
NeuralBlox: Real-Time Neural Representation Fusion
for Robust Volumetric Mapping

Stefan Lionar* Lukas Schmid* Cesar Cadena Roland Siegwart Andrei Cramariuc
Autonomous Systems Lab, ETH Zürich, Switzerland

splionar@gmail.com {schmluk, cesarc, rsiegwart, crandrei}@ethz.ch

Abstract

We present a novel 3D mapping method leveraging the
recent progress in neural implicit representation for 3D re-
construction. Most existing state-of-the-art neural implicit
representation methods are limited to object-level recon-
structions and can not incrementally perform updates given
new data. In this work, we propose a fusion strategy and
training pipeline to incrementally build and update neu-
ral implicit representations that enable the reconstruction
of large scenes from sequential partial observations. By
representing an arbitrarily sized scene as a grid of latent
codes and performing updates directly in latent space, we
show that incrementally built occupancy maps can be ob-
tained in real-time even on a CPU. Compared to traditional
approaches such as Truncated Signed Distance Fields (TS-
DFs), our map representation is significantly more robust
in yielding a better scene completeness given noisy inputs.
We demonstrate the performance of our approach in thor-
ough experimental validation on real-world datasets with
varying degrees of added pose noise.

1. Introduction
Mapping the 3D volume of an environment during on-

line operation is a fundamental capability required for vari-
ous robotic tasks, ranging from autonomous navigation [46]
to mobile manipulation [2]. Typically, volumetric maps are
built by fusing multiple range measurements into grid-based
occupancy or signed distance maps [20, 35]. However, such
measurements are often affected adversely by uncertainties
arising from sensor noise and pose estimation errors [45].
To ensure safety during robot operation, e.g. obstacle avoid-
ance, these uncertainties must be accurately taken into ac-
count in the 3D maps.

Classical approaches for robotic volumetric mapping
often rely on recursive updates of occupancy probabili-
ties [20] or Signed Distance Functions (SDFs) [10, 35],
which both depend heavily on hand-tuned parameters for

*Authors share first authorship.

Accumulated inputs TSDF [35] Ours

Figure 1. Reconstructions of sequential observations with high
pose uncertainties. Our method leverages shape priors and geo-
metric context for the fusion, resulting in a robust reconstruction
given noisy input.

specific sensors, scenes, and uncertainties. These ap-
proaches apply their update rules without any geometric
or semantic context. Consequently, regular occurrence of
noise can heavily afflict the resulting SDFs or occupancy
probabilities and break the geometry of reconstructed ob-
jects in the map.

Fig. 1 illustrates this undesirable behavior of a TSDF-
based method [35]. Given sequential observations with
high pose uncertainties, the TSDF-based method fails to
reconstruct objects in a scene, increasing the risk of colli-
sion of the robot and potentially rendering the map insuffi-
cient for manipulation tasks. To overcome this limitation,
we propose to use a different map representation to fuse
range measurements and provide robust volumetric map-
ping amidst measurement uncertainties. Motivated by the
recent progress in neural implicit representation for 3D re-
construction [37, 5, 38, 25, 1, 52], we consider representing
scenes implicitly as a composition of latent codes that are
sequentially encoded from the inputs. These latent codes
can then be decoded into other representations such as oc-
cupancy grids or SDFs during operation. This enables a
broad variety of robotic path planning or interaction algo-
rithms to directly interface with and operate in real-time on
our new implicit volumetric mapping framework.

In this work, we propose a system that given sparse un-
oriented point clouds from e.g. a LiDAR or RGBD sensor
produces occupancy probabilities as the final output. We

ar
X

iv
:2

11
0.

09
41

5v
1

 [
cs

.C
V

]
 1

8
O

ct
 2

02
1

represent the map as a dynamically growing grid of large
voxels, where each voxel contains a latent code represent-
ing the local geometry. Given new measurements, we en-
code the points into latent implicit representations and per-
form the map update directly in latent space, instead of up-
dating only the occupancy probabilities. We show that our
3D mapping approach can accurately capture noisy mea-
surements and preserve the overall geometry of the scenes
better than classical approaches, as shown in Fig. 1. In par-
ticular, we show that our method achieves high recall, i.e.
it represents the majority of the scene structure in the map
even when subject to noise, which is highly desirable for
safe robot operation.

In summary, our contributions are as follows:

• We propose a novel method for online volumetric map-
ping of arbitrary-sized environments based on neural
implicit representations and provide a training strategy
to incrementally fuse geometric information from se-
quential point cloud scans directly in latent space.

• We show the flexibility of the presented method to op-
erate on sparse inputs from arbitrary range sensors,
generalizing to varying configurations without retrain-
ing, and operate in real-time even on just a CPU.

• We demonstrate in thorough experimental evaluations
that our method can build maps with significantly bet-
ter scene completeness in the presence of pose estima-
tion errors.

• We make the code available as open-source for the
benefit of the community1.

2. Related Work

Neural implicit representation: Recently, many works
have proposed methods to learn continuous implicit func-
tions for shape representations. This line of methods has
shown superior quality and flexibility compared to explicit
representations such as voxels [50, 51, 19], points [14, 47],
and meshes [17, 18, 24]. The pioneering implicit represen-
tation methods typically encode the geometric input data
into a single latent code, which can then be used to con-
dition the decoder to predict the occupancy or SDF val-
ues of query locations in continuous space [30, 37]. Due
to the use of a single latent code, many of these meth-
ods are prone to losing low-level details and do not scale
well to large scenes. This has been improved in subse-
quent works by using more sophisticated structures com-
posed of multiple latent codes, such as planes [38, 25],
grids [5, 38] and Gaussians [16, 15]. Several recent works
also explore broader applications, such as novel view syn-
thesis [43, 32, 29, 40, 6], representing articulated ob-
jects [13, 31], and learning implicit representation only
from 2D observations [26, 27, 33].

1https://github.com/ethz-asl/neuralblox

While most of these works focus on the reconstruction
of single objects, Convolutional Occupancy Networks [38]
and Neural Distance Fields [7] demonstrate the ability to re-
construct large scenes. However, their methods work offline
requiring complete point clouds of the scene beforehand.
Concurrently, Jiang et al. [23] and Chabra et al. [3] pro-
posed methods that represent a scene as coarse latent grid
structures which can be decoded to implicit surfaces. How-
ever, their methods need to perform optimization for each
grid during inference and thus are not suitable for online re-
construction. A common limitation of the aforementioned
methods is that they require complete input data and do not
consider online updates of the shape representations given
sequential partial observations for large-scale mapping.

Classical volumetric mapping: The two common repre-
sentations for volumetric mapping are occupancy and TSDF
maps. In OctoMap [20], a 3D scene is segmented into
hierarchical octree nodes, where each node stores an oc-
cupancy probability to build memory-efficient occupancy
maps. While having a straightforward probabilistic update
equation, OctoMap requires hand-tuning of the sensor un-
certainties to achieve accurate results.

Similarly, inconvenient hand-tuning of parameters is also
required for classical SDF-based approaches that are mostly
built upon the TSDF fusion method proposed by Curless
and Levoy [10], where uniform grids of SDF values are
updated in a weighted averaging fashion. This approach
is integrated into many online scene reconstruction frame-
works, such as KinectFusion [22], BundleFusion [12], Vox-
graph [42], Voxel Hashing [34], or InfiniTAM [39]. How-
ever, defining the optimal weighting function for the update
rule is a non-trivial task. While Curless and Levoy [10] set it
to be a constant of 1, KinectFusion [22] proposes a weight-
ing function that is proportional to the cosine of angle be-
tween the ray from the sensor origin and the normal of the
surface. In a sensor model-based approach, Voxblox [35]
proposes another function using a quadratic weight based
on the measured depth.

All of these approaches perform explicit updates without
any shape context and therefore are oftentimes not robust to
noisy inputs. In contrast, our method leverages shape priors
from training data to more robustly deal with noise or partial
observations.

Learning-based volumetric mapping: More recently,
RoutedFusion [48] introduced a learning-based approach
for online TSDF updates and weights, resulting in a sig-
nificant improvement in handling sensor noise. Similar to
our approach, NeuralFusion [49] performs depth fusion di-
rectly in a learned latent space and extracts an interpretable
representation (TSDF) afterward. However, their fusion ap-
proach does not scale well to larger scenes or pose noise.
Inspired by the recent progress in neural rendering [29],

https://github.com/ethz-asl/neuralblox

iMAP [44] represents a scene using a small multi-layer per-
ceptron that is trained in live operation to predict color and
volume density, which can then be converted into an occu-
pancy map. However, iMAP has limited scalability as the
entire scene is represented in one single code. Since this
code takes time to optimize to match the sensor measure-
ments its usability for e.g. online planning is not clear. In
a concurrent work, Huang et al. [21] recently presented DI-
Fusion, which similarly to our proposed method uses a grid
of neural representations that are temporally fused together.
As opposed to previous methods that tightly include RGBD
camera models or require dense scans for surface normal
estimation, our method does not assume any particular dis-
tribution of input points and could potentially be extended
to other types of range sensors.

3. Method
Fig. 2 presents an overview of our pipeline. Given a

sequence of input point clouds I1:t ∈ R3×N , the goal of
our method is to produce an occupancy map o : R3 →
{occupied, free}, which contains information about free
and occupied space. This map can then be queried at any
time step t to enable online robotic tasks such as active path
planning or obstacle avoidance.

Since robots oftentimes operate in an open world set-
ting, we aim to generate an occupancy map of any arbitrar-
ily sized scenes. To accurately model the scene, we partition
3D space into large voxels V = {v}, similar to [23]. We de-
note the voxel side length as dV , which is typically within
0.5 m to 1.0 m. In contrast to [23], we dynamically allocate
voxels which are inside the view frustum or contain input
points to scale to unknown scene sizes. Each voxel con-
tains a latent code zv , where the index v is used to denote
a specific voxel, to represent the geometry within the fixed
volume of each voxel. To prevent discontinuities between
voxels, we set an overlapping input dimension dI(> dV)
that defines the input volume of a particular voxel.

When a new pointcloud It arrives, we convert all points
that fall into the input volume of each voxel Itv into the co-
ordinates of that voxel. Subsequently, we encode Itv into
a latent code ztv and fuse this shape information into the
voxel. This results in fast updates and a compact map rep-
resentation, where each voxel considers the geometric con-
text within its cell and aggregated shape information from
all observations I1:tv .

Afterward, the fused latent codes ẑtv can be decoded
via a decoder network into occupancy probabilities for map
queries. We set the query dimension dq(≥ dV) to construct
a query volume, in which occupancy probabilities of points
will be queried given the latent code of the corresponding
voxel. The larger query volume enables us to smoothen
artifacts between neighbouring voxels by interpolating oc-
cupancy probabilities in the overlapping regions. Lastly, a

high-resolution output mesh can be generated from the oc-
cupancy grids using e.g. the marching cubes algorithm [28].

We separate the training pipeline into two steps. First,
we train the encoder and decoder in a supervised way us-
ing the same subset as Choy et al. [8] of ShapeNet [4], a
synthetic object-level dataset with the pre-processing steps
from Occupancy Networks [30]. Second, using the trained
encoder and decoder, we train a fusion network in a self-
supervised manner using a real-world scene dataset [36] to
perform latent code updates.

3.1. Local Geometry Representation

Our encoder and decoder mainly follow the architecture
of 3D grid Convolutional Occupancy Networks [38], a neu-
ral implicit representation approach that is able to capture
local spatial context in their implicit representation. Input
point clouds are encoded using PointNet [41] and 3D U-
Net [9]. In the decoding phase, occupancy probabilities of
query points in continuous space, p ∈ R3, are then pre-
dicted using a lightweight decoder network.

Architecture adaptation: In the original implementation
of Convolutional Occupancy Networks [38], the most com-
pressed representation processed from the input is in the
deepest layer of 3D U-Net. However, due to the skip con-
nections in 3D U-Net, this compressed representation can-
not be decoded independently from the input. As we are
interested in storing the most compressed representation in
our map without storing its original input, we modify the 3D
U-Net by removing its skip connections. The architecture
and training details of our modified encoder and decoder are
provided in the supplementary material.

Encoder: We denote the encoder with weights θe as fθe
and input point clouds as Itv , where no particular structure
or density is imposed on Itv . The latent code ztv is obtained
as:

ztv = fθe(Itv) (1)

Decoder: Given the latent code, the goal of the decoder
is to predict the occupancy probability of any point p ∈
R3 within the query volume of voxel v. The decoder gθd ,
with weights θd processes a latent code ztv and generates the
occupancy probability at the query point p:

Pocc(p|ztv) = gθd(p, ztv), Pocc ∈ [0, 1] (2)

3.2. Latent Code Fusion

The goal of the latent code fusion is to update the cur-
rent map estimate given a new input, i.e., the updated latent
code will contain more complete geometrical information
from sequential partial observations. Given the trained en-
coder fθe and decoder gθd , we train the fusion network hθf

Figure 2. Overview of our method. We encode a stream of input points clouds into latent codes and fuse them in latent space to
incrementally build a global neural map. This neural map can be decoded at anytime into an occupancy map.

in a self-supervised manner on a real-world scene dataset.
During training, we set input dimension dI = 1.2 m, voxel
size dV = 1.0 m and query dimension dq = dI and do not
perform boundary interpolation. With the frozen encoder
and decoder, we train the fusion network to predict a fused
latent code at any time step t, denoted as ẑt. An objective
function is designed such that ẑt has similar properties to
the latent code encoded from the accumulated input point
clouds up to time step t, z∗t. The latent code of voxel v
based on the accumulated input point clouds that have fallen
into its input volume until time step t is defined as:

z∗tv = fθe(I1:tv) (3)

Since we only consider measurements that affect a voxel
v, we denote the set of relevant time steps as:

Ttv = {τ
∣∣ |Iτv | > 0}τ=0,...,t (4)

To generate the fused latent code prediction, we keep
track of previous latent codes in an averaging fashion. This
enables a constant memory footprint for each voxel, which
stores the summation of latent codes from input point clouds
that fall into it:

z̄tv =
∑
τ∈Tt

v

fθe(Iτv) (5)

and the number of measurements Nv = |Ttv|. The fused
latent code of voxel is generated by first dividing the sum-
mation by Nv , then feeding it into the fusion network hθf :

ẑtv = hθf (
z̄tv
Nv

) (6)

Feature alignment loss: We employ a feature alignment
loss to minimize the distance between ẑ and z∗ in latent
space:

Lfea =
1

|V|
∑
v∈V

∥∥z∗tv − ẑtv
∥∥
1

(7)

This feature alignment loss allows the fusion network to
correct for errors introduced by the averaging operation if

the latent space is not perfectly linear and encourages the
fused codes ẑv to stay in the domain of the pre-trained en-
coder and decoder.

Reconstruction loss: Additionally, we add a reconstruc-
tion loss that minimizes the logit differences of query points
p decoded using ẑ and z∗, where P are randomly distributed
sample points:

Lrec =
1

|V||P|
∑
p∈P

∑
v∈V

∥∥gθd(p, z∗tv)− gθd(p, ẑtv)
∥∥
1

(8)

Backward pass: During training, we always take 8 se-
quences of input point clouds and then perform the back-
ward pass (t = 8). Therefore, the number of updates of a
voxel (Nv) can range between 1 and 8. However, we found
that this training procedure generalizes well to longer se-
quences. The total loss function is obtained as the summa-
tion of the feature alignment and reconstruction loss:

L = Lfea + Lrec (9)

Fusion network: The fusion network hθf is composed
of two 3D convolution layers with ReLU activations. The
architecture details are in supplementary materials. Due to
its shallow structure, the fusion process does not add any
noticeable runtime to our pipeline.

3.3. Occupancy Map Generation

A threshold τocc is set to define whether queried points
are considered free or occupied space, where points with oc-
cupancy probability less than τocc are considered free. We
uniformly sample query points in a structure of dense 3D
grid for each voxel. If a voxel is not yet allocated, it is con-
sidered unknown. Otherwise, if a voxel is allocated but has
not yet received any point cloud (Nv = 0), it directly out-
puts free space when queried. In our scene reconstruction
experiments discussed in Sec. 4, we store the summation
of latent codes and Nv for every voxel and only generate
the occupancy after the last input scan. In practice, the oc-
cupancy can be decoded at any time step by dividing the
summed latent codes by Nv , predict the fused latent code,

and then feed query points as well as the predicted latent
code into our decoder.

Boundary interpolation: We set dq = dV + (dI − dV)×
0.5, giving overlapping regions between adjacent voxels.
When a voxel is decoded, it looks up to its neighboring vox-
els and performs linear interpolations of probabilities on the
overlapping regions. A comparison with and without the
boundary interpolation is in the supplementary material.

4. Experiments
We provide the experimental details comparing the per-

formance of our model and a standard TSDF method imple-
mented in Voxblox [35]. We mainly evaluate the robustness
of every model subject to inputs with varying levels of pose
noise. In Sec. 4.3, we also provide thorough details of the
runtime of our models in different configurations.

4.1. Model Comparison

Without any retraining, we set up two configurations
with different voxel size dV and input dimension dI during
occupancy map generation, as follows:

• Ours (0.5 m): dV = 0.5 m, dI = 0.7 m
• Ours (1 m): dV = 1 m, dI = 1.2 m

A smaller voxel size results in a finer reconstruction
at the expense of storing more latent codes and thus
slower inference speed. In both configurations, we employ
query points structured in a grid with a resolution of 1003

points/m3. By including the query points in overlapping re-
gions, this results in 603 and 1103 points/voxel for the 0.5
m and 1 m configurations, respectively.

We set the initial 3D grid resolution to 24 voxels, hidden
layer size to 32, and 3D U-Net depth to 2. Thus, for each
voxel, input point clouds are processed into a latent code zv
with a dimension of 6× 6× 6× 128. By corresponding to
the same number of bytes used per m3 between our method
and TSDF, we benchmark our model with dV = 0.5 m to
a TSDF with a voxel resolution of 0.02 m and ours with
dV = 1 m to a TSDF with a voxel resolution of 0.04 m.
For fast runtime, our method can operate accurately using
sparse input points, which is further discussed in Sec. 4.3.
Thus in our experiments, we only use 10% of the points per
scan as the input to our models. With this input percentage,
we empirically set the threshold τocc = 0.05. Additionally,
we do not update a latent code if its corresponding input vol-
ume receives less than 1% of the input points. Conversely,
we feed 100% of the point cloud for TSDF.

4.2. Metrics

We use the following metrics for our evaluation:
• Accuracy (lower better): mean absolute distance

(MAD) of points sampled densely from the predicted
mesh to the closest surface on the ground truth mesh.

• Completeness (lower better): MAD of points sampled
densely from the ground truth mesh to the closest sur-
face on the predicted mesh.

• Recall (higher better): the percentage of points sam-
pled from the ground truth mesh that have closest ab-
solute distances to the predicted mesh within a thresh-
old τr. We use τr = 0.05 m.

4.3. Redwood Indoor RGBD Dataset

Training: We leverage the Redwood dataset [36] to train
the fusion network. It contains 640×480 resolution RGBD
sequences of five real-world indoor scenes captured with
an Asus Xtion Live camera. We use four scenes, namely
bedroom, boardroom, lobby, and loft as our training data.
Nonetheless, we find that using only one scene (bedroom)
already produces a model that generalizes well. During
training, we take 8 depth sequences with alternating separa-
tions of 30 and 90 frames in each iteration. Then, we con-
vert them into point clouds with a truncated depth of 3 m.
We sample 25,000 points each scan, which corresponds to
about 10% of total points. Further training details are in the
supplementary material.

Evaluation: We use the apartment scene for evaluation,
which consists of approximately 31,910 RGBD frames. We
utilize the high-quality mesh, reconstructed offline using the
method presented in [36], as our ground truth. Evaluations
are carried out on the scene thoroughly covered by the first
13,000 frames where we found the ground truth to be most
reliable. We take every 30th frame of the RGBD scans and
convert them to point clouds with a truncation distance of
3.0 m as input to the evaluated models. The ground truth
mesh is slightly trimmed so that it covers roughly the same
area as the input point clouds, as shown in Fig. 3.

To evaluate the robustness of our system given state esti-
mation uncertainties, we add artificial pose errors to the pro-
vided extrinsic camera parameters. Since most robots are
usually equipped with an Inertial Measurement Unit (IMU),
the direction of gravity can typically be well estimated. We
thus add noise only to the x and y directions (assuming z
is the direction of gravity) of the camera pose. Given the
extrinsic camera parameters of a frame:

Cex =

(
R T
0 1

)
where R ∈ SE(3) is the rotation matrix and T ∈ R3 is
the translation vector, we sample two values from a normal
distribution with zero mean and standard deviation σT and
add them to the translation components Tx and Ty .

To better illustrate the influence of different levels of σT ,
we show the sampled accumulated inputs in Fig. 3. Quan-
titative results with varying values of σT are presented in
Tab. 1 and qualitative visualizations of the reconstructions

GT [36] σT = 0 σT = 0.025 σT = 0.050 σT = 0.075

Figure 3. Ground truth and sampled accumulated inputs. Different levels of translation noise σT (m) are applied on x and y axes.

are presented in Fig. 4. In the supplementary material, we
also present quantitative and qualitative results of the cases
where translation noise is applied to the x, y, and z axes as
well as when orientation errors around z (yaw) are present.

σT Left: TSDF (0.02 m) [35]. Right: Ours (0.5 m).
(m) Accuracy (m) Completeness (m) Recall Recall*
0 0.0175 0.0225 0.0137 0.0135 0.988 0.990 0.984 0.986

0.025 0.0213 0.0264 0.0202 0.0159 0.926 0.989 0.888 0.985
0.050 0.0377 0.0372 0.0352 0.0216 0.756 0.932 0.625 0.898
0.075 0.0535 0.0503 0.0486 0.0249 0.635 0.876 0.438 0.809
σT Left: TSDF (0.04 m) [35]. Right: Ours (1 m).
(m) Accuracy (m) Completeness (m) Recall Recall*
0 0.0206 0.0292 0.0160 0.0187 0.964 0.970 0.950 0.957

0.025 0.0218 0.0309 0.0191 0.0201 0.936 0.964 0.906 0.947
0.050 0.0290 0.0367 0.0299 0.0245 0.817 0.923 0.722 0.885
0.075 0.0446 0.0456 0.0404 0.0286 0.705 0.849 0.545 0.768

*The floor is excluded.

Table 1. Performance of our method on our evaluation set subject
to translation noise σT on the x and y axes. Notably, our method
shows high robustness to state estimation noise and is always able
to faithfully capture the underlying geometry, as shown by the high
recall. This is particularly pronounced for objects of interest, e.g.
when the floor is excluded.

From the quantitative and qualitative results, we can see
that our models are significantly better at preserving the
completeness of the reconstruction from noisy input. While
accuracy and completeness are comparable for low levels of
noise, our method shows significantly increased robustness
in the presence of pose errors. Most importantly for use
in robotic planning, our method is always able to faithfully
capture the underlying geometry, shown in the high recall.
This is particularly pronounced for objects of interest, e.g.
when the floor is excluded. Note that we train our networks
with a 1 m voxel configuration and generate the 0.5 m voxel
resolution maps without retraining, thus demonstrating the
flexibility of our method.

We also present the reconstructed meshes using a static
fusion method, i.e. encoding and decoding is performed in
a sliding window manner after all input point clouds are
accumulated, as in [38]. The performance of the static ap-
proach using our encoder and decoder with σT = 0.075 m
is shown in Tab. 2. Without our fusion strategy, all of the
noise is encoded into the latent codes, resulting in inaccu-

rate meshes with overly thick structures, visible in Fig. 5.
In contrast, our method captures the estimated statistics of
input data and results in more accurate reconstructions.

Voxel Left: Static fusion [38]. Right: Ours.
size Accuracy (m) Completeness (m) Recall Recall*

0.5 m 0.0669 0.0503 0.0416 0.0249 0.690 0.876 0.539 0.809
1 m 0.0789 0.0456 0.0573 0.0286 0.579 0.849 0.399 0.768

Table 2. Comparison of static fusion [38] using our encoder and
decoder and our sequential method. σT = 0.075 m.

Pointcloud sparsity and runtime: Next, we evaluate the
performance of our models given different levels of input
point cloud sparsity by feeding sub-sampled point clouds
per scan into our model. We also report the encoding speed
of our PyTorch implementation evaluated on a machine
with an NVIDIA GeForce GTX 1650 GPU (4GB) and an
Intel i7-9750H@2600GHz CPU. Tab. 3 shows the results
with different levels of input sparsity.

Input %
Left: 0.5 m voxel. Right: 1.0 m voxel.

Encoding
Accuracy (m) Completeness (m) Recall

speed (FPS)
5 5.2 11.7 0.0208 0.0281 0.0129 0.0181 0.988 0.969
10 4.7 11.4 0.0225 0.0292 0.0135 0.0187 0.990 0.970
50 2.9 6.3 0.0255 0.0326 0.0151 0.0206 0.992 0.965

100 1.8 3.1 0.0263 0.0335 0.0157 0.0213 0.993 0.961

Table 3. Performance with varying levels of input point cloud spar-
sity. Our system achieves similar reconstruction performance even
for sparse inputs, enabling it to run in real-time and with low res-
olution sensors. The reconstruction quality appears slightly lower
for high input percentages as we tune the threshold τocc for 10%
of inputs. This can be improved by adjusting τocc.

Despite being trained on 10% input data, due to the local
pooling operations that aggregate the features from N point
clouds into a 3D grid with dimension 24 × 24 × 24, our
method shows strong robustness w.r.t sparse input data and
obtains similar reconstruction results given sparser inputs.
It further generalizes well to more input points with only
a slight drop in performance. Since the density of occu-
pancy prediction is not directly affected by input sparsity,
our models suffer less from reduced surface density and
smoothness that can appear in TSDFs given sparse input.
This enables our method to achieve good reconstruction re-

Small voxels Large voxels
σT (m) TSDF (0.02 m) Ours (0.5 m) TSDF (0.04 m) Ours (1 m)

0

0.075

Figure 4. Qualitative results on our evaluation set. Translation noise σT is applied on the x and y axes.

0.5 m voxel 1 m voxel

Figure 5. Reconstruction results using the sliding window method
(as in [38]) applied to accumulated noisy inputs. Simply process-
ing accumulated noisy inputs results in inaccurate meshes with
overly thick structures.

sults in real-time and makes it amenable to cost-efficient
low resolution sensors. Reconstruction comparisons with
extremely sparse input are provided in the supplementary.

We report the speed of decoding latent codes in series,
as shown in Tab. 4. In our implementation, we directly out-
put free space when a voxel has not received any input point
cloud. Thus, the decoding voxel / s can be faster than the re-
ported speed in Tab. 4 depending on the layout of the scene.
It can be accelerated further by processing voxels in a batch.
The encoding and decoding speeds can give an overall oper-

ational frame rate of 2.4− 2.6 FPS when querying 253 and
503 points/voxel for 0.5 m and 1.0 m voxels, respectively2.

Query points / voxel
25 3 50 3 60 3 100 3 110 3

Decoding
speed

Voxel / s 136.0 35.7 27.0 4.2 3.4
FPS (0.5 m voxel)3 5.0 1.3 1.0 - -
FPS (1.0 m voxel)3 12.6 3.3 2.5 0.4 0.3

Table 4. Decoding speed given different query point densities.

CPU-only configuration: To allow our system to be em-
ployed on a compute-constrained mobile device, such as a
Micro Aerial Vehicle (MAV), we demonstrate that it can run
in real-time using only a CPU. We use the 1 m configura-
tion, query dimension dq = dV , 253 query points per voxel,
and 5% of input sparsity. Additionally, we do not update a
latent code if its corresponding input volume receives less
than 5% of the input points. The reconstruction metrics and
inference speed evaluated on an Intel i7-9750H@2600GHz
CPU shown in Tab. 5 highlight that our method can be read-
ily employed in mobile robotics.

Encoding Decoding Accuracy Completeness Recall
4.7 FPS 15.6 voxel/s 2.1 FPS3 0.0257 m 0.0192 m 0.953

Table 5. CPU-only configuration runtime and evaluation metrics.

2Decoding is performed every frame, thus the minimum overall FPS.
3Average speed when decoding all updated voxels every frame.

Sampled accumulated inputs TSDF (0.02 m) Ours (0.5 m)

Figure 6. Qualitative results on ScanNet dataset. Red: Failed reconstruction. Yellow: Incomplete reconstruction.

4.4. ScanNet

To investigate the ability of our method to generalize
to out-of-domain data, we evaluate it on ScanNet [11],
an RGBD dataset of real-world indoor scenes captured by
a Structure sensor mounted on an iPad. Since no accu-
rate ground-truth reconstruction is provided, only qualita-
tive comparisons are presented in Fig. 6. Similar to the in-
domain evaluations, we observe high reconstruction qual-
ity and better object perseverance than TSDF, showing the
capability of our model to generalize to scenes with differ-
ent layouts and sensor characteristics. More results are pro-
vided in the supplementary materials.

5. Discussion

Reconstruction: From the experiments in Sec. 4, we can
see a contrasting behavior between our method and TSDF.
Given inputs subject to high state estimation errors, TSDF
tends to produce a reconstruction thinner than the ground
truth and fails to reconstruct objects with thin geometries.
In contrast, our method captures the overall statistics of the
input in a large spatial context and can better preserve ob-
ject existence. High recall shows that our method is able to
faithfully capture the underlying structure, albeit with occa-
sional thickening. However, this is preferable to vanishing
surfaces for safe navigation.

Fusion strategy: Through our experiments, we show
that our fusion strategy (Eq. 6) can combine multiple la-
tent codes of incomplete observations into a latent code of
a more complete observation. Our conjecture to this abil-
ity is that the sequence of 3D convolutions in our encoder
converts the input into a specific high-dimensional coordi-
nate in latent space, as frequently is seen in autoencoder net-
works. The transformation hθf in Eq. 6 then corrects the co-
ordinate given from simply averaging latent codes into the
desired coordinate of fused latent code. This ensures that
our fused data can be both efficiently compressed via aver-

aging and remain in the support domain of the pre-trained
shape representation networks.

Limitations: From Eq. 6, it is evident that the represented
shape of a voxel can be dominated by frequent repeated
measurements. To tackle this, the structure of our approach
is amenable to many approaches such as key-framing or
moving average integration, similar to [35], which gives
more weight to recent observations. However, we leave the
exploration of such methods for future work.

Reproducibility: Upon re-training our encoder, decoder,
and fusion network from scratch, we observe that the
threshold τocc that defines whether a query point is free has
to be re-adjusted. Also, we find that a different total loss on
convergence is observed during fusion training. This can
result from different latent space landscapes being reached
each time the encoder and decoder are trained from scratch.

6. Conclusion
We introduced a novel method for online volumetric

mapping based on neural implicit representations that scales
to arbitrary size environments and can incrementally update
its geometric information. We formulate a method to inte-
grate multiple neural implicit representations from sequen-
tial partial observations into a more complete representa-
tion. By fusing data in a formation of coarse voxels directly
in latent space, our method leverages shape priors and cap-
tures local geometric context over temporally independent
frames. We show in thorough experimental validation that
this approach enables robust mapping in the presence of
state estimation errors. Our system generalizes to a large
variety of configurations and low-resolution range sensors
and can operate in real-time even in CPU-only configura-
tions. We make our system available as open source.

Acknowledgements This work was supported by funding from
the Microsoft Swiss Joint Research Center and the European
Union’s Horizon 2020 research and innovation programme under
grant agreement No 101017008.

References
[1] Matan Atzmon and Yaron Lipman. Sal: Sign agnostic learn-

ing of shapes from raw data. In Proc. IEEE Conf. on Com-
puter Vision and Pattern Recognition (CVPR), 2020. 1

[2] Jonathan Bohren, Radu Bogdan Rusu, E Gil Jones, Ei-
tan Marder-Eppstein, Caroline Pantofaru, Melonee Wise,
Lorenz Mösenlechner, Wim Meeussen, and Stefan Holzer.
Towards autonomous robotic butlers: Lessons learned with
the pr2. In Proc. IEEE International Conf. on Robotics and
Automation (ICRA), 2011. 1

[3] Rohan Chabra, Jan Eric Lenssen, Eddy Ilg, Tanner Schmidt,
Julian Straub, Steven Lovegrove, and Richard Newcombe.
Deep local shapes: Learning local sdf priors for detailed 3d
reconstruction. In Proc. of the European Conf. on Computer
Vision (ECCV), 2020. 2

[4] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,
Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,
Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:
An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012, 2015. 3

[5] Julian Chibane, Thiemo Alldieck, and Gerard Pons-Moll.
Implicit functions in feature space for 3d shape reconstruc-
tion and completion. In Proc. IEEE Conf. on Computer Vi-
sion and Pattern Recognition (CVPR), 2020. 1, 2

[6] Julian Chibane, Aayush Bansal, Verica Lazova, and Gerard
Pons-Moll. Stereo radiance fields (srf): Learning view syn-
thesis for sparse views of novel scenes. In Proc. IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), 2021.
2

[7] Julian Chibane, Aymen Mir, and Gerard Pons-Moll. Neural
unsigned distance fields for implicit function learning. In Ad-
vances in Neural Information Processing Systems (NeurIPS),
2020. 2

[8] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin
Chen, and Silvio Savarese. 3d-r2n2: A unified approach for
single and multi-view 3d object reconstruction. In Proc. of
the European Conf. on Computer Vision (ECCV), 2016. 3

[9] Özgün Çiçek, Ahmed Abdulkadir, Soeren S Lienkamp,
Thomas Brox, and Olaf Ronneberger. 3D U-Net: learning
dense volumetric segmentation from sparse annotation. In
Medical Image Computing and Computer-Assisted Interven-
tion (MICCAI), 2016. 3

[10] Brian Curless and Marc Levoy. A volumetric method for
building complex models from range images. In Proceedings
of the 23rd annual conference on Computer graphics and
interactive techniques, 1996. 1, 2

[11] Angela Dai, Angel X Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Nießner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In
Proc. IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR), 2017. 8

[12] Angela Dai, Matthias Nießner, Michael Zollhöfer, Shahram
Izadi, and Christian Theobalt. Bundlefusion: Real-time
globally consistent 3d reconstruction using on-the-fly surface
reintegration. ACM Transactions on Graphics (ToG), 2017.
2

[13] Boyang Deng, John P Lewis, Timothy Jeruzalski, Gerard
Pons-Moll, Geoffrey Hinton, Mohammad Norouzi, and An-
drea Tagliasacchi. NASA neural articulated shape approxi-
mation. In Proc. of the European Conf. on Computer Vision
(ECCV), 2020. 2

[14] Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set
generation network for 3d object reconstruction from a single
image. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2017. 2

[15] Kyle Genova, Forrester Cole, Avneesh Sud, Aaron Sarna,
and Thomas Funkhouser. Local deep implicit functions for
3d shape. In Proc. IEEE Conf. on Computer Vision and Pat-
tern Recognition (CVPR), 2020. 2

[16] Kyle Genova, Forrester Cole, Daniel Vlasic, Aaron Sarna,
William T Freeman, and Thomas Funkhouser. Learning
shape templates with structured implicit functions. In Proc.
of the IEEE International Conf. on Computer Vision (ICCV),
2019. 2

[17] Georgia Gkioxari, Jitendra Malik, and Justin Johnson. Mesh
r-cnn. In Proc. of the IEEE International Conf. on Computer
Vision (ICCV), 2019. 2

[18] Thibault Groueix, Matthew Fisher, Vladimir G Kim,
Bryan C Russell, and Mathieu Aubry. A papier-mâché ap-
proach to learning 3d surface generation. In Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR),
2018. 2

[19] Christian Häne, Shubham Tulsiani, and Jitendra Malik. Hi-
erarchical surface prediction for 3d object reconstruction. In
Proc. of the International Conf. on 3D Vision (3DV), 2017. 2

[20] Armin Hornung, Kai M Wurm, Maren Bennewitz, Cyrill
Stachniss, and Wolfram Burgard. OctoMap: An efficient
probabilistic 3D mapping framework based on octrees. Au-
tonomous robots, 2013. 1, 2

[21] Jiahui Huang, Shi-Sheng Huang, Haoxuan Song, and Shi-
Min Hu. DI-Fusion: Online implicit 3d reconstruction with
deep priors. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2021. 3

[22] Shahram Izadi, David Kim, Otmar Hilliges, David
Molyneaux, Richard Newcombe, Pushmeet Kohli, Jamie
Shotton, Steve Hodges, Dustin Freeman, Andrew Davison,
et al. KinectFusion: real-time 3d reconstruction and interac-
tion using a moving depth camera. In Proc. of the 24th an-
nual ACM symposium on User interface software and tech-
nology, 2011. 2

[23] Chiyu Jiang, Avneesh Sud, Ameesh Makadia, Jingwei
Huang, Matthias Nießner, and Thomas Funkhouser. Local
implicit grid representations for 3d scenes. In Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR),
2020. 2, 3

[24] Angjoo Kanazawa, Michael J Black, David W Jacobs, and
Jitendra Malik. End-to-end recovery of human shape and
pose. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2018. 2

[25] Stefan Lionar, Daniil Emtsev, Dusan Svilarkovic, and
Songyou Peng. Dynamic plane convolutional occupancy net-
works. In Proc. IEEE Winter Conference on Applications of
Computer Vision (WACV), 2021. 1, 2

[26] Shichen Liu, Shunsuke Saito, Weikai Chen, and Hao Li.
Learning to infer implicit surfaces without 3d supervi-
sion. In Advances in Neural Information Processing Systems
(NeurIPS), 2019. 2

[27] Shaohui Liu, Yinda Zhang, Songyou Peng, Boxin Shi, Marc
Pollefeys, and Zhaopeng Cui. Dist: Rendering deep implicit
signed distance function with differentiable sphere tracing.
In Proc. IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR), 2020. 2

[28] William E Lorensen and Harvey E Cline. Marching cubes:
A high resolution 3d surface construction algorithm. ACM
SIGGRAPH Computer Graphics, 1987. 3

[29] Ricardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi,
Jonathan T Barron, Alexey Dosovitskiy, and Daniel Duck-
worth. Nerf in the wild: Neural radiance fields for uncon-
strained photo collections. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2021. 2

[30] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3d reconstruction in function space. In Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR),
2019. 2, 3

[31] Marko Mihajlovic, Yan Zhang, Michael J Black, and Siyu
Tang. Leap: Learning articulated occupancy of people. In
Proc. IEEE Conf. on Computer Vision and Pattern Recogni-
tion (CVPR), 2021. 2

[32] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
Representing scenes as neural radiance fields for view syn-
thesis. In Proc. of the European Conf. on Computer Vision
(ECCV), 2020. 2

[33] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and
Andreas Geiger. Differentiable volumetric rendering: Learn-
ing implicit 3d representations without 3d supervision. In
Proc. IEEE Conf. on Computer Vision and Pattern Recogni-
tion (CVPR), 2020. 2

[34] Matthias Nießner, Michael Zollhöfer, Shahram Izadi, and
Marc Stamminger. Real-time 3d reconstruction at scale us-
ing voxel hashing. ACM Transactions on Graphics (ToG),
2013. 2

[35] Helen Oleynikova, Zachary Taylor, Marius Fehr, Roland
Siegwart, and Juan Nieto. Voxblox: Incremental 3d eu-
clidean signed distance fields for on-board MAV planning.
In IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2017. 1, 2, 5, 6, 8

[36] Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. Colored
point cloud registration revisited. In Proc. of the IEEE In-
ternational Conf. on Computer Vision (ICCV), 2017. 3, 5,
6

[37] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. Deepsdf: Learning con-
tinuous signed distance functions for shape representation.
In Proc. IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR), 2019. 1, 2

[38] Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc
Pollefeys, and Andreas Geiger. Convolutional occupancy
networks. In Proc. of the European Conf. on Computer Vi-
sion (ECCV), 2020. 1, 2, 3, 6, 7

[39] Victor Adrian Prisacariu, Olaf Kähler, Stuart Golodetz,
Michael Sapienza, Tommaso Cavallari, Philip HS Torr, and
David W Murray. Infinitam v3: A framework for large-
scale 3d reconstruction with loop closure. arXiv preprint
arXiv:1708.00783, 2017. 2

[40] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and
Francesc Moreno-Noguer. D-nerf: Neural radiance fields for
dynamic scenes. In Proc. IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), 2021. 2

[41] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proc. IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), 2017. 3

[42] Victor Reijgwart, Alexander Millane, Helen Oleynikova,
Roland Siegwart, Cesar Cadena, and Juan Nieto. Voxgraph:
Globally consistent, volumetric mapping using signed dis-
tance function submaps. IEEE Robotics and Automation Let-
ters, 2019. 2

[43] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wet-
zstein. Scene representation networks: Continuous 3d-
structure-aware neural scene representations. In Advances
in Neural Information Processing Systems (NeurIPS), 2019.
2

[44] Edgar Sucar, Shikun Liu, Joseph Ortiz, and Andrew J Davi-
son. iMAP: Implicit mapping and positioning in real-time.
In Proc. of the IEEE International Conf. on Computer Vision
(ICCV), 2021. 3

[45] Sebastian Thrun et al. Robotic mapping: A survey. 2002. 1
[46] Emmanouil G Tsardoulias, A Iliakopoulou, Andreas Kar-

gakos, and Loukas Petrou. A review of global path planning
methods for occupancy grid maps regardless of obstacle den-
sity. Journal of Intelligent & Robotic Systems, 2016. 1

[47] Xiaogang Wang, Marcelo H Ang Jr, and Gim Hee Lee. Point
cloud completion by learning shape priors. In IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), 2020. 2

[48] Silvan Weder, Johannes Schonberger, Marc Pollefeys, and
Martin R Oswald. Routedfusion: Learning real-time depth
map fusion. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2020. 2

[49] Silvan Weder, Johannes L Schonberger, Marc Pollefeys, and
Martin R Oswald. NeuralFusion: Online depth fusion in la-
tent space. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2021. 2

[50] Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and
Josh Tenenbaum. Learning a probabilistic latent space of
object shapes via 3d generative-adversarial modeling. In Ad-
vances in Neural Information Processing Systems (NeurIPS),
2016. 2

[51] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d
shapenets: A deep representation for volumetric shapes. In
Proc. IEEE Conf. on Computer Vision and Pattern Recogni-
tion (CVPR), 2015. 2

[52] Qiangeng Xu, Weiyue Wang, Duygu Ceylan, Radomir
Mech, and Ulrich Neumann. DISN: Deep implicit sur-
face network for high-quality single-view 3d reconstruc-

tion. In Advances in Neural Information Processing Systems
(NeurIPS), 2019. 1

