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Figure 1. Geometric-Aware Neural Parametric Model: Given a set of input 3D point-clouds of different identities in a variety of poses,
GNPM disentangles shape and deformations by mapping each pose to its canonical t-pose and learning dense temporally consistent
correspondences, without the need for any ground-truth annotations.

Abstract

We propose Geometric Neural Parametric Models
(GNPM), a learned parametric model that takes into ac-
count the local structure of data to learn disentangled shape
and pose latent spaces of 4D dynamics, using a geometric-
aware architecture on point clouds. Temporally consistent
3D deformations are estimated without the need for dense
correspondences at training time, by exploiting cycle con-
sistency. Besides its ability to learn dense correspondences,
GNPMs also enable latent-space manipulations such as in-
terpolation and shape/pose transfer. We evaluate GNPMs
on various datasets of clothed humans, and show that it
achieves comparable performance to state of the art meth-
ods that require dense correspondences during training.

1. Introduction
Reconstructing temporally consistent shape deformations

from visual inputs remains a challenging open problem in
computer vision with many applications in AR/VR and
content creation. While model-agnostic approaches that
exploit local shape smoothness priors [17] have been ex-
tremely successful, the remarkable recent advances in ma-
chine learning driven capture of domain-specific 3D paramet-

ric models such as for human bodies [1, 8, 13]), hands [25],
faces [11, 23, 24] or animals [31] have made them an attrac-
tive alternative. However, parametric models suffer from two
important drawbacks. First, since they do not exploit local
geometry priors they often fail to capture local geometry
details and have a tendency to over-regularize. Secondly,
their construction typically requires manual intervention to
aid alignment, or fully dense annotations across all samples
to provide dense correspondences at training time.

Neural Parametric Models (NPMs) [20] were recently pro-
posed to tackle some of the challenges faced by traditional
parametric models by leveraging deep neural networks and
implicit functions to learn a disentangled representation of
shape and pose. NPMs are learnt from data alone without the
need for any class specific knowledge and, once trained, can
be fit to new observations via test-time optimization. While
NPMs offer an appealing alternative to traditional 3D para-
metric models, since they only require the same identity to
be seen in different poses (including a canonical pose) drop-
ping the need for registration across different identities, they
still require known dense correspondences during training
between different poses of the same identity and their canon-
ical pose. Moreover, NPMs do not learn any local geometry
regularity priors given that flow predictions are conditioned
on global shape and pose codes and local geometry priors
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are not exploited.
To tackle both limitations we propose Geometric Neural

Parametric Models (GNPMs). We represent surfaces as
point clouds and exploit the ability of dynamic graph neural
network architectures [28] to explicitly take into account the
local structure around deformed points to learn local features
and enforce local geometric regularity. In addition, we relax
the need for any correspondences at all during training by
disentangling 4D dynamics into shape and pose latent spaces
via a cycle consistency loss.

Geometric priors are enforced by adapting the Edge-
Conv [28] graph convolution operators to design our model
as an auto-decoder [21]. Our intuition is that points tend to
deform coherently with their neighbours [27]. Furthermore,
local features learnt via graph convolutions can also help the
model to learn semantic relations between non-neighbouring
points, which is potentially useful in deformations such as
dancing where distant body parts move synchronously. In-
spired by [22], we show that the learned features can be
additionally used to segment shapes into semantically mean-
ingful parts which remain consistent across identities, in
a completely unsupervised way (see Figure 7). While it
is known that geometric-based methods can be inefficient
[29], we provide an efficient implementation that allows our
model to run at a comparable cost to MLP-based models.

To learn without known correspondences we exploit the
observation that transformations between posed and canon-
ical spaces should be cycle consistent. This loss allows us
to infer a dense deformation field, by jointly learning the
weights of two networks that perform a bi-directional map-
ping between posed and canonical spaces and the respective
shape and pose latent spaces (see Fig. 2). To fit the model
to new unseen identities and/or deformations, we use test-
time optimisation to minimise the cycle consistency loss to
recover shape and pose latent vectors.

In summary, our contributions are:

• GNPM is a geometric-aware neural parametric model
that learns to disentangle pose and shape exploiting the
local structure of the data via edge convolutions.

• GNPM learns shape and pose embeddings and long-
term dense correspondences without the need for
ground truth annotations during training.

• GNPMs learn rich geometric features useful for down-
stream tasks such as unsupervised part segmentation.

2. Related Work
Parametric Models: Parametric 3D models have be-

come a prevalent tool to model deformable 3D shapes. They
learn to disentangle deformations into several factors of inter-
est and have been applied to various domains such as human
bodies [1, 8, 13, 30], hands and faces [25] [11, 23, 24] and

animals [31]. Despite their success, they struggle to cap-
ture fine-grained details like wrinkles or to model clothes.
Also, their construction can be tedious as it often requires
domain knowledge or manual tuning. Neural based meth-
ods [20] offer a compelling alternative to learn directly from
data without the need for manual tuning or domain-specific
knowledge.

Supervised Neural Deformation Models: Building on
3D OccNet [15], OFlow [19] learns a continuous spatio-
temporal representation of 4D dynamics that assigns motion
vectors to every location in space-time. However, it degrades
when capturing long sequences. Inspired by Dynamic Fu-
sion [17], Bozic et al. [4] learn a globally consistent defor-
mation graph while learning dense surface details via local
MLPs. However, it is limited to be sequence-specific and
cannot be used for shape or pose transfer. Palafox et al. [20]
recently introduced Neural Parametric Models (NPMs) lever-
aging the representation power of implicit functions to disen-
tangle latent spaces of shape and pose. However, NPMs dis-
regard the local geometric structure of 3D shapes and require
dense correspondences for training. While our geometric
model also learns to disentangle between shape and pose,
unlike [20] we take into account the geometric structure and
can learn long term correspondences in a self-supervised
manner without the need for dense ground truth annotations.

Self-Supervised Neural Deformation Models:
LoopReg [2] was the first end-to-end learning frame-
work to solve scan registration with a self-supervision loop.
Backward and forward maps are learnt to predict correspon-
dences between every input scan point and the model surface.
SCANimate [26] also uses a self-supervision cycle to learn
an implicit dense field of skinning weights to map surface
points to a canonical pose. Although both [2, 26] can model
shape deformation in a semi-supervised or unsupervised
way, they do not learn latent shape/deformation spaces and
rely on SMPL as the underlying body model. In contrast, our
model, GNPM, learns disentangled shape and deformation
latent spaces. More recently, Neuromorph [6] jointly
solves shape interpolation and dense correspondences in an
unsupervised way using edge convolutions [28] and a single
forward pass. Although Neuromorph can estimate dense
correspondences between shapes of different categories in
different poses the latent interpolation is modelled via time,
limiting its ability to learn a parameterised representation.

3. Method
We introduce Geometric Neural Parametric Models

(GNPM), a geometric-aware model that disentangles 4D
dynamics into latent spaces of shape identity and pose and
can be learnt without the need for correspondences across
shapes.

We choose point clouds as our shape representation given
their lightweight nature and that they naturally match the raw
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Figure 2. Self-supervision cycle. Our model is trained to map an
input scan to their canonical t-pose and then back to the deformed
shape, imposing cycle consistency. In this way, we learn dense
correspondences without any ground truth annotations. In addition,
we disentangle shape and pose by learning two embeddings which
are jointly optimised with the weights of the graph neural networks.

output of commodity depth cameras. Moreover, when com-
bined with the EdgeConv architecture [28], local geometric
structure can be exploited to capture both local and global
shape properties, unlike the more recently popular implicit
representations [20]. We adopt EdgeConv layers (see 3.1.1)
and modify the architecture to an auto-decoder [21].

Given a dataset of multiple shape identities in various
poses, but without any registration within or across identities,
we jointly learn: (i) the weights of a network that predicts
globally consistent dense point correspondences, and (ii)
shape and pose latent embeddings. Instead of requiring per-
sequence dense correspondences as supervision signal [20],

we use a self-supervision cycle, in similar spirit to [2,26],
to learn the shape/pose latent spaces without any need for
registration during training. Given an input posed shape, the
forward network learns to deform it to its canonical t-pose.
The backward network then learns to deform the t-posed
shape back to the input posed shape. Together, forward
and backward networks form an identity mapping, and the
distance between predicted and input shapes is used as super-
vision signal. Our only requirement on the training dataset
is that each shape identity should be observed in a canon-
ical pose (e.g., T-pose), which is satisfied on a variety of
datasets [12, 14, 25]).

At test time, given new observations of an unseen identity,
the weights of the network are frozen and shape and pose
embedding vectors are jointly optimised by minimizing the
same cycle-consistency loss.

3.1. Shape/Pose Network and Embeddings

To circumvent the lack of correspondences we use a self-
supervision cycle that conducts a bi-directional mapping
between input and canonical poses. Our model is composed

of two networks, both conditioned on the shape and pose
latents (see Section 2). Given an input posed shape, the
forward network predicts a dense deformation field δx̃ that
maps it onto the canonical t-pose while the backward net-
work learns to deform the canonical shape back to the input
pose.

Figure 2 shows an overview of the self-supervision cycle.
Forward and backward networks are implemented as auto-
decoders, with parameters θa and θb, and EdgeConv layers
that predict dense deformation fields.
Forward Network: The forward network learns a
geometric-aware deformation field that deforms the input
posed shape to its canonical t-pose shape. More formally,
the input to the network is a set of N observed points on
the surface of the shape associated with the f th frame and
cth identity, Xcf = {xcfi }Ni=1 ∈ R3 to which we apply
positional encoding γ(·) [16]. The forward network forms
a dynamic graph Gl, via k-NN, conditional on a learnable
per-frame Dp-dimensional latent pose code pf , and a fixed
Ds-dimensional latent shape code sc. A series of Edge-
Conv layers are applied, each using the output features of the
previous layer to re-estimate the graph Gl (see 3.1.1). Per-
point pooling is performed after the last layer and a shallow
MLP is applied to predict dense point-wise deformations
{δxcfi }Ni=1 ∈ R3.

faθa : RN×51 × RDs × RDp → RN×3

faθa(γ(xi), sc, pf ) = δx̃. (1)

Backward Network: The backward network learns the in-
verse dense deformation field that deforms the canonical
t-pose shape to the posed shape: {δycfi }Ni=1 ∈ R3. While
the architecture is equivalent to the forward network, the
parameters are not shared.

f bθb : RN×51 × RDs × RDp → RN×3

f bθb(γ(ỹi), sc, pf ) = δỹ (2)

Losses: Combining (1) and (2) we can close the cycle and
have a self-supervision loop. We define the loss Lloop as the
l1 distance between the shape predicted by the cycle and the
input shape.

faθa(γ(xi), sc, pf ) = δx̃i

ỹi = xi + δx̃i

f bθb(γ(ỹi), sc, pf ) = δỹi

x̃i = ỹi + δỹi

(3)

Lloop(x̃cfi , x
cf
i ) =‖ x̃cfi − x

cf
i ‖ (4)

To prevent the network from learning an identity mapping
by setting δx̃ and δỹ to zero, we use an additional symmetric
ICP loss that minimizes the distance between the ground
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Figure 3. Results of time-consistent dense correspondence estimation for 3D point-cloud inputs from the CAPE [14] (top) and DFAUST [3]
(bottom) datasets. We show comparisons with the ground truth dense correspondence maps.

truth t-pose shape points and the t-pose predicted by the
forward network

Licp(ỹcfi ) =‖ ỹcfi −NNR(ỹcfi ) ‖22 (5)

Where NNR(.) is a function that queries the nearest neigh-
bour of a 3D point in the set R of input points. Which we
found important to prevent correspondence flipping in the
presence of extreme motion (see 4.6).

To aid temporal smoothness we constrain the current and
next pose latents to be close by adding an l1 loss between
them Llt. Also we found it very useful to enforce temporal
regularization for both networks output which we called
spacial temporal loss Lst.

Llt(pf , pf+1) =‖ pf − pf+1 ‖ (6)

Inspired by the intuition points in consecutive frames deform
coherently [27]. And as we do not have access to dense
correspondences, we use the input points and query the
nearest neighbour of the next frame input points. Then we
use l1 loss between the current network prediction and the
prediction of the nearest points in the next frame.

Last(x̃
cf
i ) =‖ δx̃cfi − δx̃

c(f+1)
i ‖

δx̃
c(f+1)
i = faθa(NNQa(x

c(f+1)
i ))

Lbst(ỹ
cf
i ) =‖ δỹcfi − δỹ

c(f+1)
i ‖

δỹ
c(f+1)
i = f bθa(NNQb(y

c(f+1)
i ))

(7)

Where NNQ(.) is a function that queries the nearest neigh-
bour of a 3D point in the set Q of input points. Our final
temporal regularization loss is:

Ltemp = Llt + Last + Lbst (8)

Finally, we minimize this objective over all possible F
deformation fields across all shape identities C with respect
to the individual pose and shape codes {pf}Ff=1 and {sc}Cc=1

respectively and the forward and backward network weights
θa, θb. To enforce a compact pose and shape manifold we
also regularize the both codes with σp and σs.

arg min
θa,θb,{sc}Cc=1,{pf}Ff=1

C∑
c=1

F∑
f=1

N∑
i=1

Lloop + λicpLicp

+ λtempLtemp +
‖pf‖22
σ2
p

+
‖sc‖22
σ2
s

(9)

3.1.1 EdgeConv Layers

In contrast to previous neural parametric models [20] that
treat each data point independently, we exploit the power of
edge convolutions in DGCNNs [28] to learn local geomet-
ric structure in deformed 3D point clouds. EdgeConv [28]
alleviates the lack of topology in point clouds by propos-
ing a differential neural network module suitable for CNN-
based high-level tasks. Local geometric structure is exploited
by constructing a local neighbourhood graph and applying
convolution-like operations on the edges in a dynamic set-
ting, where the connectivity is learned and changes through-
out the training. The learned feature space not only captures
semantic relations within a local neighbourhood, but also
between distant points, which is particularly useful in the
context of deformations where different body parts might
move synchronously.

Given a set of N uniformly sampled 3D surface points,
denoted by X = {x1, ..., xN} ⊆ RD, where D is the point
cloud dimensionality, a directed graph G = (V,E) of ver-



tices V and edges E, is first built to represent the local
point cloud structure via k-nearest neighbours (k-NN). In
our setting, input points are represented by their 3D coordi-
nates xi = (xi, yi, zi), but D more generally refers to the
dimensionality at each layer. Edge features are then defined
as eij = hΘ(xi, xj), where hΘ : RD × RD −→ RD′

is a
multi-layer perceptron (MLP) with learnable parameters Θ.
Channel-wise symmetric aggregation � (e.g.,

∑
or max) is

then applied on the edge features associated with each vertex
i with its output given by

x′i = �
j:(i,j)∈E

hΘ(xi, xj). (10)

Unlike GCNNs that work on a fixed input graph, Edge-
Conv recomputes the graph neighbourhood structure at each
layer. In practice, a pairwise distance matrix is computed in
feature space, and the closest k points are selected for each
vertex point at each layer.

3.2. Test Optimization

Once the network weights and shape and pose latent em-
beddings have been learnt, they can be used to fit a new se-
quence to the model by optimizing for the per-identity shape
and per-frame pose codes that best explain the observations.
We use the pose network and minimize the cycle consistency
training objective with respect to the shape and pose latent
codes {sc}Sc=1, {pl}Ff=1, keeping network weights fixed:

arg min
{sc}Cc=1,{pf}Ff=1

C∑
c=1

F∑
f=1

N∑
i=1

Lloop +
‖pf‖22
σ2
p

+
‖sc‖22
σ2
s

(11)

The shape and pose codes are initialized to the mean of the
respective embedding. When dealing with a sequence, the
pose code for each frame can be initialized with the result
for the previous frame.

3.3. Implementation Details

Forward and Backward Networks: For both forward and
backward networks, we stack three EdgeConv layers with
two MLPs to compute edge features. LeakyReLU with
0.2 negative slope was used as the activation function and
max as the channel-wise aggregation function for all layers.
The graph connectivity is updated for each layer, based on
the learned features in previous ones. Features from each
EdgeConv are concatenated and passed through the MLPs
for the final prediction. The dimensionality of the EdgeConv
features is set to D = 128, except for the last layer where
D = 256. Shape and pose latent dimensionalities are set to
128. We use the Adam optimizer [10] with learning rates
of 1e − 3 for the shape/pose model and latent codes. In
addition, we apply a learning rate scheduler with a decay

factor of 0.5 every 30 epochs. And use a cosine annealing
our ICP loss weight λicp with 1e−1 initial weight and 1e−2

minimum weight. As for the regularization losses we use
5e−2 for temporal loss weight λtemp. We use shape and
pose code regularization weights σs = σp = 1e−4. Despite
the symbolic k-NN implementation allowing more point
samples, we sample 1024 points per batch from each shape as
input to the model. The latent codes are initialized randomly
from a normal distribution. We use the positional encoding
proposed in [16] to encode query points with 8 frequency
bands.
Efficient k-NN Implementation: We use the KeyOps [5,7]
python package to symbolically implement the k-NN algo-
rithm. In the supplementary material we provide a compar-
ison with a naive dense k-NN implementation and show a
tenfold improvement in terms of training time.

4. Experimental Evaluation
Datasets: We evaluate our model on real-world scans from
the CAPE [14] and D-FAUST [3] datasets, which provide
real clothed humans and their corresponding SMPL+D
registration. We train on 31 different posed shapes from 35
different distinct identities [14] and test on a total of 4 test
sequences from 4 unseen characters. We also learn a hand
model from the MANO [25] dataset.

Evaluation metrics: We measure reconstruction and 4D
tracking performance following the established per-frame
evaluation protocol [15, 20]. The l2 Chamfer distance (C-l2)
offers a measure combining the accuracy and completeness
of the reconstructed surface. We also use End-Point Error
(EPE), which measures keyframe-to-frame deformation l2
distance between predicted and ground truth as in [4]. We
visualise corresponding points with the same colour.

4.1. Evaluation on CAPE Dataset

Reconstruction and unsupervised dense correspon-
dences: We compare our model to the state of the art on
the CAPE [14] dataset which provides ground truth dense
correspondences. We compare with NPM [20] (the most
related approach to ours), although it requires dense corre-
spondences at training time, unlike our approach.

Figure 3 shows how our method is capable of reconstruct-
ing the deformed shapes and estimating temporally consis-
tent point correspondences accurately. Despite only using
1024 points at training time, we can densify the points during
test time by sampling new points and combining the result
to get a dense deformed version of each shape. We use this
property to further evaluate the quality of the deformation
and use Poisson surface reconstruction [9] on 300K points
to get surface reconstruction.

Figure 4 shows a visualisation of the meshes obtained
after reconstructing with our method followed by Poisson
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Figure 4. Mesh Visualisation. We sampled 300K points and use Poisson surface reconstruction [9] to get meshes from our model. Left we
have the reconstructed point clouds. Right we have the reconstructed meshes with Poisson. We use a supervised GNPM version of our
model where we assume we have access to dense correspondences. And we also shows the result of evaluating NPM [20] on depth and
complete 3D scans. As we can see that our method supervised/self-supervised can recover good quality meshes.

Method Input EPE ↓ C-l2 (×10−3) ↓
NPM [20] 3D scan 0.231 0.019
GNPM (K 10) 3D scan 0.287 0.0122

Table 1. Comparison with NPM [20] on real scans of CAPE [14]. Since GNPM (our approach) requires full scans as input, we also evaluated
NPM [20] on complete input scans for a fair comparison. Note that, in contrast to our method, NPM [20] can take partial observations
(depth maps) as input at test time. However, it requires known dense correspondences at training time, unlike our approach.
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Figure 5. Results of time-consistent dense correspondence estima-
tion for 3D point-cloud inputs from the MANO [25] dataset. We
show ground truth dense correspondences for comparison.

reconstruction [9]. We note that Poisson surface reconstruc-
tion [9] requires surface normals which we estimate. For

fair comparison we sample 300K GT points and run them
through Poisson reconstruction to obtain the GT meshes. We
also visualise the results obtained by NPM [20] with two
types of inputs: depth images and 3D scans. As we can see
our method can obtain reasonable meshes.

In addition, we trained a supervised version GNPM where
GT dense correspondences were given at training time (sim-
ilarly to NPM). For this model we only use the backward
network and we learn to disentangle shape and pose latents
with the same network. Figure 4 shows visualisations of the
predicted dense point clouds and reconstructed meshes with
this ’supervised’ version of our model.

Table 1 shows a numerical evaluation against NPM [20]
on the CAPE test set. It is important to note that our approach
GNPM can only be used with complete scans as input. For
that reason we also evaluated NPM [20] using complete input
scans even though this method can take partial observations
(depth images) as input. But since ours cannot, we evaluated
on complete input scans for fairness.

Table 1 shows our method achieves better Chamfer dis-
tance (C-l2) while having a comparable End-Point Error
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Figure 6. Shape and pose transfer in latent space. We can trans-
fer a given identity to a posed shape (shape transfer). In addition,
given a source identity in different poses, we can repose a target
identity with the poses of the source (pose transfer).
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Figure 7. Unsupervised 3D part segmentation with clustering
on learned feature space with EdgeConv. In left column the
clusters are computed with Kmeans using 7 clusters on the features
of first EdgConv layer. And in right column we experiment with
different number of clusters and observed increasing the number of
cluster leads to less semantically meaningful parts.

(EPE) to NPM [20], which is trained with ground truth dense
correspondences, while our method works without them.

Input MLP EdgeConv

Figure 8. Qualitative evaluation of geometric inductive bias on
CAPE [14] datasets. We replace all EdgeConv layers with MLPs
following the NPM [20] architecture choices for the MLPs. As
we can see the MLP-based architecture struggles to model the
deformation of the arms while the EdgConv based architecture
does not suffer from this problem.

GNPM can find the shape and pose latents more effi-
ciently during test time. While NPM [20] report that opti-
mizing over an input sequence of 100 frames takes approxi-
mately 4 hours on a GeForce RTX 3090, our approach takes
20 minutes on a GeForce RTX 3080 on a similar length
sequence.

Method Input EPE ↓ C-l2 (×10−3) ↓
ONet 4D [15] 3D scan - 0.028
OFlow [19] 3D scan - 0.031
GNPM (K 10) 3D scan 0.253 0.0094

Table 2. Comparison with state-of-the-art methods on real scans
of the DFAUST [3] dataset. Since OFlow [19] works only on
sequences of up to 17 frames, we report the average over sub-
sequences of such length.

4.2. Evaluation on DFAUST Dataset

Table 2 shows a quantitative evaluation on the DFAUST
dataset [3]. All methods take 3D scans as input and our
approach results in the lowest Chamfer distance error. We
take the results for ONet [15] and OFlow [18] directly from
the publications.

4.3. Qualitative evaluation on Mano Dataset

Hand reconstruction. We demonstrate GNPMs ability
to work on the MANO hand dataset [25]. Figure 5 shows
our GNPM results showing its ability to model complex
deformations of the hand and to establish temporally con-
sistent and dense correspondences. Our comparison with



ground truth correspondences shows that GNPM can infer
high quality dense 4D temporal tracking, despite the chal-
lenging deformations shown by hands.

4.4. Latent Applications

Shape and Pose Transfer: Disentangling shape and pose
spaces allows us to transfer shape and/or pose between iden-
tities. Given an input identity in a specific pose, we can map
the same pose to new identities. Alternatively, we can fix
the identity and transfer pose latents. Examples of both are
shown in Fig. 6.

4.5. Unsupervised 3D Part Segmentation

In this section we explore the potential of the features
learnt by the EdgeConv network. Figure 7, shows the result
of performing unsupervised clustering on the learnt features
for each frame independently, which leads to consistent part
segmentations across identities and poses. We can observe
that by grouping points according to their features we dis-
cover locally consistent groups, to give a semantically mean-
ingful part segmentation. We experimented with different
cluster sizes as shown in Fig. 7.

4.6. Ablation Studies

Geometric Inductive Bias: To evaluate the our architecture
choices, we replace all EdgeConv layers with MLP-based
forward and backward networks using NPM [20] pose model
architecture choices and trained the networks on CAPE [14]
dataset. The MLP-based self-supervised architecture
infers the deformation field independently for each point
without considering local neighbourhood structure. As
shown in Table 3, we found using EdgeConv layers is
advantageous to learning deformations. Figure 8 shows
qualitative evaluation. MLP based architecture struggles
with modelling arms and can not learn a deformation field
that fully reconstructs the shape. On the other hand, the
EdgConv based architecture does not suffer from this
problem. We conclude this inductive bias is important in
learning deformation fields without dense correspondences.
And removing this bias results in a degenerate performance.

Method EPE ↓ C-l2 (×10−3) ↓
Self-supervision (MLP) 0.515 0.0635
Self-supervision (EdgConv) 0.287 0.0122

Table 3. Evaluation of geometric inductive bias. We use NPM [20]
MLP architecture choices and replace all EdgeConv layer with
MLPs. As we can see without considering the local neighbourhood
around the points the model fail to learn deformation field.

ICP Loss: We found that for frames with extreme defor-
mation, the forward network has some difficulties dealing
with points from similar parts like hands that change sides

with respect to the canonical t-pose see supplementary
materials. Using an asymmetric ICP loss leads to flipping
in the prediction of the forward network. The backward
network can handle this to some extent but as we are
enforcing a geometric constraint, it fails to completely
reverse points flipping resulting in a knot in the waist of
the shape. Using a symmetric ICP loss where the nearest
neighbours distance is computed from both source and
target is important in learning extreme deformation without
dense correspondences.

5. Limitations

While GNPM demonstrates potential for learning disen-
tangled pose and shape space without dense correspondences,
it still struggles with modelling fine details. For instance,
in modelling human deformation often the hand is not mod-
elled in great detail. A potential reason for that could be our
uniform sampling approach. Denser sampling in areas like
hands and faces could lead to better estimates of detailed
deformations. Finally, our method is restricted to full meshes
at test time. Future work includes extending our method to
deal with partial observations such as depth maps.

6. Conclusion

We have proposed Geometric Neural Parametric Mod-
els (GNPM), a learned parametric model that takes as input
point-clouds of different identities performing complex mo-
tions and disentangles shape/identity and deformations by
mapping each pose to its canonical t-pose configuration and
learning dense time-consistent correspondences. In addition,
our model learns disentangled shape and pose embeddings
which can later be used for interpolation, editing or transfer.

In contrast to previous learnt neural parametric models
such as NPMs [20], our model does not require ground truth
known correspondences at training time, which are costly
to obtain. We exploit the concept of cycle-consistency to
establish correspondences and show results on real-world
scans from the CAPE [14], DFAUST [3] and MANO [25]
datasets. Our network uses edge convolutions to extract
features, which can be further exploited for downstream
tasks such as unsupervised part segmentation. While our
current approach cannot deal with partial scans from depth
input images we envisage a completion network as future
work.
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