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Abstract

We present a relocalization pipeline, which combines an
absolute pose regression (APR) network with a novel view
synthesis based direct matching module, offering superior
accuracy while maintaining low inference time. Our con-
tribution is twofold: i) we design a direct matching module
that supplies a photometric supervision signal to refine the
pose regression network via differentiable rendering; ii) we
show that our method can easily cope with additional unla-
beled data without the need for external supervision such as
traditional visual odometry or pose graph optimization. As
a result, our method achieves state-of-the-art performance
among all other single-image APR methods on the 7-Scenes
benchmark and the LLFF dataset.

1. Introduction

Camera localization is a classical problem in computer
vision and robotics. It is a core component for many appli-
cations such as virtual and augmented reality, indoor navi-
gation systems, and autonomous driving. A typical visual-
based localization algorithm is designed to determine the
camera’s 6-DOF positions and orientations from taking as
input an RGB or RGB-D image.

The classical approach to solve this problem is built upon
finding 2D-3D correspondences [2, 3, 5, 47, 48, 51, 55] be-
tween 2D image position and 3D points in space. Then an
n-point pose (PnP) solver is applied to the 2D-3D matches
inside a RANSAC [4, 8, 12, 44] loop. Traditionally, 2D-
3D matches can be found using local feature descriptor
matching, and many approaches require depth or structure-
from-motion (SfM) reconstruction to build robust 3D ge-
ometric correlations [46, 48]. Recent methods use ma-
chine learning to regress 3D scene coordinates from im-
age patches [2, 3, 5, 51] directly. Overall, 3D structure-
based methods still achieve state-of-the-art (SOTA) accu-
racy, as discussed by Sattler et al. [49]. However, the pres-
ence of highly accurate depth images or SfM models is
not universally available in real-life applications, especially
for many consumer-grade devices such as smartphones or

tablets. Most deep 3D structure-based methods are com-
putation resources intensive and cannot easily achieve real-
time inference with SOTA accuracy constraints.

Another line of approaches is deep learning-based pose
regression [6, 20, 21, 22, 30, 35,43, 59, 58, 61], also known
as absolute pose regression (APR). These approaches pro-
pose to train a scene-specific deep neural network to predict
6-DoF camera pose relative to a scene directly from im-
ages. Despite obtaining inferior performances in localiza-
tion benchmarks, it has gained popularity due to its high
efficiency and simplicity by learning the full localization
pipeline in a Convolutional Neural Network (CNN). The
end-to-end approach has several appealing features com-
pared to 3D structure-based methods: (1) most APR algo-
rithms display great portability for commercial deployment
at applications where fast and reliable performance is cru-
cial. For example, the groundwork PoseNet [22] runs its
entire process in less than 6ms. (2) the CNN only requires
RGB images input and does not rely on depth maps or SfM
reconstructions, which is less hardware constrained. (3) it
keeps a low memory footprint in megabytes regardless of
scene sizes.

Despite these benefits, drawbacks of the APR method
are also apparent. It is known to be prone to overfit the
training set and significantly less accurate than structure-
based methods, as shown in Sattler et al. [49] and Shavit et
al. [52] . Both studies suggest that scene geometry is key for
obtaining accurate pose estimation. Prior efforts have tried
to add geometric constraints by finding relative pose [, 0,

, 58] or using reprojection error [21]. Nevertheless, it is
clear that existing single image APR solutions are not yet
able to compete with structure-based methods.

We address the problem of single-image APR by intro-
ducing direct matching supervision inspired by direct Visual
Odometry (VO) approaches [10, 11]. The key intuition is
that the predicted pose error is inversely proportional to the
visual similarity between the query image and a rendering
of the 3D scene of the relocalized pose. The proposed APR
framework improves pose regression using direct matching
supervised by the photometric similarity between the input
query image and the rendered image of the scene using the



predicted pose. In the testing stage, our method runs like a
standard APR method without extra computational cost. To
our knowledge, this paper is the first camera pose regression
method to use direct matching/photometric supervision. We
summarize our contributions as follows:

* We introduce a novel camera relocalization pipeline con-
sisting of a pose regression network and a direct match-
ing module such that network learning is supervised by
not only the traditional pose regression loss, but also a
photometric loss.

* We show how unlabeled images can be leveraged using
photometric loss in the direct matching module to further
improve the pose regression performance without extra
supervision, such as relative pose constraints.

With contributions above, our method achieves state-of-the-
art performance in single-image APR on 7-Scenes bench-
mark and LLFF dataset.

This paper is organized as follows: we introduce exist-
ing APR methods and other related work in Section 2. Our
relocalization pipeline is detailed in Section 3, with experi-
mental results and analysis discussed in Section 4. Section 5
concludes our work.

2. Related Work

Absolute Pose Regression Absolute pose regression
methods typically require a CNN classifier that has been
pre-trained from the image classification dataset. It then
uses transfer learning to fine-tune the feature extractors to
regress the camera pose from one or more given image se-
quences. To get a thorough review in this area, the interested
reads is refered to Sattler er al. [49].

The common practice in this area is introduced by
PoseNet [22]. A simple pose regressor can take an arbi-
trary RGB image as the input and learn to regress the cor-
respondent camera position and orientation. Successors of
PoseNet focus to improve the framework in several aspects.
[30, 59, 61] seek to enhance network architectures. LSTM
PoseNet [59] combines LSTM with CNN to reduce feature
dimensions for pose regression. Hourglass PoseNet [30]
adapts an encoder-decoder style backbone. BranchNet [01]
uses a multi-task CNN where low-level common features
are extracted before splitting the network into two sepa-
rate branches to predict the camera position and orienta-
tion. Kendall and Cipolla [21] proposed learnable weights
to sidestep hyperparameter tunning that balances the trans-
lation and rotation loss in PoseNet. Besides learning the
optimal weight between losses, they attempt to leverage
scene geometry for pose regression by formulating a repro-
jection error between the ground-truth pose and predicted
pose. While we share the same insight that geometry would
help pose regression, we differ from theirs in that 1) the

scene geometry is implicitly represented in a novel view
synthesis-enabled direct matching module; 2) we introduce
a dense pixel-level photometric supervision.

Unlabeled training in APR Rather than only training on
images with ground-truth pose annotation, MapNet [0] is
able to train on unlabeled video frames by adding pair-
wise geometric constraints between video frames using ad-
ditional VO algorithms [10, 11]. During inference, it can
utilize pose graph optimization (PGO) for post-processing
to further boost the performance. We also recognize the im-
portance of using additional unlabeled data in this work.
However, instead of acquiring constraints from an addi-
tional VO algorithm or PGO, which assumes video frames
are available, our method can train on images from arbitrary
viewpoints by minimizing the photometric loss between the
rendered images and the input images.

Direct Matching for Motion Estimation Direct match-
ing methods or direct methods refer to the commonly used
methods to recover camera motions by directly measuring
image intensities [18] in VO and simultaneous localization
and mapping (SLAM) systems. In contrast to the feature-
based methods [9, 19, 24, 25] that minimize reprojection
errors based on corresponding features among frames, di-
rect methods exploit all information in the image and re-
cover camera motions by minimizing the photometric er-
ror. Compared to feature-based methods, direct methods
are often more reliable in sparse textured environments and
do not have feature extraction operations to add in com-
putation costs. DTAM [36], REMODE [42], and LSD-
SLAM [ 1] employ dense reconstruction using direct meth-
ods. SVO [13, 14] proposes a hybrid approach to implement
direct VO motion estimation at the SLAM frontend and
uses feature-based methods in the backend mapping thread.
DSO [10] further proposes a sparse and direct method. This
paper is partly inspired by direct methods and adopts photo-
metric supervision in training the pose regression network.
However, our method is different from direct VO methods
in several aspects. First, our method does not compute pho-
tometric errors based on image intensities but RGB differ-
ences. Second, our method provides absolute pose estima-
tion using a single image, but the methods above are de-
signed to take a pair of neighboring frames for computing
relative motion.

Novel View Synthesis Novel view synthesis (NVS) is a
long-standing problem in computer graphics. It aims to gen-
erate novel camera perspectives based on image samples of
the scenes [56]. Early works in this field can be traced back
to nearly 30 years ago when some required using densely
captured views of the scene [17, 26], and others [7] interpo-
late novel views using image warping. Recently, novel view
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Figure 1: Overview of our proposed training pipeline. Given an input image I, the pose regressor Gy predicts a pose
estimation P, from which the NVS system H renders a synthetic image I, supplying our direct matching supervision signal
Lphoto and refining Gy along with the ground truth supervision Lg;.

synthesis has made rapid progress in achieving photorealis-
tic view synthesis [27, 28, 29, 32, 34, 39, 41, 50, 53, 57]
with sparser view samples, thanks to recent development in
neural 3D shape representation [31, 37, 38, 54]. We select a
recent popular approach from Mildenhall et al. [34] to build
our camera re-localization training pipeline in this work.
Specifically, we incorporate NeRF architecture to provide
photometric supervision to the pose regression model. We
consider two other NeRF-based works that are able to es-
timate camera pose related to our paper: iNeRF [63] es-
timates pose iteratively by inverting a pre-trained NeRF
model on the test images. Wang et al. [00] show that 3D
scene representation and camera poses can be jointly opti-
mized within a NeRF framework. Nonetheless, the funda-
mental difference of the proposed method to theirs is that
we only use differentiable rendering to compute photomet-
ric loss in training of our pose regressor. After training, we
are able to predict camera pose in a single network forward
pass, whereas their methods require iterative optimization
in test time.

3. Method

Fig. 1 illustrates our proposed relocalization pipeline,
which consists of an NVS-enabled direct matching module
and a pose regression network. We aim to predict a camera
pose v for an input image [ via a pose regression network
Gy, which is supervised by a novel direct matching signal
along with ground truth poses during training. At test time,
only the pose regression network is required, ensuring rapid
inference while offering superior relocalization accuracy.

This section is organized as follows: Section 3.1 details
our direct matching module. A full system setup is ex-
plained in Section 3.2. To explore the possibility of utilizing
more data, a further unlabeled training scheme is explained
in Section 3.3.

3.1. Direct Matching

Direct matching is a common approach in traditional
SLAM and VO systems [10, 11, 13, 14, 36, 42]. It refers
to the process that optimizes camera poses via minimizing
a photometric loss. In this work, we adapt the direct match-
ing concept and apply it to assist the training of our pose re-
gression network. Concretely, assuming a pre-trained pose
regression network Gy and an NVS system 7 are available,
given an image I captured at viewpoint v and its pose esti-
mation ¥ = Gy (I), our direct matching module constrains
¥ via minimizing the photometric difference Cphoto(f )
between a synthetic image I= H(0) rendered by the NVS
model H at viewpoint ¢, and its true observation I:

Lonoto(1, 1) = |1 = 1||2. (D

Any NVS system with a differentiable renderer could be se-
lected as the NVS system . For simplicity, we choose the
NeRF [34] in this work, due to the high quality reconstruc-
tions it produces.

From a high-level point of view, NeRF-based NVS re-
quires three main components: 1) a neural radiance field
function Fg that models a 3D volume, 2) a differentiable
volume renderer R(-) that enables back-propagation, and
3) a viewpoint-dependent volume sampling function S(+)
that provides 3D sample locations and view directions for
Fo and R(-) given a camera pose. Consequently, an im-
age rendered from an NVS system #H using NeRF can be
formulated by:

I, = H(v) £ R(Fe,S(v)), ©)

where I, denotes a synthetic image rendered at a pose v,
and all operations above are differentiable. As a result, our
direct matching system updates ¥ by minimizing photomet-
ric loss in Eq. (1).

3.2. System Setup

Training Pipeline As mentioned above, our system con-
sists of two main components, a pose regression network



Gy and an NVS-enabled direct matching module. With
each component pre-trained on target data, we join them to-
gether to further refine the pose regression network: given
an input image I, the pose regression network predicts a
pose v, from which an NVS system H renders a synthetic
image I; = H (%), enabling our direct matching supervi-
sion Lppoto. Meanwhile, the ground truth supervision £
is applied as well. As a result, the pose regression network
Gy is refined through a back-propagation of a weighted sum
of Lyhoto and Ly ( Eq. (3)). Mathematically, our training
pipeline can be framed as:

\IJ* = arg m\gn()\lﬁphoto + )\2£gt)7 (3)

where U* denotes optimized network parameters, and
A1, A2 denote weights for each loss terms, respectively.

Pose Regression Network Our pose regression network
Gy follows the line of PoseNet [22] work, including a pre-
trained feature extractor backbone and a fully connected
layer that outputs a camera pose matrix P. Prior works
[6, 20, 21, 22, 30, 43, 58, 59] typically use a quaternion
or an axis-angle representation during pose estimation, re-
quiring balancing between rotation and translation terms.
Instead, our network regress a camera pose v using the rep-
resentation of P = [R|t] to overcome this issue, where
R € SO(3) is a rotation matrix denotes a camera orien-
tation and t € R?® denotes camera position. For clarity, we
refer v as a general pose concept and P as a specific pose
representation.

Our ground truth supervision loss is defined as the L2
distance between a ground truth pose P and an estimated
pose P: A

Lyt = [P~ P, (4)

removing the need for balancing rotation and translation
terms while offering competitive performance.

NeRF Two challenges arise while adapting NeRF as our
NVS system H in relocalization context. First, the train-
ing cost is expensive in relocalization tasks, where a train-
ing video could easily yield thousands of images even af-
ter frame subsampling. We resolve this issue by reducing
the NeRF model size and removing the hierarchical train-
ing scheme.

Second, strong artifacts occur in synthetic images if
the NeRF is applied in our task without modifications.
Two reasons account for that: a) NeRF is not de-
signed for outward-looking scenes [64] and b) photo-
metric consistency is violated when auto-focus/exposure
fluctuation and rolling shutter effect appear. We mit-
igate this issue by adapting a coarse-to-fine positional
encoding scheme ~,(-) from Nerfies [39]. Specif-
ically, an input signal p is encoded by ~.(p) =

[p, ..., wi (o) sin(2F7p), wy, (o) cos(2F7p), . ..], where
0 <k <m—1,m € Nand wy (o) activates each band over
epoch ¢, controlled by oy = mt/N. N is a user-defined
maximum epoch number in training, where k reaches the
maximum frequency band m — 1. We refer interested read-
ers to the full mathematical expression for wy(cy) in our
supplementary material.

With the progressive positional encoding function, we
are able to adapt NeRF as our NVS system H, reducing
artifacts and preserving high frequency details. Please refer
to Section 4.4 for more discussion on the effectiveness in
this approach.

3.3. Unlabeled Training

Inspired by MapNet+ [6], we propose to improve pose
estimation in a semi-supervised manner, with unlabeled se-
quences captured in the same training scene. Unlike [6],
which enforces a relative geometric constraint between two
nearby frames and requires an additional VO algorithm,
we rely on our bootstrapped pipeline to further refine the
pose regression network Gy . Given an input image without
ground truth pose annotation but not too far from labeled
training videos, the training of Gy can be supervised by the
photometric loss between the synthetic image rendered by
the direct matching module using the predicted pose. This
semi-supervised training scheme can be effectively set up
by setting A\; = 1.0 and A2 = 0.0. We find our unlabeled
training works well, evidenced by the performance in Ta-
ble 2.

4. Experiments

In the following, we discuss the implementation details
of our solution in Section 4.1. We perform a thorough
evaluation of the proposed method in Section 4.2 on the
7-Scenes dataset. We further evaluate our method on the
LLFF dataset to demonstrate that the proposed method ben-
efits from both the traditional pose regression method and
the direct matching method (Section 4.3). Finally, to gain
more insights to our modification on positional encoding
and the effectiveness of direct matching for camera local-
ization, we apply more experiments in the ablation study
(Section 4.4).

4.1. Implementation Details

Pose Regression We build our pose regression model
upon prior DNN-based methods [6, 21, 22] using Py-
Torch [40]. We choose to use the MobileNetV?2 [45] back-
bone in this work. We freeze the batch normalization lay-
ers [16] from the pre-trained ImageNet backbone to train
our baseline pose regression model. Since a direct rotation
matrix regression may not belong to SO(3), a singular value
decomposition (SVD) is applied to normalize the rotation
component of P during inference time. However, we also



without unlabeled data

‘ with unlabeled data

PN learned geo. PN

LSTM PN Hourglass BranchNet DSO

MapNet MapNet+ MapNet+

Scene PN [22] weights [21] 1] [59] PN [30] (0] [6] Direct-PN 6] PGO [6] Direct-PN+U
Chess 0.32/8.12 0.14/4.50 0.13/4.48  0.24/5.77  0.15/6.17  0.18/5.17 0.17/8.13 0.08/3.25  0.10/3.52 | 0.10/3.17 0.09/3.24 0.09/2.77
Fire 0.47/14.4 0.27/11.8 0.27/11.3  0.34/11.9  0.27/10.8  0.34/8.99  0.19/65.0 0.27/11.7 0.27/8.66 | 0.20/9.04 0.20/9.29 0.16/4.87
Heads 0.29/12.0 0.18/12.1 0.17/13.0  0.21/13.7  0.19/11.6 ~ 0.20/14.2  0.61/68.2 0.18/13.3  0.17/13.1 | 0.13/11.1  0.12/8.45 0.10/6.64
Office 0.48/7.68 0.20/5.77 0.19/5.55 0.30/8.08 0.21/848  0.30/7.05 1.51/16.8 0.17/5.15 0.16/5.96 | 0.18/5.38 0.19/5.42 0.17/5.04
Pumpkin  0.47/8.42 0.25/4.82 0.26/4.75  0.33/7.00 0.25/7.0 0.27/5.10  0.61/15.8 0.22/4.02  0.19/3.85 | 0.19/3.92  0.19/3.96 0.19/3.59
Kitchen 0.59/8.64 0.24/5.52 0.23/535 0.37/8.83  0.27/10.2  0.33/7.40  0.23/10.9 0.23/4.93  0.22/5.13 | 0.20/5.01 0.20/4.94 0.19/4.79
Stairs 0.47/13.8 0.37/10.6 0.35/12.4  0.40/13.7  0.29/12.5  0.38/10.3  0.26/21.3 0.30/12.1 0.32/10.61 | 0.30/13.4 0.27/10.6 0.24/8.52
Average  0.44/10.44 0.24/7.87 0.23/8.12  0.31/9.85 0.23/9.53  0.29/8.30  0.26/29.4 0.21/7.77  0.20/7.26 ‘ 0.19/7.29  0.18/6.55 0.16/5.17

Table 1: Pose regression results on 7 Scenes datasets. We compare our method with both direct matching and absolute pose
regression methods, in median translation error (m) and rotation error (°). Bottom row is the average of median errors of all
scenes. PN denotes PoseNet. Numbers in red represent the best performance with or without unlabeled data.

find that the pose regression network learns to predict or-
thogonal rotation matrices even without using the SVD. All
models are optimized with the Adam optimizer [23]. The
base model is trained with a batch size of 4 and a learning
rate of 1 x 10~*. We implement an early stopping strategy
with a patience value of 200 and schedule the learning rate
decay for every 50 epochs on validation loss plateau with a
factor of 0.95.

NeRF Our NeRF model is trained with input poses in
SE(3). To ensure a consistent coordinate system in pose
regression and NVS, we further align and recenter the cam-
era poses with zero-means similar in Mildenhall et al. [34].
The NeRF architecture mainly follows the original imple-
mentation [34], except we apply a coarse-to-fine positional
encoding 7, (p) for both positions and directions. We set
the maximum frequency band m = 8, and time to reach the
maximum frequency band N = 1200 epochs.

Training For our proposed methods in Section 3.2 and
Section 3.3, we train the pose regression model with direct
matching (Direct-PoseNet) with Ay = 0.3 and Ay = 0.7,
and further fine-tune the model (Direct-PoseNet+U) with
A1 = 1.0 and A2 = 0.0 to simulate the unlabeled data cir-
cumstances. We set the batch size to 1 for training both
models. The learning rate is set to 1 x 1075 with the same
early stopping strategy as above. All models are trained
within 24 hours with a single Nvidia 1080Ti graphic card.
In our experience, the NeRF training time can reach approx-
imately the same as training PoseNet models. More details
on network architecture and training procedure are provided
in the supplementary material.

4.2. Evaluation on 7-Scenes

We evaluate our method on a well-known camera local-
ization dataset 7-Scenes [ 15, 51]. It consists of seven indoor
scenarios, each scale from 2m? to 6m3. The sequences

were shot by Kinect RGB-D camera at 640 x 480 resolu-
tion, and the ground truth poses were obtained by a dense
3D model.

The pose regression network takes an input image in
320 x 240 and the pre-trained NeRF model is trained with
resized images in 160 x 120, but inference in 320 x 240 for
Direct-PoseNet and Direct-PoseNet+U training. For each
scene, we train our NeRF model with a learning rate of
5 x 10~* for 4000 epochs with Adam optimizer and decays
exponentially to 8 x 10~° throughout the course of opti-
mization. We set the near and far bounds [b,,, by] to [0.5, 4]
except for the Heads scene, we set them to [0.5, 2.5]. How-
ever, unlike the original NeRF [34], which uses a coarse-
to-fine sampling approach in its architecture, we only use a
single MLP model with a width of 128. We sample one
image with a batch of 1024 rays for each iteration, and
each ray uniformly samples N = 128 bins. The above
modifications achieve approximately 3 x speed up compare
to the original NeRF paper. To further improve training
efficiency, our NeRF model, Direct-PoseNet model, and
Direct-PoseNet+U model only use a spacing window d = 5
of the training set for scenes contain < 2000 frames, and
d = 10 of the training set otherwise.

We summarize complete quantitative comparisons of
our proposed method with prior absolute pose regression
works and DSO in Table 9. For the experiment of Direct-
PoseNet+U, we follow MapNet+ to use the unlabeled test
sequences for fine-tuning. We do not use the entire test
sequences for fine-tuning, but only 1/5 or 1/10 of the se-
quences described above to ensure our method is not over-
fitting to the entire test sequences. We also demonstrate a
selection of the visual comparisons in Fig. 2.

4.3. Evaluation on LLFF

We further evaluate our method on another real-world
complex scene dataset, the LLFF dataset [33]. The dataset
consisting of 8 forward-facing scenes captured with a hand-
held cellphone and holds out 1/8 of the data as the test set.



(a) PoseNet [0, 21, 22] (b) MapNet [6]

(c) Direct-PoseNet

(d) MapNet+PGO [6] (e) Direct-PoseNet+U

Figure 2: Visualization of camera relocalization results on 7-Scenes dataset [15, 51]. For each 3D plot, we show the ground
truth camera trajectory in green and the predicted trajectory in red. The bottom color bar represents rotation errors for each
subplot. Yellow represents high rotation error, and blue represents low rotation error for each test sequence. Sequence names
from top to bottom are: Stairs-all, Heads-all, Fire-seq-03, Office-seq-09.

It is ideal for an experiment because a high-quality NeRF
can be trained on LLFF to examine the combined effects of
pose regression and direct matching supervision.

We compare our method with both the pose regression
method and an inverting NVS method iNeRF by Lin et

PoseNet+SE(3) Direct-PoseNet+U
78%, 100%

error rate in % ‘ iNeRF

‘ 73%,71%  57%, 100%

<5cm, <5°

Table 2: We report the percentage of correctly re-localized
frames below an error threshold of 5cm and percentage of
re-localized frames below an error threshold 5° on the Fern,
Fortress, Horns, Room scenes of LLFF dataset [33]

al. [63]. The iNeRF uses an iterative optimization approach
on each test image to recover the camera pose by invert-
ing a trained NeRF model. On the other hand, our method
does not rely on iterative optimization and produces a more
generalized and efficient model. To ensure a fair compari-
son, we trained our NeRF model to follow the same setting
with Lin et al., which uses a standard NeRF model with a
ray batch size of 2048. We fine-tune the NeRF model on
four scenes (Fern, Fortress, Horn, Room) with the baseline
pose regression model and compute the percentage of pre-
dicted pose whose error is less than S5cm and the percentage
of predicted pose whose error is less than 5°. We report
the experiment results in Table 2. We observe that our pro-
posed pose regression method gains benefit both from the



pose regression approach and the direct matching approach,
resulting in the top performance.

4.4. Ablation Study

Effectiveness of Modified Positional Encoding In real-
life datasets such as 7-Scenes, there are multiple sources
to keep NeRF from rendering a high-quality, photorealistic
view of the scene. Artifacts may be produced by letting
the NeRF model learn from images with severe deformation
(e.g., from camera rolling shutter or deforming object) or
motion blur from long exposure among frames. Moreover,
training and testing in very different camera trajectories is a
situation for NeRF likely to fail because it tries to generate
the scene from unfamiliar volumetric rendering locations.
We build a toy example to demonstrate the phenomenon
in the 7-Scenes dataset, and the effectiveness of our modifi-
cation in NeRF’s positional encoding. We randomly select
a frame in Heads and sample a portion of training and val-
idation data that lies within its frustum overlap threshold
using an approach similar to Balntas et al. [1]. For this ex-
periment, we set the frustum overlap threshold to be 0.85.
We report the peak signal-to-noise ratio (PSNR) on this toy
dataset for fixed full encoding (m = 10) in the original
NeRF paper, fixed half encoding (m = 5), and the coarse-

[

(a) Fixed PE. [34]

(b) Coarse-to-fine P.E.

Figure 3: A visual comparison between (a) fixed positional
encoding (P.E.) and (b) the coarse-to-fine PE in Heads
scene. Top: testset renderings from two NeRF models with
different P.E. schemes. Bottom: disparity maps (inverse
depth). Notice that NeRF with fixed P.E. produces stronger
artifacts in this outward looking scene. Even though our
encoding do not completely remove all artifacts, it recovers
more structure and details than the original NeRF scheme.
We provide more detailed discussion on why NeRF suffers
from severe artifacts in Section 4.4.

to-fine encoding schemes in Table 3. We show a qualitative
comparison between the original NeRF embedding scheme
and our modified coarse-to-fine scheme in Fig. 3. Over-
all, we find that using a coarse-to-fine positional encoding
approach generally obtains a higher quality NeRF model
throughout the 7-Scenes dataset in our experiments.

Model ‘ Full encoding Half encoding  Coarse-to-fine
PSNR |  16.64 17.16 17.50

Table 3: Comparison of different NeRF positional encoding
scheme in our toy dataset (validation split).

Effectiveness of Direct Matching We investigate the ef-
fectiveness of direct matching for supervising the pose re-
gression training. We first train a NeRF model using
the Heads data. We randomly perturb the ground truth
pose in different ranges and compute the photometric loss
Lph_pertury With the ground truth image. We then count the
percentage that Lph perturs < Lph.ar, Where Ly qr de-
notes the photometric loss using the ground truth pose. We
define such a percentage as the error rate. Ideally, views
generated from perturbed poses should have higher photo-
metric loss than the loss we get from using the ground truth
poses. Thus the error rate indicates the chances that non-
ideal cases would happen, which potentially damages the
optimization of our pose regression.

Intuitively, the greater range we perturb the ground truth
pose with, the more displacement in the appearance of ren-
dered images will have and shall lead to a lower error rate.
In this experiment, we jitter poses in the range between
+[0.01m, Im] for 3D translation and the range between

NeRF train set
—— NeRF test set
--- Mapnet+PGO
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40 —— NeRF test set
--- Mapnet+PGO
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(a) 3D translation jitter only (b) 3D rotation jitter only

Figure 4: We feed randomly perturbed poses to the NeRF
model trained in Heads, and validate the robustness of
our photometric 1oss Lpnot0. By cumulatively counting
the chances of Ly perturs < Lph.cT, the error rate re-
mains nearly O when the perturbation is smaller to the Map-
net+PGO reference threshold, for both translation and ro-
tation. This indicates that the photometric loss from direct
matching is effective to supervise the training of a pose re-
gression network.



Scene Geo. PoseNet PoseNet PoseNet+logq  PoseNet+SE(3) PoseNet+SE(3)
[21] (ResNet34) [6] (ResNet34) [0] (ResNet34) (MobileNetV?2)

Backbone Ertor 5y 3011 19, 26.7%/8.58%  26.7%/8.58%  26.1%/8.58%  28.12%/9.71%

(Top-1/Top-5)

Average 0.23m, 8.12° 0.23m, 8.49° 0.22m, 8.07° 0.21m, 8.71° 0.21m, 7.84°

Table 4: A comparison between our SE(3) PoseNet baseline and other quaternion-based baselines. Our direct SE(3) supervi-
sion offers competitive results with both backbones while removing the need for balancing rotation and translation terms.

+[0.1°,10°] for 3D rotation movement. For each of the se-
lected scales, we randomly jitter 500 poses to estimate the
expected error rate. As the results are shown in Fig. 4, both
3D translation and 3D rotation error rates drop close to 0
below the reference threshold of MapNet+PGO, which may
explain why training with direct matching can obtain better
performance overall.

Effectiveness of Regressing SO(3) We also compares
our baseline pose regression model with prior baselines
from PoseNet and MapNet in Table 4. We achieve on-
par results by directly replacing the rotation representation
from quaternion to SO(3) rotation representation. Our Mo-
bileNetV2 performs overall the best in terms of average re-
sults. We use identical training hyperparameters to train our
baseline model for each scene, and our MobileNetV2 fea-
ture extractor is not the best regarding the ImageNet bench-
mark compared to prior baselines. Our baseline models’
superior performance indicates that our rotation represen-
tation is just as effective as quaternion representation. A
full table on scene specific performance is provided in the
supplementary material.

Summary of Ablation We justify our design decisions to
show how each component variation contributes to the relo-
calization performance in Table 5. First, replacing the SE(3)
representation with separate quaternion rotation and trans-
lation position terms leads to lower accuracy due to the bal-
ancing requirement of the two terms during training. The
most significant performance drop is when removing the
coarse-to-fine training strategy on NeRF. It indicates that
the N'VS reconstruction quality does affect the overall relo-
calization accuracy. In addition, we observe that using full
NeRF architecture to train our model can obtain slight ac-
curacy improvement. However, this is at the cost of a much
longer training time (i.e. 22hrs vs. 78hrs on Kitchen). We
observe that the same phenomena hold valid when training
with unlabeled data as well.

5. Conclusion and Discussion

In this work, we show that one can use a differen-
tiable renderer to improve pose regression performance. We

Method | 7 Scenes

Direct-PN 0.20m, 7.26°
-SEQ3) 0.21m, 7.58°
- Coarse-to-fine 0.22m, 7.91°
- Direct Matching 0.22m, 8.07°

Direct-PN + Full NeRF | 0.20m, 7.16°

Table 5: A performance breakdown for each component in
our method. The performance drops for when our modifi-
cations on SE(3), coarse-to-fine encoding, and the direct-
matching module are removed. The performance improves
slightly if a full-size NeRF [34] (with the hierarchical archi-
tecture, and a MLP with deeper and wider layers), but at the
cost of a much longer training time.

present a relocalization pipeline that outperforms previous
single-image APR methods on the 7-Scenes benchmark and
achieves state-of-the-art performance on the LLFF dataset,
with two main contributions. First, we joint a direct
matching module with a pose regression network, offer-
ing superior performance while maintaining low inference
cost. Second, we further boost our method’s performance
by applying a simple but effective semi-supervised train-
ing scheme to unlabeled data. To adapt with outward-
looking relocalization datasets, which violates assumptions
in NeRF, we employ a coarse-to-fine positional encoding
strategy to improve rendering qualities.

One of the limitations of this work is that the effec-
tiveness of our direct matching highly depends on the
robustness of the NVS methods, which might fail for vari-
ous reasons. For example, NeRF does not perform well in
large-scale scenes, dynamic environments, or outdoor sce-
narios where auto-exposure fluctuates. The next challenge
for us is to circumvent the assumptions made in NeRF so
that our method is extensible to more challenging scenarios.

Acknowledgements We thank Kejie Li for his advice on
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per. We also appreciate Henry Howard-Jenkins and Theo
W. Costain for some great comments and discussions.



6. Supplementary
6.1. Implementation Details

Architectures Details The proposed pipeline includes a
pose regression model for camera pose predictions and an
NVS system for synthesis images. Specifically, we use a
modified PoseNet model and a modified NeRF in our ex-
periments. We summarize the details of the pose regres-
sion network architecture in Table 6. The architecture of our
NeRF (Fig. 5) mainly follows the original implementation
of Mildenhall et al. [34], except we apply a coarse-to-fine
positional encoding v, (p) for both positions and directions,
and we only use a coarse model with 128 samples along
each ray. The entire implementation is written in PyTorch,
and the NeRF code is built upon an open-sourced repository
nerf-pytorch [62].

density @
% ,2) e B = 3 = 2 2
position E— color RGB

40 ®
view direction

Figure 5: Our NeRF architecture. We adapt a coarse-to-
fine encoding approach [39] for both positions and view di-
rections to mitigate artifacts in NeRF reconstruction caused
by outward-looking scenes and video distortions. We set
W = 128 in our implementation.

Orthogonalize the Rotation Matrix As we have men-
tioned in the paper, the ground truth supervision Ly is an
approximation of the correct geometric loss. The regressed
rotation matrix R is not guaranteed to be in SO(3) mani-
fold. To solve this, we apply a singular value decomposition
(SVD) operation during testing:

SVD(R) = UxVT, S

R, =UVT, (6)

where R, denotes the orthogonalized rotation matrix.

Positional Encoding Strong artifacts occur in synthetic
images if the NeRF is applied in the relocalization task
without modification.  This phenomenon appears be-
cause: a) NeRF is not designed for outward-looking scenes
and b) photometric consistency is violated when auto-
focus/exposure fluctuation and rolling shutter effect appear.
As we addressed in the main paper, we mitigate this issue
by adapting a coarse-to-fine positional encoding strategy
va(p) proposed by Nerfies [39], and illustrate this strategy

Input | Operator |t| m |n]|s
240x320x3 | com2d |- | 32 |[1]2
120 x 160 x 32 | bottleneck | 1| 16 |1 |1
120 x 160 x 16 | bottleneck | 6 | 24 |2 |2
60 x 80 x 24 ‘ bottleneck ‘ 6 ‘ 32 ‘ 3 ‘ 2
30 x40 x 32 | bottleneck | 6 | 64 | 4 |2
15 x 20 x 64 ‘ bottleneck ‘ 6 ‘ 96 ‘ 3 ‘ 1
15x20x 96 | bottleneck | 6 | 160 | 3 | 2
8x10x 160 | bottleneck | 6 | 320 | 1 |1
8x10x320 |conv2d1x1| - | 1280 | 1] 1
8x10x 1280 | avgpool | -] - |1]-
1x1x1280 | fc [ -] 12 [ 1]-

Table 6: Baseline pose regression network architecture of
Direct-PoseNet, using an input image size 240 x 320 x 3
as an example. The backbone is MobileNetV2 [45], with n
repeated times for each operator and m output channels. s
represents the stride and ¢ represents the expansion factor.

1.0 Wo
w1
0.8 —_— W3
—
] — W3
"X 0.6 —w
k 4
g "
50 0.4 1 We
o
3 - Wy
0.2
0.0

T T T T T T T
0 200 400 600 800 1000 1200 1400 1600
epoch number t

Figure 6: An example of wy, activation used in the main pa-
per. The number of frequency band being activated increase
as epoch iterations increase.

in Fig. 6. Specifically, an input signal p is encoded by
Yalp) =P, - -,

wy () cos(2Fmp), ... ],

wy (o) Sin(2k7rp),

)

where 0 < k < m — 1,m € N and wy(«;) activates each
band over epoch ¢, controlled by oy = mt/N. We denote N
as the maximum epoch number in training and the weight
w () is defined as:

(1 — cos(m clamp(«
2

t _kaovl)). (8)

wi(a) =

6.2. Additional Ablation Study

More Results on the 7-Scenes Dataset We further com-
pare our method with prior state-of-the-art methods on the



‘ without unlabeled data ‘ with unlabeled data

Model ‘ PoseNet+logq [60] MapNet [6] Direct-PN ‘ MapNet+PGO [6]  Direct-PN+U
Avg. Median ‘ 0.23m, 8.49° 0.21m, 7.77°  0.20m, 7.26° ‘ 0.18m, 6.55° 0.16m, 5.17°
Avg. Mean ‘ 0.28m, 10.43° 0.27m, 10.08°  0.25m, 8.98° 0.22m, 7.89° 0.21m, 7.02°

Table 7: A comparison of average median errors and aver-
age mean errors on the 7-Scenes dataset.

Scene Geo. PoseNet PoseNet PoseNet+logq  PoseNet+SE(3) PoseNet+SE(3)
ene (&8 (ResNet34) [6] (ResNet34) [6]  (ResNet34)  (MobileNetV2)
Backbone BItor 3 35,11 1q,  26.7%/8.58%  2671%/858%  267%/8.58%  28.12%/9.71%
(Top-1/Top-5)
Chess 0.13m,448°  0.11m,424°  0.11m, 429°  0.11m,453°  0.11m, 3.95°
Fire 0.27m, 11.30°  0.29m, 11.68°  0.27m, 12.13°  028m, 11.65°  0.27m, 10.15°
Heads 0.17m, 13.00°  0.20m, 13.11°  0.19m, 12.15°  0.17m, 13.76°  0.17m, 13.30°
Office 0.19m,5.55°  0.19m,640°  0.19m,635°  0.18m,5.92°  0.17m, 6.25°
Pumpkin 026m,475°  0.23m,577°  0.22m,5.05°  020m,6.11°  0.22m, 4.58°
Kitchen 023m,535°  027m,581°  025m,527°  024m,622°  0.24m,547°
Stairs 035m, 1240°  0.31m. 1243°  0.30m, 1129°  0.29m, 12.76°  0.30m, 11.20°
Average 023m,8.12°  0.23m,849°  0.22m,8.07°  021m,8.71°  0.21m, 7.84°

Table 8: A per scene based comparison between our SE(3)
PoseNet baseline and other quaternion-based baselines,
evaluated with median translation and rotation error on the
7-Scenes. Two columns to the right are results with our di-
rect SE(3) supervision.

7-Scenes dataset (Table 7), showing our pipeline outper-
forms them in average median errors and average mean er-
rors.

Table 8 shows the scene-specific comparison be-
tween SO(3) and quaternion-based representation. The
quaternion-based results were provided by [2 1, 6], and their
performances are confirmed based on their released code.
The quaternion-based models were trained using geometric
consistency loss [0], and the SE(3) models were trained us-
ing L2 loss without balancing translation and rotation terms.

About As The reconstruction loss tends to have an or-
der of magnitude larger value than the pose loss. In our
paper, we didn’t heavily tune the As. We experimentally
pull both losses into closer scales. Even with our default
A1 = 0.3, A2 = 0.7 values, we observe that the weighted
reconstruction loss is usually the dominant term of the com-
bined loss, which proves the benefits of our architecture.
Table 9 shows our experiments on 3 of 7-scenes with dif-
ferent A settings. Although the result seems mixed, we ar-
gue both pose loss and photometric loss are important. For
scenes with low texture or flat background, i.e., Lego scene
from NeRF Synthetic dataset [34], pose loss ensures the re-
gressed pose is regularized in relevant positions.

o ] A =01 M=03 A=05 M=07 A=09
Dataset ‘ Scene ‘ M=09 A =07 A =05 A=03 lp=0.1
7Scenes | Heads | 0.17,13.08° 0.17,13.1° 0.17,12.87° 017,13.1° 0.17, 13.26°
7 Scenes | Fire 0.28,8.48° 0.27.8.66° 0.27.8.61° 0.27,8.87° 0.27,9.36°
7Scenes | Pumpkin | 0.193.60° 0.193.85° 0.193.77° 0203.68  0.19,3.64°
NeRF ‘ Lego ‘ 0.167,29° 0.117,27° 0.182,47° 0.194,5.1°  0.276,5.8°
Synthetic

Table 9: Result of using different A\; and Ay values on
Heads, Fire, and Pumpkin in 7-Scenes dataset (first 3 rows).
We also tested in Lego scene (bottom row) on the NeRF
synthesis datasets [34], which contains large areas of tex-
tureless background.
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