 24.03), it lags far behind of our method on PJE-P
(75.91 vs. 66.03). We have to re-emphasize that the 2D pro-
jection error cannot reflect the true performance improve-
ment of our method. This is because the 2D keypoints an-
notation is only available for visible human body parts, and
therefore 2D PJE does not penalize the method that fits a
wrong 3D body model to partially 2D observation. Take the
VIBE result shown in the third row of Fig. 3 for an instance,
the 2D projection error may have decent performance, yet
the reconstructed 3D human body is completely wrong.

4.3. Discussion

Qualitative Results. As shown in Fig. 3, we first visualize
our results by rendering the estimated body models from the
egocentric viewpoint, so it can be directly imposed on the
input video frames. Notably, both SMPLify-X and VIBE
fail substantially for challenging cases where human body is

partially-observable. Our method, on the other hand, makes
uses of 3D scene context and harmonizes the 2D cues from
the entire video sequence, and therefore successfully recon-
structs the human body with only partial observation. We
provide an additional visualization of the results of both
E; baseline and our method in the world coordinate sys-
tem in Fig. 4. By examining the SMPLify-X baseline re-
sults, we can observe an obvious mismatched scale between
the 3D reconstruction of the human body and the 3D envi-
ronment. In contrast, our method produces more plausible
human body motion grounded in the 3D scene by resolving
the relative scale between 3D scene reconstruction and 3D
human body reconstruction from monocular videos. In the
supplementary materials, we provide additional videos that
demonstrate the benefits of our approach.

Limitations. A key issue of our method is the need to re-
trieve the camera trajectory and 3D scene only from monoc-
ular RGB videos via Structure from Motion (SfM). There-
fore, our method has the same bottleneck as SfM: Challeng-
ing factors such as dynamic scenes, featureless surfaces,
large illumination change, etc., may cause visual feature
matching to fail. One promising direction for future work
is to incorporate additional sensing modalities (IMU, depth
estimation, and multiple cameras) to further stabilize the 3D
scene reconstruction in challenging conditions. Another is-
sue is that the naive human motion prior (zero acceleration)
adopted in our method may result in unrealistic motions in



Figure 4. Visualization of time series of human bodies in the world coordinate. We visualize both results of SMPLif-X baseline (Left) and
our method (Right) projected into 3D scene reconstruction. Our method recovers the scale ambiguity between 3D scene reconstruction and
3D body reconstruction from monocular video, and therefore leads to more plausible human-scene interaction.

some cases. More efforts in learning motion priors could
potentially address this issue. In summary, we believe our
efforts constitute an important step forward for a largely un-
explored egocentric vision task, and we hope our work can
motivate the community to make further investments.

5. Conclusion

We introduce a novel task of estimating a time series of
3D human body models for the second-person in an ego-
centric video, which are temporally-coherent and grounded

on the 3D scene. To address the challenges of egocentric
video, we propose an effective optimization-based method
that exploits the 2D observations of the entire video se-
quence and human-scene contact for human motion capture.
We conduct detailed experiments on our EgoMoCap dataset
to demonstrate the benefits of our approach. We believe our
work points to exciting research directions in egocentric so-
cial interaction analysis and 4D human body reconstruction.
Acknowledgments. Portions of this research were sup-
ported in part by National Science Foundation Award
2033413 and a gift from Facebook.
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