arXiv:2103.14533v2 [cs.CV] 14 Oct 2021

3D Point Cloud Registration with Multi-Scale Architecture
and Unsupervised Transfer Learning

Sofiane Horache

Jean-Emmanuel Deschaud

Frangois Goulette
MINES ParisTech, PSL University, Centre for Robotics, 75006 Paris, France

firstname.surname @mines-paristech.fr

Abstract

We propose a method for generalizing deep learning
for 3D point cloud registration on new, totally different
datasets. It is based on two components, MS-SVConv and
UDGE. Using Multi-Scale Sparse Voxel Convolution, MS-
SVConv is a fast deep neural network that outputs the de-
scriptors from point clouds for 3D registration between two
scenes. UDGE is an algorithm for transferring deep net-
works on unknown datasets in a unsupervised way. The in-
terest of the proposed method appears while using the two
components, MS-SVConv and UDGE, together as a whole,
which leads to state-of-the-art results on real world reg-
istration datasets such as 3DMatch, ETH and TUM. The
code is publicly available at https://github.com/
humanposel/MS—-SVConv.

1. Introduction

With the increasing number of 3D sensors and 3D data
production, the task of consolidating overlapping point
clouds, which is called registration, has become a major
issue in many applications. Registration can be used on-
line (e.g., in a LIDAR SLAM pipeline for loop closure de-
tection) or offline (e.g., in 3D reconstructions of RGB-D
indoor scenes [8] or for outdoor LiDAR map building for
autonomous vehicles).

However, point cloud registration can be challenging
with real-world scans because of noise, incomplete 3D
scan, outliers, and so on. There are numerous existing ap-
proaches to this issue; however, recently, deep learning ap-
proaches have become very popular, especially for learn-
ing descriptors and for computing transformations. These
data-driven approaches, especially those that involve learn-
ing on large datasets with the ground truth pose as supervi-
sion, have been very effective at solving registration prob-
lems [53, 13, 19, 18, 3,4, 14, 11, 9].

However, acquiring the ground truth pose can be very

Supervised learning

Transfer

Figure 1: Summary of the proposed method. We can use
MS-SVConv for supervised training on a huge dataset, and
then we can transfer it in an unsupervised fashion on a
smaller dataset.

costly, and many applications have only small datasets. This
is why recent methods are focused on improving the gener-
alization capability of the networks. Therefore, we propose
Multi-scale Sparse Voxel Convolution (MS-SVConv), a U-
Net-based method to tackle the problem of registration (see
Figure 1 for a summary of the proposed method). Using
sparse convolutions (such as MinkowskiNet from Choy et
al. [11] or SPVNAS from Tang et al. [44]), MS-SVConv is
fast and efficient. However, contrary to other U-Net meth-
ods, such as FCGF [11], MS-SVConv can compute mean-
ingful descriptors that can generalize with new datasets.
Moreover, we also propose Unsupervised transfer learning

https://github.com/humanpose1/MS-SVConv
https://github.com/humanpose1/MS-SVConv

with Data GEneration (UDGE), so the network can gener-
alize on unknown and small datasets. With this new trans-
fer learning strategy, we show that we can pre-train MS-
SVConv on a synthetic dataset, and transfer it to a totally
different real-world dataset.

In other words, our contributions are the following:

e We propose a method for generalizing deep learning
for 3D point cloud registration on new, totally differ-
ent datasets, using transfer learning. It is based on
two components, MS-SVConv which is a shared multi-
scale architecture, and UDGE which is an unsuper-
vised transfer learning using data generation.

* We evaluate the interest of the proposed method on
real-world datasets such as 3DMatch, ETH, and TUM
datasets. We show that we can pre-train MS-SVConv
on a synthetic dataset, and transfer it to a totally differ-
ent real-world dataset.

MS-SVConv and UDGE, used together as a whole, show
the interest of the proposed method.

2. Related works

Many methods have been proposed to tackle rigid point
cloud registration. One of the most well-known algorithms
is the Iterative Closest Point (ICP) algorithm [5] due to its
simplicity, modularity, and effectiveness [38, 17, 6]. Many
subsequent variants of the ICP algorithm have been pro-
posed, (e.g., [38, 6]). However, one of the main drawbacks
of this algorithm is that it does not work for all initial trans-
formations (the convergence of ICP is local). In addition,
the algorithm does not work in every case (when the over-
lap between two point clouds is too small, or when there are
many outliers). Some methods have been proposed to solve
the global registration problem (4PCS [1], GoICP [50]).
On the other hand, researchers have developed many meth-
ods to compute handcrafted descriptors, such as Spin Im-
age [26], SHOT [40], or FPFH [39] on 3D point clouds. Al-
though Hana ef al. [22] completed a global review of these
descriptors, they do not work well for real-world scans,
as excessive noise or occlusion decreases the descriptors’
adaptability.

2.1. Deep learning on 3D point clouds

Unlike images, deep learning on 3D point clouds is chal-
lenging because point clouds are unstructured data. Nu-
merous methods have been suggested, such as Multi-View
CNN [43] and 3DCNN [31], but these methods require
a huge amount of memory. PointNet [35] and Point-
Net++ [36] catalyzed a revolution in deep learning in
point clouds and have made possible many new applications
[13, 3, 14, 55]. Recently, many works have tried to gen-
eralize convolution for sparse data, such as KPConv [45],

Minkowski [10], and RandLaNet [23]. Guo et al. [20]
conducted a comprehensive survey of deep learning on 3D
point clouds.

2.2. Deep learning for point cloud registration

Recently, registration methods based on deep learn-
ing have shown remarkable results on synthetic datasets,
such as ModelNet [48], and RGB-D datasets, such as
3DMatch [53]. We observe three trends for these methods:

* The end-to-end methods compute the transformation
directly thanks to a fully differentiable framework
(such as DCP [46] or PointnetLK [3]).

e Deep descriptors are computed locally on patches
(such as 3DSmoothNet [19] or DIP [33]). The trans-
formation is achieved by matching the descriptors.

* Deep descriptors are computed simultaneously on ev-
ery point through use of an architecture similar to U-
Net (such as FCGF [11] or D3Feat [4]). The transfor-
mation is also achieved by matching descriptors.

End-to-end methods: Many end-to-end methods have
been proposed to deal with the problem of registration, such
as PointNetLK [3], deep closest point [46], DeepVCP [30],
RPMnet [51], and PRNet [47]. Some end-to-end methods
are also unsupervised [47, 25]. However, most end-to-end
methods were tested only on ModelNet, which is a syn-
thetic dataset, and not a real dataset. Actually, Huang et
al. [25] tested their method on 7-Scene [41], and the re-
sults are promising. However, they have not evaluated their
method on 3DMatch dataset. Deep Global Registration [9]
is an end-to-end method that performs very well on a real
dataset and is built on FCGF [11] but did not demonstrate
an ability to generalize efficiently. According to Choy et
al. [9], Deep Closest Point [46], and PointNetLK [3] do not
work on datasets such as 3DMatch. Recently, PointNetLK
has been revisited [29] and has shown promising general-
ization results on 3DMatch.

Patch-based descriptor matching methods: Since
3DMatch [53] was introduced, many improvements have
been made to the patch-based descriptor matching method.
PPFNet [14] uses a PointNet architecture to compute
local descriptors, and with global pooling, can compute a
global descriptor to bring the global context of the scene.
PPF Foldnet [13] and Capsule Net [55] use an autoen-
coder to compute descriptors without supervision. With
3DSmoothNet [19], great improvements have been made
on the 3DMatch dataset [53], and 3DSmoothNet showed
great generalization capabilities on the ETH dataset [34].
3DSmoothNet first computes the local reference frame
to orient the patches and then, uses a 3D convolutional

neural network on them with a smooth density to compute
descriptors. Following the success of 3DSmoothNet,
MultiView [28], DIP [33], GeDI [32], and SpinNet [2]
also improved upon the generalization capabilities from the
3DMatch dataset [53] to the ETH dataset [34]. But even if
these methods are rotation invariant, patch-based methods
are very slow in inference. Therefore, in real-world
conditions, patch-based methods are inoperable, because of
patch extraction. Moreover, because each patch is treated
individually, their design is usually not flexible enough
to add new capabilities (keypoint detector, end-to-end
extension, feature pre-training for semantic segmentation).

U-Net based descriptor matching method: FCGF [11]
is one of the first U-Net methods that was applied to point
cloud registration; thanks to the architecture and the sparse
voxel convolutions, this method performs very well. It is
also much faster than patch-based methods in inference.
D3Feat [4] uses Kernel Point convolutions [45] and jointly
computes the detector and a descriptor. FCGF and D3Feat
show poor generalization capabilities. PREDATOR [24] is
composed of a Graph Neural Network and a cross atten-
tion module to compute meaningful descriptors, even if the
overlap between two scenes is low. These works reveal that
U-Net-based methods are more flexible than patch-based
methods. They can be coupled easily with a detector or with
an end-to-end method [9], and can also be used in multi-
scene registration methods [18]. The main problem with
these methods is that they have poor generalization capabil-
ities on unknown datasets. The proposed method, which is
mainly inspired by FCGF, maintains its advantages (speed,
efficiency, modularity) while showing much better general-
ization capabilities than FCGFE.

3. Proposed method

In this section, we describe the following: 1) the problem
of registration; 2) the proposed contribution, which uses a
multi-scale architecture to improve the U-Net; and 3) the
principle of UDGE for unsupervised transfer learning.

3.1. Problem statement

Let X = (21,...7n,) € RNX>3 and Vv =
(Y1,---yny) € RM*3 be two point clouds. The goal
of registration is to find the right transformation R €
SO(3),t € R3, which are the sets of 3D rotations and trans-
lations. In other words, the goal is to find the set of matches
M and the rotation and translation such that:

(R, ", M") =

arg min ||R$i+t*yj“2- 1

REeSO(3),teRrR3 (i,5)EM

Simultaneously, finding the right match and the right
transformation is difficult. This problem is divided into

two sub-problems. First, we must find correct matches be-
tween point clouds, and second, we compute the transfor-
mation using a robust estimator, such as RANSAC [15],
TEASER [49], or FGR [56]. In our work, we focus on us-
ing U-Net based methods to improve the computation of the
descriptors. For the robust transformation estimator, we use
TEASER [49], because it is faster than RANSAC [15].

U-Net-based methods: A U-Net architecture can be di-
vided into two parts with an encoder and a decoder; the
first part is created by down-sampling the point cloud and
computing intermediate features, while the second part is
up-sampled and fused with the features computed on the
encoder. Thus, a U-Net instantaneously computes descrip-
tors on all points of a point cloud. Let 1)y be the U-Net
neural network of parameter . As input, ¥y takes a point
cloud (3D coordinates) and input features associated with
each point (usually 1). Therefore, each pair of point clouds
(X € RNx>3 'y ¢ RNy *3) have associated input features
(f)((m) € RNxxdin gnd fUm) ¢ RNvxdin respectively)
with d;,, the dimension of the input feature. We use 1y to
compute output features Fy € RVx*d [y, ¢ RNy xd;

Fx = vg(X, fE),)
Fy = (Y, f¥), 3)

where d is the output dimension.

With this formulation, we can express many popu-
lar architectures for registration (such as FCGF [11] or
D3Feat [4]). Then, finding the right output descriptors is a
problem of metric learning. We attempt to compute descrip-
tors with minimal distance between positive matches and
maximum distance between negatives matches. For each
pair of point clouds (X, Y’), we minimize the hard negative
contrastive loss:

LO)= > A{llFx, — Fy, | —my]d 4)
(i,j)eMt
Zlm_ — i Fx. — Fy ||1? 5
+ Q[m w i, 1 Fx, — Fy, I3 &)
1 .
+ 5 m- min ||Fx, — Fy,[]3}, (6)

2 B E|(k,j)EM—

where [.]; = max(.,0), M™ is the set of positive matches
(ground truth matches), and M~ is the set of negative
matches. m+ is a hyper-parameter called the positive
margin, and m— is called the negative margin. We kept
m~+ = 0.1 and m— = 1.4 as in FCGF [10].

Although it is also possible to utilize triplet loss, em-
pirically contrastive loss has shown better results [11]. In
supervised training, we use the ground truth transformation
between pairs of point clouds to obtain positive and negative
matches.

Sparse convolution challenges: When coupled with the
RANSAC estimator, FCGF has shown state-of-the-art re-
sults on the 3DMatch dataset. This method can handle large
point clouds, is memory efficient, and is faster than most
deep methods. But when point clouds come from different
sensors or a different environment, FCGF cannot general-
ize (as noted by Bai et al. [4] and Poiesi et al. [33]). FCGF
uses sparse voxel convolutions, so has to voxelize the point
cloud with a fixed voxel size. Nevertheless, it seems that
sparse convolution can overfit on specific sampling. FCGF,
because of this, cannot be applied on a dataset where the
sampling is different. One solution is to downsample the
point cloud, but downsampling leads to a loss of detail and
to representations with fewer points. This can impair de-
scriptor matching and lead to points with different densities
appearing approximately similar. The problem is we also
lose details that could improve descriptor matching. More-
over, it is difficult to fix the side length of the voxel.

3.2. Multi-scale network, MS-SVConv

Downsampled point clouds have a homogeneous density
but fewer details, whereas highly dense point clouds contain
many details, but also marked variations in density across
the scene. Thus, we downsample the point cloud at different
scales and then apply the U-Net (we will call it a head) on
the downsampled point cloud. Finally, we fuse the features
computed by each head using a Multi Layer Perceptron
(MLP). An illustration of our multi-scale network is shown
in Figure 2. Let X be the input point cloud X € RVx*3
(and the associated input feature f)((m) € RNxxdin) Let s

be a scale and w(gs) a U-Net operating at the scale s with the
parameter 6:

S
Fx = MLP(@v§” (X, ™)),)
s=1
where @ means concatenation. We apply the same MLP
for each output of the U-Net.
The MLP will learn to select and filter outputs of each scale.
As input, we voxelize the point cloud by increasing the side
length of the voxel by two at each scale (performing a grid
subsampling). The number of occupied voxels will then be
different for each U-Net. We assign the same output de-
scriptor for all points of the original point cloud that fall
into the same voxel at a specific scale (called Rescale in
Figure 2).

In the U-Net architecture, there are multiple downsam-
pling operations that increase the receptive field. However,
a classical U-Net for a 3D point cloud with three layers of
downsampling brings a receptive field of eight times the
side length of the initial voxel. By using three scales of
point clouds, we are able to multiply the side length of the
initial voxel by 64, bringing more global contexts to com-
putation of the descriptors.

We use the same network for the different scales with
shared weights: this means that we keep the same number
of parameters as for one U-Net scale and add only the addi-
tional parameters of the final MLP.

Prior works have investigated multi-scale architectures
in 3D, but in different ways and contexts. Mu-net [27]
is an unshared sequential U-Net on dense voxel grid for
denoising. This method is different from our parallel
shared multi-scale U-Net with sparse convolution. MS-
DeepVoxScene [37] takes several neighborhoods (scales) as
input to classify only one point, and is used for semantic
segmentation of point clouds. However, in our case, we take
the whole point cloud sub-sampled at different scales. The
multi-scale network both improves the descriptors in super-
vised learning, and the capacity of U-Net architectures to
generalize.

3.3. Unsupervised transfer learning with UDGE

A supervised setting includes pairs of point clouds and
the relative pose between them. The two points clouds are
different because they come from different points of view
of the scene. The principle of Unsupervised transfer learn-
ing with Data GEneration (UDGE) is to use specific data
generation to create two partial point clouds from one point
cloud. We randomly crop the original data and then apply
periodic sampling to simulate partially overlapping views
from one scene. This method allows to generate two point
clouds, while knowing perfectly the positive and negative
matches. In the proposed method, we train in a supervised
fashion on a source dataset S and then use UDGE on a tar-
get dataset 7' by using, as initialization, weights trained
on S. We do not need the ground truth poses on target
dataset T', and we will show improvements after transfer
learning, even if the target dataset 7' is small. The work
closest to UDGE is from [52], but the authors performed
self-supervision without pre-training. We show that without
pre-training, self-supervision can work for large datasets but
not at all for small datasets. Additionally, the author used
only one point cloud as a pair, while we utilize specific pro-
cedures, like cropping and periodic sampling, to create two
partially overlapping point clouds.

Our data generation: Figure 3 shows how data is gener-
ated from one original scan. We distinguish between data
generation and data augmentation. Data generation con-
cerns the proposed process of making two partial scans from
a point cloud. Thus, the goal of data generation is to gen-
erate, without supervision, new data from a point cloud that
is in the same case as data from supervised learning. The
data generation parameters depend on the target dataset. In
contrast, data augmentation is used to artificially increase
the size of the dataset. In our case, we also perform data
augmentation with the two scans, in particular the classical

Nx3 Nx1 Nx3 Nxd

&
-7
Q
. .
‘Z = I: Shared
.2 :
2
05: N'x3 N'x1 N 3N xd
\
L -
5 N
f | —
i LN N Rescale

Nx3 Nxd

Nx3 Nxd

'\\ “/' N
\. e —
y) N x Sd
N 4

S times »

Figure 2: Architecture of the proposed Multi-Scale Sparse Voxel Convolution (MS-SVConv) for registration. The point cloud
is downsampled at each scale with a grid subsampling that increases the side length of the voxel by 2 each time.

1) Crop 2) Periodic sampling
Figure 3: The two data generation methods we use in our
unsupervised transfer learning.

data augmentation in point clouds that are random rotation
around all axes, random scale and noise (jitter). Data gener-
ation is already used on ModelNet to simulate partial views
of an object, but it is mainly used to test methods on partial
scans (see [51], for example). It is not used for training. In
our case, we apply our strategy on real unknown datasets
from RGB-D frames or LiDAR scans. Although a similar
work is undertaken in [54], they performed self-supervision
only for pre-training for semantic segmentation. In the case
of UDGE, we use data generation for unsupervised transfer
learning for point cloud registration and not as pre-training.

Crop: Similar to images, it is possible to select a local
zone of the point cloud and learn from it. To accomplish
this, we select a random point and a random 3D shape (it

can be a cube or a sphere). Points inside the shape are kept,
and points outside the shape are discarded. Selecting a local
zone is very useful for simulating pairs of partially overlap-
ping point clouds.

Periodic sampling: Real scans do not necessarily have
regular sampling because sampling depends on the point of
view. We propose a data generation technique to simulate
irregular sampling that is called periodic sampling (see in
Figure 3). The principle is to remove points periodically
with respect to a center chosen randomly. Let ¢ € R3 be a
random center. We can compute the mask M € {0,1}"of
the point cloud X € RY*3, m is a binary value that indi-
cates whether we keep x; or not. The proposed mask is:

2
mi = 1(|cos(F |lei —el)| > cos(am)), (8

where « € [0, 1] is a threshold that indicates the proportion
of points we want to keep. If o« = 0, every point is re-
moved, and if @ = 1, we keep every point. T is the periodic
sampling period. By changing the period 7" and the thresh-
old «,, we can simulate a wide range of different types of
sampling. Periodic sampling is especially useful for scenes,
where sampling is highly irregular.

4. Experiments

We evaluate our contributions on the 3DMatch [53],
ETH [34] and TUM [42] datasets. We first describe the
datasets used for the experiments, and we show the impact
of the multi-scale architecture on supervised learning. Fi-
nally, we show the results for generalization of MS-SVConv

thanks to multi-scale architecture and UDGE. The imple-
mentation details and more experiments on MS-SVConv
and UDGE can be found in the supplementary material.

4.1. Datasets

ModelNet [48] (source dataset): ModelNet40 [48] is a
CAD dataset containing around 10,000 objects with 40 ob-
ject categories. This dataset is used for classification, but
many deep learning methods use it for point cloud registra-
tion [47, 3, 46]. We use the training set of ModelNet40 for
pre-training. Our goal is to show that we can train on a syn-
thetic dataset, such as ModelNet [48], and can generalize
on a real-world dataset, such as the ETH dataset.

3DMatch [53] (source and target dataset):
3DMatch [53] is a dataset composed of RGB-D frames
from different indoor datasets related to 3D reconstruction,
such as BundleFusion [12], SUN3D [21], or 7-Scene [41].
The dataset consists of 62 scenes, and as in [11], we
split the dataset into training with 48 scenes, validation
with 6 scenes, and a test set of 8 scenes. To create point
clouds, we must first process the depth frames; to generate
these point clouds, we use TSDF fusion from 50 depth
images [14, 11, 4, 19]. The test set is provided by the
3DMatch website. 3DMatch [53] is used for supervised
training (pairs of fragments with 30% overlap as in [19]).
We also use 3DMatch as the target dataset for UDGE with
pre-training on ModelNet.

ETH Dataset [34] (target dataset): The ETH
dataset [34] is an outdoor and indoor 3D point cloud
dataset acquired with a 2D LiDAR: it is composed of
eight scenes, six outdoors and two indoors. This dataset
is considered to be difficult to work with because of com-
plications related to noise and irregular density. We will
make a difference between the ETH 8-scenes, following the
rigorous protocol described by Fontana et al. [16] and the
ETH 4-scenes, following the Gojcic et al.’s benchmark [19]
and mainly followed in previous published works such
as [4, 2, 33, 19, 32].

TUM dataset [42] (target dataset): TUM is a RGB-D
dataset [42] mainly used for RGB-D SLAM or odometry.
We use a single frame as point cloud, following the protocol
of Fontana et al. [16]. This dataset is also used to evaluate
the proposed unsupervised transfer learning method.

4.2. Metrics

To evaluate the method, we use two metrics: the Fea-
ture Match Recall (FMR) and the Scaled Registration Error
(SRE).

Let (X;,Y;) be a pair of scenes. We call M(X,,Y;) the
matches between X; and Y;, | M| the number of matches,

and (R ¢(9%)) the ground truth rotation and translation.
The hit ratio is:

H(X:,Y) = >

™M L(| Rz 4119 —y|| < 7).
k,lEM(X;,Y5)

)
The Feature Match Recall (FMR) is then defined as
1 N
FMR = N;MH(XZ-,YZ-) > 1), (10)

where N is the number of pairs of scenes. As in previ-
ous works [19, 4, 11, 33], we assign ; = 0.1 m and
75 = 0.05 by default. Similar to [19, 4, 2, 33, 28], we
perform a symmetric test to filter the matches before eval-
uation. This metric allows evaluating descriptor matching.
Although it is useful for comparison of different descriptor-
matching methods, we cannot use it to compare different
registration algorithms (and therefore, we cannot use it to
evaluate classical registration algorithms, such as ICP). To
measure the registration error, we use the error defined by
Fontana et al. [16]. We call it the Scaled Registration Error
(SRE). Suppose we have a point cloud X € Rx*3 and
(R +(91)) is the ground truth transformation between X
and Y. We want to evaluate our algorithm, which produces
the transformation (R*,¢*). The SRE for a pair X, Y is
defined as:

Nx

1 @05, 149D _ (R*z; 1 t*
SREG,)= L S MR+ 100) — (Ras + 1))
Nx 2 1I(

Rt g, + t(9D)) — (Rat) g 4 t(at))||

an

z = sz (12)

The SRE depends on X and Y, because we estimate R* and
t* from X and Y. For every pair of scans in a dataset with
N pairs, we compute the median of the SRE:

SRE = median;—_ y(SRE(X;,Y;)). (13)

The mean is sensitive to outlier results and is not represen-
tative of the results, as explained in [16].

4.3. Evaluation of supervised learning

We evaluate the impact of MS-SVConv on supervised
learning to see the influence of the multi-scale architec-
ture. Table 1 shows the results on 3DMatch. Although
the 3DMatch benchmark is very competitive, MS-SVConv
outperforms all published methods. If we compare MS-
SVConv with the best published method (MultiView [28]),
we have an augmentation of +3% on the Feature Match Re-
call (FMR) with 75 = 0.2. Table 1 shows that MS-SVConv
with three heads is much better than with a single head (a
single scale), which demonstrates the interest of multi-scale
methods for supervised learning. MS-SVConv with one
head and FCGF are conceptually similar but MS-SVConv
has a different implementation, see supplementary material.
Moreover, contrary to other methods, FCGF does not filter

Supervised learning on 3DMatch

FMR (%) FMR (%)
Methods 75 =0.05 75 =0.2
SHOT [40] 23.8 -
FPFH [39] 35.9 -
3DMatch [53] 59.6 -
PPFNet [14] 62.3 -
3DSmoothNet [19] 94.7 72.9
DIP [33] 94.8 -
FCGF [11] 95.2 67.4
FCGF* [11] 97.5 87.3
D3Feat [4] 95.8 75.8
Multiview [28] 97.5 86.9
SpinNet [2] 97.6 85.7
Predator [24] 96.6 -
GeDI [32] 97.9 -
MS-SVConv (1 head) 97.6 87.2
MS-SVConv (3 heads) 98.4 89.9

Table 1: Feature Match Recall (FMR) on 3DMatch for two
hit ratio parameters 7. Results from published methods
are taken from the papers. FCGF* means that we evaluate
ourselves the original code with a symmetric test, before
computing the FMR.

matches with a symmetric test. If we filter matches with a
symmetric test, results of FCGF and MS-SVConv with one
head are similar (see Table 1).

4.4. Evaluation of UDGE

Table 2 shows the results on the ETH dataset [34] with
and without UDGE after pre-training on 3DMatch. ETH
is a challenging dataset because of the density variation
and missing areas. Without UDGE, MS-SVConv with one
head has average results on ETH of only 34.9% on the
ETH 4-scenes and 56.4% FMR on ETH §-scenes. MS-
SVConv with three heads has +36.9% FMR on ETH 4-
scenes and +20.4% FMR improvement on ETH 8-scenes
without UDGE, thanks to the multi-scale architecture. This
demonstrates the capability of multi-scale architecture to
improve the generalization capacity of U-Net, and proves
useful for registration in online settings.

With UDGE, MS-SVConv(3) gets state-of-the-art results
with 98.9% FMR on ETH 4-scenes and 93.6% FMR on
ETH 8-scenes like the best patch-based method DIP [33]
while 20 times faster. There is a synergy between multi-
scale and UDGE, with +10.9% and +6.1% improvement of
the FMR between one and three heads.

Adding heads increase the generalization capability, but
the training time and the inference time are multiplied by
2.5 (from 0.16 s to 0.40 s for the average time of descriptor
extraction). Nonetheless, the proposed network is still much
faster than any other deep method we tested.

Unsupervised learning on ETH dataset

ETH ETH
4-scenes 8-scenes

FMR (%) | FMR (%) SRE Time (s)

Methods

Classical method
FPFH [39] 221 | 075 851 071

Patch based deep methods without UDGE

3DSmoothNet [19] 79.0 - - -
Multiview [28] 92.3 42.6 440 56.0
DIP [33] 92.8 93.9 6.9 8.27
GeDI [32] 98.2 - - -
U-Net based deep methods without UDGE
D3Feat [4] 61.6 64.5 95.0 043
MS-SVConv(1) 349 56.4 151.0 0.24
MS-SVConv(3) 71.8 76.8 822 052
U-Net based deep methods with UDGE
MS-SVConv(1) 88.0 87.5 440 0.16
MS-SVConv(3) 98.9 93.6 6.9 0.40

Table 2: Feature Match Recall (FMR) and median Scaled
Registration Error (SRE) x1000 on the ETH dataset with
deep methods trained on 3DMatch. ETH 4-scenes follows
Gojcic et al.’s benchmark [19], and results from other meth-
ods are published results (only FMR available). ETH 8-
scenes follows Fontana et al. [16] protocol, and all methods
are computed using codes available online (FMR, SRE, and
Time). MS-SVConv(1) means MS-SVConv with one head;
MS-SVConv(3) means MS-SVConv with three heads. We
report only the average time of descriptor extraction.

Influence of the source dataset S: Surprisingly, thanks
to the proposed multi-scale architecture and the data gener-
ation for transfer learning, ModelNet pre-training (48 h in-
stead of three weeks for training on 3DMatch) is enough to
obtain very good results with the ETH dataset (see Table 4).
This shows that even if the source dataset and the target
dataset are very different, MS-SVConv will still work.

Pre-training in a supervised fashion is essential. We can
see in Table 5 that, with no pre-training, UDGE’s results are
very poor, especially on small datasets like ETH and TUM.
Decent results (60.3% FMR) are still produced when the
dataset is much larger like 3DMatch. However, supervised
pre-training on ModelNet is enough to have state-of-the-art
results thanks to UDGE and without any ground truth for
any of the target datasets (ETH, TUM, or 3DMatch). It
shows that UDGE can bring good results even if the target
dataset is small.

Does UDGE allow for generalization on unseen scenes?
In all experiments, UDGE involves taking the test set and
artificially creating point cloud pairs to fit the network to

Unsupervised learning on ETH dataset

‘ Scenes used for UDGE

Scenes for testing
Wood Sum. | Average

Methods Haupt. Stairs Plain Apart. | Gaz. Sum. Gaz. Wint. Wood Aut.
MS-SVConv(1) 53 93 76 100 85 99 84 89 84.9
MS-SVConv(3) 72 99 88 100 96 100 99 99 94.1

Table 3: Feature Match Recall (FMR) with 72 = 0.05 per scene on the ETH 8-scenes dataset [16].

MS-SVConv was

pre-trained on ModelNet, and data generation for UDGE comes only from Hauptgebaude, Stairs, Plain and Apartment.

Unsupervised learning on ETH dataset

FMR (%) FMR (%)
Source (without UDGE) (with UDGE)
ModelNet 74.1 934
3DMatch 76.8 93.6

Table 4: Influence of source dataset S for the target ETH
8-scenes dataset with MS-SVConv(3).

Target ETH TUM 3DMatch
Source
] 0.0 16.0 60.3
ModelNet 93.4 100 96.5
3DMatch 93.6 99.7 97.8

Table 5: UDGE on the ETH, TUM, and 3DMatch datasets
with no pre-training ((}) or with pre-training on ModelNet
or pre-training on 3DMatch. The results are Feature Match
Recall in % with MS-SVConv(3).

the new dataset. Even if we use the test set for the trans-
fer, the proposed protocol is valid because UDGE does not
use the ground truth poses of the test set. But to what
extent will the transfered descriptors generalize on unseen
scenes? To see if the results remain similar, we split the
ETH dataset in two: After pre-training on ModelNet, we
apply UDGE on MS-SVConv with four scenes from ETH
dataset (Plain, Stairs, Hauptgebaude and Apartment) and
we evaluate it on the four others (Gazebo Summer, Gazebo
Winter, Wood Autumn, and Wood Summer). We use the
same hyper-parameters as in the previous training (see the
section Implementation Details in supplementary material),
except that the number of epochs is 400 instead of 200. Ta-
ble 3 shows that even if MS-SVConv has never seen Gazebo
and Wood, the method can still generalize on these scenes.

Influence of the proposed data generation: We per-
formed experiments on the ETH dataset to see the influ-
ence of the proposed data generation of UDGE. After pre-
training MS-SVConv(3) on ModelNet, we tried UDGE on
the ETH dataset without cropping or using periodic sam-

Crop Periodic Sampling FMR (%)

88.4
v 91.4
v v 93.4

Table 6: Influence of the proposed data generation in
UDGE: MS-SVConv(3) is pre-trained on ModelNet and
UDGE is applied on the ETH 8-scenes dataset.

pling (using the same point cloud for pairs as in [52]). Ta-
ble 6 shows that cropping is important in data generation.
If we do not perform this operation, the performance drops
from 91.4% to 88.4% on the FMR. Periodic sampling also
brings improvements. This experiment highlights that the
data generation method in UDGE improves the registration
results.

5. Conclusion

We presented MS-SVConv, a multi-scale U-Net based
method for descriptor matching in point cloud registration.
We also presented UDGE, a simple yet efficient method for
generalizing on unknown scenes. The multi-scale architec-
ture leads to gain state-of-the-art results on 3DMatch for
supervised learning. With UDGE, it is possible to transfer
descriptors for registration on an unknown dataset without
any supervision. Additionally, simply by pre-training on
a synthetic dataset like ModelNet, we obtain state-of-the-
art results on the ETH, TUM, and 3DMatch datasets with
UDGE. In contrast to patch-based methods, MS-SVConv
retains the simplicity, speed, efficiency, and modularity of
U-Net-based methods.

Acknowledgments This work was granted under the
funding of the Idex PSL with the reference ANR-10-IDEX-
0001-02 PSL. This work was granted access to the HPC re-
sources of IDRIS under the allocation 2020-AD011012181
made by GENCI.

References

[1] Dror Aiger, Niloy J. Mitra, and Daniel Cohen-Or. 4-points
congruent sets for robust pairwise surface registration. ACM

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

(14]

Trans. Graph., 27(3):1-10, Aug. 2008. 2

Sheng Ao, Qingyong Hu, Bo Yang, Andrew Markham, and
Yulan Guo. SpinNet: Learning a General Surface Descrip-
tor for 3D Point Cloud Registration. arXiv e-prints, page
arXiv:2011.12149, Nov. 2020. 3, 6,7, 13, 14, 17, 18
Yasuhiro Aoki, Hunter Goforth, Rangaprasad Arun Srivat-
san, and Simon Lucey. Pointnetlk: Robust and efficient point
cloud registration using pointnet. In 2019 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 7156-7165,2019. 1,2, 6

Xuyang Bai, Zixin Luo, Lei Zhou, Hongbo Fu, Long Quan,
and Chiew-Lan Tai. D3feat: Joint learning of dense detec-
tion and description of 3d local features. In 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 6358-6366, 2020. 1, 2, 3, 4, 6, 7, 13, 14,
16, 17, 18

Paul J. Besl and Neil D. McKay. A method for registration
of 3-d shapes. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 14(2):239-256, 1992. 2

Sofien Bouaziz, Andrea Tagliasacchi, and Mark Pauly.
Sparse iterative closest point. Computer Graphics Forum,
32(5):113-123, 2013. 2

Thomas Chaton, Nicolas Chaulet, Sofiane Horache, and Loic
Landrieu. Torch-points3d: A modular multi-task framework
for reproducible deep learning on 3d point clouds. In 2020
International Conference on 3D Vision (3DV), pages 1-10,
2020. 15

Sungjoon Choi, Qian-Yu Zhou, and Vladlen Koltun. Robust
reconstruction of indoor scenes. In 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
5556-5565, 2015. 1

Christopher Choy, Wei Dong, and Vladlen Koltun. Deep
global registration. In 2020 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 2511—
2520, 2020. 1,2, 3

Christopher Choy, JunYoung Gwak, and Silvio Savarese.
4d spatio-temporal convnets: Minkowski convolutional neu-
ral networks. In 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 3070-3079,
2019. 2,3, 16

Christopher Choy, Jaesik Park, and Vladlen Koltun. Fully
convolutional geometric features. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
(ICCV), October 2019. 1,2,3,6,7, 13, 14,17, 18

Angela Dai, Matthias Nieiner, Michael Zollofer, Shahram
Izadi, and Christian Theobalt. Bundlefusion: Real-time
globally consistent 3d reconstruction using on-the-fly surface
re-integration. ACM Transactions on Graphics 2017 (TOG),
2017. 6

Haowen Deng, Tolga Birdal, and Slobodan Ilic. Ppf-foldnet:
Unsupervised learning of rotation invariant 3d local descrip-
tors. In Vittorio Ferrari, Martial Hebert, Cristian Sminchis-
escu, and Yair Weiss, editors, Computer Vision — ECCV
2018, pages 620—638, Cham, 2018. Springer International
Publishing. 1, 2

Haowen Deng, Tolga Birdal, and Slobodan Ilic. Ppfnet:
Global context aware local features for robust 3d point

[15]

[16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

(24]

[25]

[26]

matching. In 2018 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 195-205, 2018. 1, 2, 6,
-

Martin A. Fischler and Robert C. Bolles. Random sample
consensus: A paradigm for model fitting with applications to
image analysis and automated cartography. Commun. ACM,
24(6):381-395, June 1981. 3

Simone Fontana, Daniele Cattaneo, Augusto L. Ballardini,
Matteo Vaghi, and Domenico G. Sorrenti. A benchmark
for point clouds registration algorithms. Robotics and Au-
tonomous Systems, 140:103734, 2021. 6,7, 8, 16, 17
Natasha Gelfand, Leslie Ikemoto, Szymon Rusinkiewicz,
and Marc Levoy. Geometrically stable sampling for the icp
algorithm. In Fourth International Conference on 3-D Dig-
ital Imaging and Modeling (3DIM), pages 260-267, 2003.
2

Zan Gojcic, Caifa Zhou, Jan D. Wegner, Leonidas J. Guibas,
and Tolga Birdal. Learning multiview 3d point cloud regis-
tration. In 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 1756-1766, 2020.
1,3

Zan Gojcic, Caifa Zhou, Jan D. Wegner, and Andreas
Wieser. The perfect match: 3d point cloud matching with
smoothed densities. In 2019 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 5540-
5549, 2019. 1,2,6,7, 13,14, 17, 18

Y. Guo, H. Wang, Q. Hu, H. Liu, L. Liu, and M. Bennamoun.
Deep learning for 3d point clouds: A survey. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, pages
1-1, 2020. 2

Maciej Halber and Thomas Funkhouser. Fine-to-coarse
global registration of rgb-d scans. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
6660-6669, 2017. 6

Xian-Feng Han, Jesse Sheng Jin, Juan Xie, Ming-Jie Wang,
and Wei Jiang. A comprehensive review of 3d point cloud
descriptors. arXiv:1802.02297 [cs], Feb. 2018. 2

Qingyong Hu, Bo Yang, Linhai Xie, Stefano Rosa, Yulan
Guo, Zhihua Wang, Niki Trigoni, and Andrew Markham.
Randla-net: Efficient semantic segmentation of large-scale
point clouds. In 2020 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 11105—
11114, 2020. 2

Shengyu Huang, Zan Gojcic, Mikhail Usvyatsov, Andreas
Wieser, and Konrad Schindler. Predator: Registration of
3d point clouds with low overlap. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 4267-4276, June 2021. 3,7, 13
Xiaoshui Huang, Guofeng Mei, and Jian Zhang. Feature-
metric registration: A fast semi-supervised approach for ro-
bust point cloud registration without correspondences. In
2020 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 11363-11371, 2020. 2
Andrew E. Johnson and Martial Hebert. Using spin images
for efficient object recognition in cluttered 3d scenes. /EEE
Transactions on Pattern Analysis and Machine Intelligence,
21(5):433-449, 1999. 2

[27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

[37]

(38]

(39]

Sehyung Lee, Makiko Negishi, Hidetoshi Urakubo, Haruo
Kasai, and Shin Ishii. Mu-net: Multi-scale u-net for two-
photon microscopy image denoising and restoration. Neural
Networks, 125:92-103, 2020. 4

Lei Li, Siyu Zhu, Hongbo Fu, Ping Tan, and Chiew-Lan Tai.
End-to-end learning local multi-view descriptors for 3d point
clouds. In 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 1916-1925, 2020.
3,6,7, 14,16, 17, 18

Xuegqian Li, Jhony Kaesemodel Pontes, and Simon Lucey.
Pointnetlk revisited. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 12763-12772, June 2021. 2

Weixin Lu, Guowei Wan, Yao Zhou, Xiangyu Fu, Pengfei
Yuan, and Shiyu Song. Deepvcp: An end-to-end deep neu-
ral network for point cloud registration. In 2019 IEEE/CVF
International Conference on Computer Vision (ICCV), pages
12-21,2019. 2

Daniel Maturana and Sebastian Scherer. Voxnet: A 3d con-
volutional neural network for real-time object recognition.
In 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 922-928, 2015. 2

Fabio Poiesi and Davide Boscaini. Generalisable and dis-
tinctive 3D local deep descriptors for point cloud registra-
tion. arXiv e-prints, page arXiv:2105.10382, May 2021. 3,
6,7,13,14, 18

Fabio Poiesi and Davide Poiesi. Distinctive 3d local deep
descriptors. In IEEE Proc. of Int’l Conference on Pattern
Recognition (ICPR), Milan, IT, 2021. 2, 3, 4, 6, 7, 14, 16,
17, 18

Francois Pomerleau, Ming Liu, Francis Colas, and Roland
Siegwart. Challenging data sets for point cloud registration
algorithms. The International Journal of Robotics Research,
31(14):1705-1711, Dec. 2012. 2,3, 5,6, 7

Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 77-85, 2017.
2

Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas.
Pointnet++: Deep hierarchical feature learning on point sets
in a metric space. In Proceedings of the 31st Interna-
tional Conference on Neural Information Processing Sys-
tems, NIPS’17, page 5105-5114, Red Hook, NY, USA,
2017. 2

Xavier Roynard, Jean-Emmanuel Deschaud, and Frangois
Goulette. Classification of Point Cloud Scenes with
Multiscale Voxel Deep Network. arXiv e-prints, page
arXiv:1804.03583, Apr. 2018. 4

Szymon Rusinkiewicz and Marc Levoy. Efficient variants of
the icp algorithm. In Proceedings Third International Con-
ference on 3-D Digital Imaging and Modeling, pages 145—
152, 2001. 2

Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. Fast
point feature histograms (fpfh) for 3d registration. In 2009
IEEE International Conference on Robotics and Automation,
pages 3212-3217, 2009. 2,7, 16, 17, 18

10

(40]

(41]

(42]

[43]

[44]

[45]

[46]

(47]

(48]

[49]

[50]

[51]

(52]

(53]

Samuele Salti, Federico Tombari, and Luigi Di Stefano.
Shot: Unique signatures of histograms for surface and tex-
ture description. Computer Vision and Image Understand-
ing, 125:251-264, 2014. 2,7, 18

Jamie Shotton, Ben Glocker, Christopher Zach, Shahram
Izadi, Antonio Criminisi, and Andrew Fitzgibbon. Scene co-
ordinate regression forests for camera relocalization in rgb-d
images. In Proc. Computer Vision and Pattern Recognition
(CVPR). IEEE, June 2013. 2, 6

Jirgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram
Burgard, and Daniel Cremers. A benchmark for the eval-
uation of rgb-d slam systems. In 2012 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pages
573-580,2012. 5,6

Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik
Learned-Miller. Multi-view convolutional neural networks
for 3d shape recognition. In 2015 IEEE International Con-
ference on Computer Vision (ICCV), pages 945-953, 2015.
2

Haotian Tang, Zhijian Liu, Shengyu Zhao, Yujun Lin, Jin
Lin, Hanrui Wang, and Song Han. Searching efficient 3d ar-
chitectures with sparse point-voxel convolution. In European
Conference on Computer Vision (ECCV), 2020. 1, 16
Hugues Thomas, Charles R. Qi, Jean-Emmanuel Deschaud,
Beatriz Marcotegui, Frangois Goulette, and Leonidas J.
Guibas. Kpconv: Flexible and deformable convolution for
point clouds. In 2019 IEEE/CVF International Conference
on Computer Vision (ICCV), pages 6410-6419, 2019. 2, 3
Yue Wang and Justin M. Solomon. Deep closest point:
Learning representations for point cloud registration. In
2019 IEEE/CVF International Conference on Computer Vi-
sion (ICCV), pages 3522-3531, 2019. 2, 6

Yue Wang and Justin M. Solomon. Prnet: Self-supervised
learning for partial-to-partial registration. In 33rd Confer-
ence on Neural Information Processing Systems, 2019. 2,
6

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d
shapenets: A deep representation for volumetric shapes.
In 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1912-1920, 2015. 2, 6

Heng Yang, Jingnan Shi, and Luca Carlone. Teaser: Fast
and certifiable point cloud registration. [EEE Transactions
on Robotics, pages 1-20, 2020. 3, 16

Jiaolong Yang, Hongdong Li, Dylan Campbell, and Yunde
Jia. Go-icp: A globally optimal solution to 3d icp point-
set registration. /EEFE Transactions on Pattern Analysis and
Machine Intelligence, 38(11):2241-2254, 2016. 2

Zi Jian Yew and Gim Hee Lee. Rpm-net: Robust point
matching using learned features. In 2020 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 11821-11830, 2020. 2, 5

Yijun Yuan, Jiawei Hou, Andreas Niichter, and Séren Schw-
ertfeger. Self-supervised point set local descriptors for point
cloud registration. Sensors, 21(2), 2021. 4, 8

Andy Zeng, Shuran Song, Matthias Niefiner, Matthew
Fisher, Jiangxiong Xiao, and Thomas Funkhouser. 3dmatch:

[54]

[55]

[56]

[57]

Learning local geometric descriptors from rgb-d reconstruc-
tions. In 2017 IEEE Conference on Computer Vision and
Fattern Recognition (CVPR), pages 199-208, 2017. 1, 2, 3,
5,6,7

Zaiwei Zhang, Rohit Girdhar, Armand Joulin, and Ishan
Misra. Self-Supervised Pretraining of 3D Features on any
Point-Cloud. arXiv e-prints, page arXiv:2101.02691, Jan.
2021. 5

Yongheng Zhao, Tolga Birdal, Haowen Deng, and Federico
Tombari. 3d point capsule networks. In 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1009-1018, 2019. 2

Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Fast global
registration. In Bastian Leibe, Jiri Matas, Nicu Sebe, and
Max Welling, editors, Computer Vision — ECCV 2016, pages
766-782, Cham, 2016. Springer International Publishing. 3
Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D:
A Modern Library for 3D Data Processing. arXiv e-prints,
page arXiv:1801.09847, Jan. 2018. 17

11

Supplementary material: 3D Point Cloud Registration with Multi-Scale
Architecture and Unsupervised Transfer Learning

Sofiane Horache

We present additional analysis of the method presented
in the main article with justifications of the design choices
(hyper-parameters of the U-Net network, influence of the
number of heads, importance of shared weights) as well as
a more in-depth analysis of the results on the 3DMatch and
ETH datasets. The first section describes the experiments
on MS-SVConv, and the multi-scale architecture in the
supervised case. The second section focuses on exper-
iments on UDGE, and the synergy between UDGE and
MS-SVConv. The third section specifies implementation
and protocol details. Finally, we show qualitative results
on the last section (with images) of the registration on the
3DMatch, the ETH, and the TUM datasets.

A. More experiments on supervised learning
with MS-SVConv

In this section, we present more experiments to show
that MS-SVConv with three heads has great generaliza-
tion capabilities in comparison with MS-SVConv with one
head. We show that a simple pre-training on ModelNet can
bring significant results. We also present an experiment to
show that MS-SVConv is robust to random rotations. We
also show that even if the number of interest points for
the matching is low, MS-SVConv have great results on the
3DMatch dataset. Finally, we show that MS-SVConv works
very well on scenes with low overlap. The last subsection
shows details of results of the 3DMatch dataset

A.1. Generalization capability of MS-SVConv with-
out UDGE

Table 7 shows the Feature Match Recall without UDGE
on ETH 8-senes, TUM and 3DMatch datasets after having
trained our models on the 3DMatch dataset (Table 8 when
we train on the ModelNet dataset). These tables show that
multi-scale improves generalization capabilities. Moreover,
when the training set is the ModelNet dataset, Table 8 shows
that multi-scale brings huge improvement (up to +71%) be-

Jean-Emmanuel Deschaud
Frangois Goulette
MINES ParisTech, PSL University, Centre for Robotics, 75006 Paris, France

firstname.surname @mines-paristech.fr

12

Target ETH TUM 3DMatch
Architecture
MS-SVConv(1) 564 99.0 97.6
MS-SVConv(3) 76.8 100 98.4

Table 7: Feature Match Recall (75 = 0.05) of MS-SVConv
trained on the 3DMatch dataset with a voxel size of 2 cm
and evaluated on ETH 8-scenes, TUM and 3DMatch with-
out UDGE.

Target ETH TUM 3DMatch
Architecture
MS-SVConv(1) 374 283 29.2
MS-SVConv(3) 741 99.3 85.0

Table 8: Feature Match Recall (75 = 0.05) of MS-SVConv
trained on the ModelNet dataset with a voxel size of 2 cm
and evaluated on ETH 8-scenes, TUM and 3DMatch with-
out UDGE.

tween MS-SVConv with three heads and our U-Net with
one head. With the proposed multi-scale sparse voxel con-
volutions, ModelNet as a pre-training set is enough to com-
pute meaningful descriptors.

A.2. Robustness to random rotations

w/o Rotation ~ w Rotation
Architecture
MS-SVConv(1) 87.2 87.0
MS-SVConv(3) 89.9 89.7

Table 9: Feature Match Recall on 3DMatch (7, = 0.2) in
supervised learning with and without random rotations in
the test set.

U-Net based methods with sparse voxel convolutions are

often considered non-robust to random rotations. It is true
that they are not invariant by rotation by design, but become
robust thanks to data augmentation. In all of our training,
we added data augmentation with random rotations in all
directions. To test the final robustness, we added large ran-
dom rotations in the 3DMatch test set. Table 9 shows that
the results are almost equivalent on the 3DMatch dataset
with or without rotation.

A.3. Influence of the number of points

For all the previous experiments on the 3DMatch and
the ETH dataset, we sample randomly 5000 points before
matching. To show that MS-SVConv computes meaning-
ful descriptors for each points, we tried to sample different
number of points. Table 10 shows that even if we sample
250 points, we have a FMR of 96.3 so a loss of 2.1%. Ex-
cept the patch-based mathod GeDI, all other methods have
a more significant drop of result when the number of point
decreases. It shows that MS-SVConv computes more mean-
ingful descriptors at each points, thanks to the multi-scale
computation that brings more contexts.

Number of points 5000 2500 1000 500 250 Av.
Perfect Match [19] 94.7 94.2 926 90.1 829 909
FCGF [11] 952 95.5 946 930 899 936
D3Feat(rand) [4] 95.3 95.1 942 936 908 93.8
D3Feat(pred) [4] 95.8 95.6 946 943 933 947
SpinNet [2] 97.6 97.5 973 963 943 96.6
GeDI [32] 97.9 97.7 976 972 973 975
MS-SVConv(3) 98.4 97.9 970 979 9.3 975

Table 10: Influence of the number of points for supervised
learning on the 3DMatch dataset (FMR with 79 = 0.05).

A.4. Results on the 3DLoMatch dataset

3DLoMatch [24] is a dataset containing the previously
ignored scan pairs of 3DMatch that have low 10-30% over-
lap. We compare MS-SVConv with Predator [24] on the
3DMatch and 3DLoMatch dataset. Predator is a very so-
phisticated method that use graph convolutional neural net-
work and deep attention module after the encoder to com-
pute meaningful descriptors even when the overlap is very
low. On the contrary, MS-SVConv uses a simple multi-scale
architecture. We compare MS-SVConv(3) on 3DMatch and
3DLoMatch. Table 11 shows that MS-SVConv outperforms
Predator on 3DMatch and 3DLoMatch (please, note that
contrary to Predator, MS-SVConv does not use a detector
to select keypoints, but take random points).

A.5. 3DMatch results details

We present in Table 12 and Table 13 the details of results
of 3DMatch in supervised learning for the different scenes
of the dataset with 5 = 0.05 and » = 0.2.

13

3DMatch 3DLoMatch
Predator [24] 96.6 73.0
MS-SVConv(3) 98.4 77.2

Table 11: Comparison between Predator [24] and MS-
SVConv(3) on the 3DMatch and 3DLoMatch dataset in su-
pervised learning. Results are Feature Match Recall (FMR)
in %.

B. More experiments on the synergy between
UDGE and MS-SVConv

In this section, we present experiments on UDGE. We
show that shared U-Net is better than unshared U-Net. In
addition, we explain why we choose three U-Net for MS-
SVConv. We show that three heads is a good trade-off
between good generalization and computation. We also
present an experiment to show that UDGE can be used for
100% unsupervised training on the 3DMatch dataset. This
results suggest that when the dataset is huge and the ground
truth is not available, UDGE can be used to learn meaning-
full features in an unsupervised fashion. We explain how we
can choose the voxel size with UDGE and how we choose
the size of crop. We show that for different voxel size, the
results do not change a lot. However, for the size of crop,
it is quite important and must be well chosen. Finally, we
show details results on the ETH dataset.

B.1. To share or not to share?

We compare the results of the multi-scale by having
shared weights or not between the U-Net. Table 14 shows
that when we do not share weights (i.e. three different
U-Net for the three heads), we see that the generalization
capacity results are much lower than the multi-scale with
shared weights. Indeed, the gain is only +11% with the
unshared weights while it is +20.4% on the Feature Match
Recall for the shared weights during the transfer from the
3DMatch to ETH datasets. One reason for this may come
from the fact that with unshared weights, each head spe-
cializes on a scale while the same network shared between
scales learns to be robust to the notion of scale and will
adapt better to a new dataset. As in multi-task learning,
weights can be beneficial for every scale. We can notice
that with UDGE, results are quite similar between shared
and unshared networks (as it was the case for fine-tuning
with two, three or four heads), but MS-SVConv with three
shared heads still obtains better results. This experiment
results explain why we choose shared U-net.

B.2. Influence of the number of heads

The different experiments on the the 3DMatch and the
ETH dataset have shown the superiority of the proposed

Methods Kitchen Homel Home2 Hotell Hotel2 Hotel3 Study MIT Lab Average
3DSmoothNet [19] 97.0 95.5 89.4 96.5 93.3 98.2 94.5 93.5 94.7
FCGF [11] - - - - - - - - 95.2
FCGF™ [11] 99.0 99.4 91.8 98.2 97.1 98.1 96.6 100.0 97.5
D3Feat [4] - - - - - - - - 95.8
MultiView [28] 99.4 98.7 94.7 99.6 100 100 95.5 922 97.5
SpinNet [2] 99.2 98.1 96.1 99.6 97.1 100 95.6 94.8 97.6
DIP [33] - 94.8
GeDI [32] - - - - - - - - 97.9
MS-SVConv(1) 98.8 98.1 92.8 99.6 99.0 100 96.6 96.1 97.6
MS-SVConv(3) 99.6 99.4 94.2 99.1 99.0 100 95.9 100 98.4

Table 12: Feature Match Recall with 75 = 0.05 on 3DMatch in supervised learning. FCGF* means that we evaluate ourselves
the original code with a symmetric test, before computing the FMR.

Methods Kitchen Homel Home?2 Hotell Hotel2 Hotel3 Study MITLab Average
3DSmoothNet [19] 62.8 76.9 66.3 78.8 72.1 88.9 72.3 64.9 72.9
FCGF[11] - - - - - - - - 67.4
FCGF* [11] 91.1 91.7 78.4 94.2 90.4 90.7 85.3 76.6 87.3
D3Feat [4] - - - - - - - - 75.8
MultiView [28] 89.5 85.9 81.3 95.1 92.3 94.4 80.1 76.6 86.9
SpinNet [2] - - - - - - - - 85.7
DIP [33] - - - - - - - - -
GeDI [32] - - - - - - - - -
MS-SVConv(1) 88.7 89.1 82.7 95.1 91.3 90.7 83.6 76.6 87.2
MS-SVConv(3) 95.8 94.2 83.7 95.6 88.5 88.9 87.0 85.7 89.9

Table 13: Feature Match Recall with 75 = 0.2 on 3DMatch in supervised learning. FCGF* means that we evaluate ourselves
the original code with a symmetric test, before computing the FMR.

ETH 8-scenes Dataset

Methods FMR (%) SRE Time (s)
Without UDGE
MS-SVConv(1) 56.4 151.0 0.24
MS-SVConv(3) Unshared 67.4 129.6 0.50
MS-SVConv(3) 76.8 822 0.52
With UDGE
MS-SVConv(1) 87.5 440 0.16
MS-SVConv(3) Unshared 93.5 33.1 0.335
MS-SVConv(3) 93.6 6.9 0.40

Table 14: Feature Match Recall (FMR) and median Scaled
Registration Error (SRE) x1000 on ETH 8-scenes dataset
with network pre-trained on 3DMatch. MS-SVConv(1)
means MS-SVConv with 1 head and MS-SVConv(3) means
MS-SVConv with 3 heads. Unshared means a multi-scale
network with different weights at each scale. We only report
the average time of descriptor extraction.

multi-scale network with three heads compared to one head
in supervised training, for transfer after using UDGE. But

14

100
mmm Without UDGE
mm With UDGE

11

two heads three heads four heads

90+

801

FMR

704

60

504

one head

Figure 4: Feature Match Recall (FMR) on ETH 8-scenes
dataset in function of the number of head without and with
UDGE (model pre-trained on the ModelNet dataset).

how do we fix the number of heads? To answer this ques-
tion, we train several networks on the ModelNet dataset
with different number of heads and we compute the FMR on

the ETH 8-scenes dataset without UDGE and with UDGE.
As in previous experiments, the voxel size on the ETH
dataset is set at 2 cm with no UDGE and 4 cm with UDGE
(the length side of the voxels at the next scale is always
2 times that of the previous scale). Figure 4 shows the
FMR in function of the number of head. These results
show that the more heads we add, the more the network
is able to generalize (without UDGE) between the Model-
Net, and the ETH dataset (results slightly decreases with
4 heads). With UDGE, we see that two heads is already
enough to achieve excellent descriptor registration perfor-
mance on ETH. Thus, three heads is a good trade-off to have
a very good capacity for generalization on new datasets
while having excellent performance with UDGE but keep-
ing a sufficiently fast processing time (2.5 times slower be-
tween 3 heads and one head).

B.3. 100% unsupervised training on 3DMatch with
UDGE

To show that our method can adapt to unseen scenes, and
be applied in an unsupervised way, we realized an other ex-
periment with the 3DMatch dataset. We first pre-train on the
ModelNet dataset and then apply our unsupervised transfer
learning strategy UDGE on the training set of the 3DMatch
dataset. We finally evaluate MS-SVConv on the test set of
the 3DMatch dataset. Results in Table 15 show that MS-
SVConv trained in an unsupervised fashion is very close to
supervised learning and comparable to other state-of-the-art
methods, while being only trained on the synthetic dataset
ModelNet. This is a second experiment which shows that
the proposed method UDGE is not just over-fitting on the
training set.

Method FMR (2 = 0.05) FMR (12 = 0.2)
Supervised 98.4 89.9
UDGE 96.7 85.0

Table 15: Comparison between supervised learning and un-
supervised learning on 3DMatch. For unsupervised: model
pre-trained on ModelNet and using UDGE on training set of
3DMatch (i.e. not using ground truth poses of 3DMatch).
Model is MS-SVConv(3) for supervised and unsupervised
results.

B.4. Influence of voxel side length for UDGE

As presented in the article, networks based on sparse
voxel convolution, such as MS-SVConv are sensitive to the
choice of voxel size for discretization. We have already
shown the interest of multi-scale in supervised training and
for the transfer between datasets without UDGE (with a
voxel size which must remain fixed). With UDGE, we can

15

Voxel size (cm) 2 4 6
MS-SVConv(1) 67.3 87.5 91
Voxel size (cm) 2,4,8 4,8,16 6,12,24
MS-SVConv(3) 90.9 93.6 93.8

Table 16: Influence of the voxel size when applying our
unsupervised UDGE method on ETH 8-scenes. Results are
Feature Match Recall in % with networks pre-trained on
3DMatch with voxel size = 2 cm for MS-SVConv(1) and
voxel size = 2, 4, 8 cm for MS-SVConv(3).

change the voxel size when we have a new dataset. For ex-
ample, between 3DMatch and ETH, the scenes are much
larger which pushes us to increase the size of the voxels to
improve registration. We see this effectively with Table 16
where we pre-trained our networks on the 3DMatch dataset
and transfered on the ETH dataset. With a single head,
keeping the same voxel size as during pre-training, the net-
work does not generate good decriptors. However, thanks
to UDGE, by having a voxel size of 6 cm, the network with
one head obtains much better results on ETH. Conversely,
our network with three heads is much more robust to the
variation in the size of the voxel and already obtains a very
good score of 90.9% FMR even without changing the size
of the voxel between the 3DMatch, and the ETH dataset (2,
4, 8 cm).

B.5. Influence of the size of the crop for UDGE

We measured the influence of the size of the crop in our
data generation for UDGE. Figure 5 shows the FMR with
respect to the size of crop on ETH 8-scenes dataset (model
pre-trained on ModelNet). A big size of crop is equivalent
to no crop at all. This experiment shows that this parameter
is important for UDGE and must be chosen according to the
dataset (see implementation details).

B.6. ETH results details

We present in Table 17 the details of results on the ETH
8-scenes dataset on the different scenes of the dataset. It
shows that for the Hauptgebaude scene (scan of a univer-
sity), results are much lower. Hauptegebaude is more chal-
lenging than others because it contains a lot of repetitive
patterns (see qualitative results in Figure 8).

C. Implementation and Protocol
C.1. Implementation details

To manage the experiments, we used the Pytorch Points
3D framework [7]. This framework massively uses the hy-
dra library to manage the hyperparameters, the architectures
of the networks, and the data augmentations. For the sparse
convolution and sparse tensors, we use the implementation

Methods Apart. Gaz. Sum. Gaz. Wint. Haupt. Plain Stairs Wood Aut. Wood Sum. Average
Classical methods

FPFH [39] 2/33.1 0/29.2 0/23.6 0/320 0/64.6 4/38.5 0/95.1 0/76.6 0.75/85.1
Patch based deep methods without UDGE

MultiView [28] 83/14.8 42/9.4 52/8.3 47/262 17/21.4 65/15.2 13/12.1 22/9.8 42.6/44.0

DIP [33] 98/8.2 91/6.4 100/5.7 73/5.7 96/9.3 97/6.7 97/6.4 99/6.4 93.9/6.9
U-Net based deep methods without UDGE

D3Feat [4] 96/9.4 78/8.7 93/7.4 54/646 18/54.1 72/12.0 54/10.5 51/12.4 64.5/95.0

MS-SVConv(l) 96/8.8 65/8.6 79/7.4 31/554 14/579 63/26.5 51/10.1 52/10.5 56.4/151.0

MS-SVConv(3) 99/8.1 85/7.7 98/5.6 43/533 36/76.1 84/10.5 81/8.7 88/8.0 76.8/82.2

U-Net based deep methods with UDGE
MS-SVConv(1) 100/9.2 89/6.6 100/4.8 53/301 73/10.9 93/7.3 94/6.4 98/5.9 87.5/44.0
MS-SVConv(3) 99/8.8 97/5.9 100/4.5 70/5.5 85/9.8 98/8.5 100/6.1 100/5.7 93.6/6.9

Table 17: Feature Match Recall (FMR) with 72 = 0.05 and median Scaled Registration Error (SRE) x1000 per scene on ETH

8-scenes dataset, benchmark of Fontana et al. [
compute the transformation using TEASER algorithm [

91.5 A

91.0 A

90.5

FMR

89.5 A

89.0 -

88.5

0 20 40 60 80 100

size of the cube (m)

Figure 5: Feature Match Recall (FMR) of MS-SVConv (3)
on ETH 8-scenes with respect to the size of the crop of our
data generation for UDGE. Model pre-trained on Model-
Net. These experiments have been done without periodic
sampling

of Pytorch Points 3D that utilizes the torchsparse backend
(implementated by Tang et al. [44]). The implementation
of Pytorch Points 3D also supports the MinkowskiEngine
backend [10], but sparse convolution in torchsparse is
faster than in MinkowskiEngine. For all trainings, we use
Stochastic Gradient Descent with momentum of 0.8 as opti-
mizer and a batch size of 4. For pre-training, the number of
epochs is 400 for ModelNet (around 48h), and 300 for the
3DMatch dataset (around 3 weeks), and the learning rate
is 0.1. For unsupervised transfer learning, the number of
epochs is 200 for all datasets (around 2h for TUM, 18h for

16

]. All deep methods are pre-trained on 3DMatch. For every method, we
]. For FMR, higher is better and for SRE, lower is better.

ETH, and 24h for 3DMatch), and the learning rate is 0.001.

On 3DMatch, ModelNet, and TUM, the size of the initial
voxel is 2 cm and is doubled at every scale. For the ETH
dataset (only when we use UDGE), the size of the initial
voxel is 4 cm and also doubled at every scale (ETH dataset
is sparser than 3DMatch). The choice of the voxel size de-
pends on the point density. The dimension of output de-
scriptors is 32 for every dataset (as most previous published
papers).

For the data generation of UDGE, the crop has a cubic
shape, the center is a random point, and the size is 2 m for
ModelNet, 3 m for 3DMatch and TUM and 10 m for ETH.
As for the crop parameter, the periodic sampling parameters
will change according to the dataset: for ETH, we uniformly
sample « between 15% and 30% and the period 7" between
4 cm and 16 cm. For the TUM dataset, we uniformly sample
a between 10% and 40% and the period 1" between 2 cm
and 8 cm. For 3DMatch, we do not use periodic sampling
as point clouds are uniform.

Finally, we perform classical data augmentation (same
for all datasets) such as random rotation around all axes,
random scale between 0.9 and 1.2 and random Gaussian
noise with o equals to 0.7 cm for TUM and 3DMatch and
1 cm for ETH and ModelNet.

To compute the transformation, we always use the
TEASER algorithm [49] (with the main parameter noise
bound fixed at 4 = 0.1). We choose TEASER over
RANSAC because, TEASER is faster. For every experi-
ment, we sample randomly 5000 random points to evalu-
ate point cloud matching. The experiments were done on
a computer with a GPU GTX 1080Ti and a CPU Intel(R)
Core(TM) 17-4790K.

s Ao, Nsa}{J
s djoNsNT \

sumoqin |

S UMO([IONSOH J
s AN J

3 1=s dpoNsay |

K3
AT

o g=S UMO(TIONSOY J
AT

|

AT
=1 T

[8T <-F9 £=Y §=S UMOJIONSOY J

e <1g
19 <2

{' 00z <521 ¢

[19 <967 £

[vg <49 + 21

[ro<r9+me

(ro<ro+ase

ResNetDown stride=s kernel=k in-> out ResNetUp stride=s kernel=k in-> out

Figure 6: Architecture of one head of our U-Net network
(BN means Batch Normalization).

C.2. Architecture of the network

In Figure 6, we report the detailed architecture of a
U-Net of MS-SVConv. Because the weights are shared
when using MS-SVConv with S heads, the model still has
around 9 million parameters in total. The only difference
is in the additional MLP shared between all points with
FC(S*d,d), which gives 3104 additional parameters for MS-
SVConv(3), i.e. three heads with a descriptor of size 32.
The architecture of MS-SVConv(1) and FCGF [11] are al-
most similar but MS-SVConv has one supplementary Res-
Block. MS-SVConv is also faster than FCGF: FCGF uses
the library MinkowskiEngine while MS-SVConv uses the
torchsparse library. For the evaluation, contrary to [4, 33,
19, 2], FCGF [11] does not perform a symmetric test when
computing the FMR. This is why, results of FCGF are lower
in term of FMR.

C.3. Protocol and metrics on ETH dataset

For our tests on the ETH dataset, we followed Fontana et
al.’s protocol [16] and Gojcic et al.’s protocol [19]. Fontana
et al.’s protocol is more rigorous and uses eight scenes in-
stead of four. Fontana er al. also introduce the Scaled Reg-
istration Error (SRE) to evaluate the transformation found
by registration methods. Usually, we use a metric based
on the rotation error or the translation error. Even if these
metrics are useful, they suffer from several problems: there
are two measures instead of one, so in some cases, compar-
ison is not possible. Moreover, these metrics depends on

17

whether the point cloud is centered or not. For example, if
the point cloud is at 100 m from the center of rotation, a
small rotation error of 2 degrees will bring a translation er-
ror of around 3 m. To get the results of previous published
methods on ETH 8-scenes (Fontana et al.’s protocol [16]),
we had to compute them by ourselves using online code.
The following section will present the details of the choices
made using the available codes of published methods.

C.4. Experiment details for tested method on ETH-
8 scenes

We present the experimental details for the methods
tested on ETH 8-scenes following the Fontana et al.’s pro-
tocol [16]. We have varied the different parameters of all
these methods to keep only the best results on ETH.

C4.1 FPFH[39]

We use the implementation of Open3D [57]. We down-
sample the point cloud with a voxel size of 6 cm and we
choose 5000 random points. To compute descriptors, we
use a radius of 50 cm and use the 30 nearest neighbors to
compute normals.

C4.2 DIP[33]

For DIP, we first down-sample the point cloud with a voxel
size of 6 cm. We use DIP on 5000 random points. The
patch is a ball with a radius of 60v/3 = 104 cm. We use
P, = 0. The model was provided by the authors (trained on
3DMatch).

C.4.3 D3Feat [4]

For D3Feat, we down-sample the point cloud with a voxel
size of 6 cm (as in the implementation). We use the Ten-
sorflow implementation. We double the scale of the ker-
nel points to increase the receptive field as done by Bai et
al. [4]. We use the model trained using the contrastive loss
provided by the authors (we noticed that the model trained
with the circle loss has worse results). We choose the 5000
points with the best score to compute the Feature Match Re-
call and the Scaled Registration Error.

C.4.4 MultiView [25]

For MultiView, we used the pre-trained model provided by
the authors. We down-sample the point cloud with a voxel
size of 6 cm and took 5000 random points.

D. Qualitative results on the 3DMatch, ETH
and TUM dataset

We show in Figures 7, 8 and 9 images of point cloud
registration using MS-SVConv(3) for the 3DMatch, ETH,

Methods Gaz. Sum. Gaz. Wint Wood Aut. Wood Sum. Average
Classical methods
FPFH [39] 38.6 14.2 14.8 20.8 22.1
SHOT [40] 73.9 45.7 60.9 64.0 61.1
Patch based deep methods without UDGE
3DSmoothNet [62.8 76.9 66.3 78.8 72.1
MultiView [28] 89.5 85.9 81.3 95.1 923
DIP [33] 90.8 88.6 96.5 95.2 92.8
SpinNet [2] 92.9 91.7 92.2 94.4 92.8
GeDI [32] 98.9 96.5 97.4 100 98.2
U-Net deep methods without UDGE
FCGF [11] 22.8 10.0 14.8 16.8 16.1
D3Feat [4] 85.9 63.0 49.6 48.0 61.6
MS-SVConv(1) 58.2 232 27.0 31.2 349
MS-SVConv(3) 89.3 68.1 63.5 65.6 71.8
U-Net deep methods with UDGE
MS-SVConv(1) 86.4 90.0 85.2 90.4 88.0
MS-SVConv(3) 95.7 100 100 100 98.9

Table 18: Feature Match Recall (FMR) on ETH 4-scenes with the benchmark of Gojcic et al. [
79 = 0.05. Results from other methods are from published papers. All networks are pre-trained on indoor 3DMatch.

and TUM dataset.

18

] with 7 = 10 cm and

Initialization MS-SVConv 3 heads + TEASER

Figure 7: Qualitative results on 3DMatch (supervised learning). We can see that even with few structure and low overlap,
MS-SVConv(3) can find the transformation between the pair of scenes.

19

Initialization MS-SVConv 3 heads + TEASER

Figure 8: Qualitative results on ETH dataset (model pre-trained on 3DMatch and fine-tuned with UDGE on ETH). The last
line shows a failure of MS-SVConv(3).

20

Initialization MS-SVConv 3 heads + TEASER

Figure 9: Qualitative results on TUM dataset (model pre-trained on 3DMatch and fine-tuned with UDGE on TUM).

21

