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Abstract— There are many possibilities for how to represent
the map in simultaneous localisation and mapping (SLAM).
While sparse, keypoint-based SLAM systems have achieved
impressive levels of accuracy and robustness, their maps may
not be suitable for many robotic tasks. Dense SLAM systems
are capable of producing dense reconstructions, but can be
computationally expensive and, like sparse systems, lack higher-
level information about the structure of a scene. Human-
made environments contain a lot of structure, and we seek
to take advantage of this by enabling the use of quadric
surfaces as features in SLAM systems. We introduce a minimal
representation for quadric surfaces and show how this can
be included in a least-squares formulation. We also show
how our representation can be easily extended to include
additional constraints on quadrics such as those found in
quadrics of revolution. Finally, we introduce a proof-of-concept
SLAM system using our representation, and provide some
experimental results using an RGB-D dataset.

I. INTRODUCTION

In simultaneous localisation and mapping (SLAM), an
autonomous agent in an unknown environment needs to lo-
calise itself against the current map of its surroundings while
simultaneously updating that map based on the observations
it makes with its sensors. While the choice of representation
for the robot state is largely straightforward, there are many
possibilities for how to represent the map.

Typically, in sparse landmark-based systems, maps are
represented as sparse collections of 3D keypoints. While
state-of-the-art keypoint-based methods are very efficient and
capable of highly accurate and robust pose tracking ([1], [2]),
the maps they create lack any higher-level abstractions. For
certain tasks, such as manipulation, augmented reality, or
safe robotic navigation, these maps may not be sufficient.

To address this, dense mapping systems such as DTAM
[4] and REMODE [5] aim to create dense reconstructions
of the scene. The advent of commodity depth cameras led
to even more accurate and robust dense mapping systems
such as KinectFusion [6], ElasticFusion [7], and InfiniTAM
[8]. Despite their impressive reconstructions, the resulting
maps do not contain any higher-level information about the
structure of the scene and often come with high demands on
computation.

Human-made environments contain a lot of large-scale
structure, and many SLAM systems have sought to leverage
this by using higher-level features in their map represen-
tations. Planar surfaces, in particular, have been the focus
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Fig. 1: Example output from our proof-of-concept SLAM
system using quadric surfaces as landmarks when running
on the f2 desk sequence in the TUM RGB-D dataset [3].
Top Left: Colour image. Top Right: Single-image quadric
segmentation. Bottom Left: Sliding-window reconstruction
of the quadrics in the map created by projecting the points as-
sociated with each quadric onto the estimated quadric surface
(each quadric is assigned a unique random colour). Bottom
Right: The reconstruction where each point is assigned the
corresponding colour from the colour image.

much research (e.g. [9], [10], [11], and [12]). While planes
are usually the dominant structure in indoor scenes, other
smooth but curved structures such as cylinders and spheres
are also present. For this reason, we argue that quadric
surfaces (which are also capable of representing planes) are
a potentially useful landmark representation in 3D SLAM.

Almost all state-of-the-art SLAM systems are formulated
as nonlinear least-squares optimisation problems. To directly
include the estimation of quadric surfaces in a least-squares
optimisation requires that the representation of the quadric be
minimal. Overparameterised representations result in rank-
deficient information matrices, meaning the matrix inversion
necessary for using incremental solvers (such as Gauss-
Newton) will fail. While the Levenberg-Marquardt algorithm,
which adds a regularisation term causing the information
matrix to have full rank, can be used to avoid this problem,
it is not suitable to incremental inference ([13], [14]) and
with an overparameterised representation, convergence will
be slow. Another possible solution is to use Lagrangian
multipliers, but this comes at a cost of additional computation
and a larger state space [11].

In this paper, we introduce a minimal representation for
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quadric surfaces, by decomposing the quadric representation
into a 3D pose and 3D scaling parameters. Since it is a
minimal representation, it is suitable for use with Gauss-
Newton, Powell’s Dog Leg and incremental solvers such as
iSAM2 [15].

Our contributions are as follows:
1) We present a minimal representation for quadric sur-

faces, suitable for least-squares estimation.
2) We show how our representation can easily be ex-

tended to include common additional constraints on
quadric surfaces such as those found in quadrics of
revolution.

3) We demonstrate how our representation can be used
with a simple, proof-of-concept SLAM system run on
a standard RGB-D dataset (see Fig. 1).

II. RELATED WORK

There has been a lot of interest in using higher-level
features in SLAM. Some early work focused on replacing
points with lines in the estimation process ([16], [17]). More
recently, [18] achieved good results by using a combination
of both points and lines.

Perhaps most popular has been including planar features
in the SLAM estimation formulation. One of the earliest
examples of this is [9], which estimated planes explicitly
using an EKF formulation. Other examples include [10],
[19]–[21], and [22]. As with lines, there has also been a
lot of work looking at combining planes with other features
such as points (e.g. [12], [23], [24]).

Our work is particularly inspired by [11], which introduces
a minimal representation for planes and explicitly includes
these in a least-squares estimation. This representation was
achieved by mapping the homogeneous plane parameterisa-
tion to a quaternion. We see our work as extending these
ideas to quadric surfaces.

We are proposing to explicitly include quadric surfaces
in the SLAM least-squares estimation formulation. Quadric-
based representations for visual features were first introduced
in [25]. More recently, quadric-based representations have
been used in “object-aware” and “structure-aware” SLAM
systems. These systems attempt to perform SLAM using
landmarks at higher levels of abstraction (such as by match-
ing observations to a predefined database of objects [26],
[27]). A quadric representation for object-aware SLAM was
recently presented in [28] and [29]. Similar to ours, this
representation decomposes the quadric into pose and scale
parameters. Their representation, however, is constrained and
only capable of representing ellipsoids ([28] models planes
using a separate representation). In addition, [29] relies on
the availability of ground-truth associations between object
observations. These systems are interested in estimating the
pose and rough shape of objects and so they use the dual
quadric formulation (where the ellipsoid is represented as
the envelope of a set of tangent planes) as a clever method
for fusing bounding box detections into the map. Similar
use of the dual quadric representation for ellipsoids was also
shown in [30]–[33] and [34].

In this work, we present a representation that is capable of
representing all quadric surfaces. Our representation is used
to estimate the actual surface rather than a bounding volume.
Additionally, we demonstrate how our representation can be
easily extended to represent quadrics of revolution, and so
our representation is capable of representing planes as well.

Some concurrent research [35] also describes using gen-
eral quadric surfaces as features in a least-squares estimation
formulation for SLAM. Their work presents a similar decom-
position of the quadric into scale and pose parameters and
also proposes a RANSAC-based front-end for their SLAM
system prototype. Whereas our work suggests adaptations
to ensure our representation remains minimal for quadric of
revolution, they use a constraints-based approach to handle
symmetric and degenerated quadrics.

III. MAPPING WITH QUADRIC SURFACES

In this section we will provide a brief introduction to
quadric surfaces. We will then present our minimal repre-
sentation for quadrics and discuss how to formulate SLAM
with quadric surfaces as a least-squares problem, including a
quadric measurement model. Finally, we will show how our
representation can be adjusted to be minimal for quadrics of
revolution.

We use the following notation in this work: matrices are
represented by uppercase bold symbols (A), vectors by low-
ercase bold symbols (a), and scalars by lowercase italicised
symbols (a). Vectors or points expressed in the reference
frame A are denoted Ap. The homogeneous transformation
matrix that transforms homogeneous points from frame B to
frame A is written as TAB .

A. State and Quadric Representation

The state we wish to estimate consists of sensor poses (x0,
x1, . . . , xm) and observed quadrics (π0, π1, . . . , πn).

The position and orientation of the sensor with respect to
a world reference frame is given by a 4x4 transformation
matrix:

x := TWC ∈ SE(3). (1)

Quadrics are hypersurfaces defined as the zero set of a
second-degree polynomial. In projective space, this is the
set of homogeneous Euclidean coordinates, z, that solves:

zTQz = 0, (2)

where z ∈ P3, and Q ∈ R4×4 and is symmetric (see [36]
for an introduction to projective quadrics).

A quadric surface can then be defined by the 4x4 sym-
metric matrix Q. While the symmetry means that there are
ten independent elements of Q, the quadric defines a surface
in P3 and therefore has only 9 degrees of freedom, as one
degree is needed for scale. So although the quadric could
be defined by a vector in R10, this representation would
not be minimal and therefore not suitable for least-squares
estimation.



TWQ S Quadric1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


1 0 0
0 1 0
0 0 1


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


1 0 0
0 0.5 0
0 0 2


1 0 0 0
0 0 1 3
0 −1 0 0
0 0 0 1


1 0 0
0 0.5 0
0 0 2


TABLE I: A demonstration of how the diagonal matrix,
D(σ), represents a canonical quadric that is scaled and
transformed by the S and TWQ matrices, respectively. For
σ = [+1,+1,+1,−1]T, when TWQ and S are both identity,
Q represents a unit sphere centred at the origin of the world
frame. Changing the diagonal entries of S scales the quadric
to an ellipsoid, and changing TWQ changes its pose.

B. Minimal Representation

As we would like to estimate the poses and quadrics using
a least-squares formulation, we require that the representa-
tion be minimal. Since Q is symmetric, it can be decomposed
into the form:

Q = TTΛT, (3)

where T ∈ R4×4 is an orthogonal matrix, and Λ ∈ D4 (the
space of diagonal matrices in R4×4).

Furthermore, by Sylvester’s Law of Inertia, the rows of T
can be permuted and then scaled by a diagonal matrix such
that:

Q = T̂T
[

S 0
0T 1

]T

D(σ)

[
S 0
0T 1

]
T̂, (4)

where T̂ ∈ R4×4 is the permuted matrix T, S ∈ D3 is the
scaling matrix, D(·) is a function that returns a matrix in Dk

with diagonal elements corresponding to the input vector in
Rk, and σ ∈ R4 is the “signature” vector and consists only
of +1, -1 and 0 entries, in that order. This decomposition is
discussed in some detail in [36].

The signature is unique to all quadrics of a given
class. In total there are 17 different signatures, of which
9 correspond to real quadric surfaces. For example,
σ = [+1,+1,+1,−1]T is shared between all ellipsoids.

We can think of D(σ) as representing a “canonical”
quadric, with unit scaling and its principal axes aligned with
the world frame. An illustration of this is given in the first
row of Table I. For σ = [+1,+1,+1,−1]T, if T and S
are set to identity, then Q represents the implicit equation
x2+y2+z2 = 1, which is a unit sphere centred at the origin
of the world frame.

By defining S as:

S =

α 0 0
0 β 0
0 0 γ

 , (5)

and T̂ as the homogeneous transformation matrix TWQ

(which maps from the canonical quadric frame to the world
frame), it is equivalent to first scaling the canonical quadric
along each of its principal axes and then transforming it to
a desired position and orientation. This is shown for two
examples in Table I.

We can then fully define a quadric by this decomposition:

π := (TWQ, S, σ) ∈ SE(3)× D3 × R4. (6)

Assuming that the class of quadric surface is determined
by the front-end of the SLAM system (and that the signature
is therefore a known quantity), the parameters to estimate can
be simplified to:

π(σ) := (TWQ, S) ∈ SE(3)× D3. (7)

As we will use this assumption throughout this work, we
will drop the superscript going forward.

The minimal representation for the quadric is then given
by:

δπ =
[
ξT, sT]T ∈ R9, (8)

where ξ ∈ R6 is the twist representing the quadric pose and
s ∈ R3 represents the scale parameters.

To map between the state and minimal representations,
we define a compound �-manifold [37], consisting of �-
manifolds over SE(3) and D3:

π � δπ := (TWQ �SE(3) ξ, S �D3 s) (9)
π � π′ := (TWQ �SE(3) T′WQ, S �D3 S′). (10)

The �-manifold over SE(3) is given by:

TWQ �SE(3) ξ = exp (ξ∧)TWQ (11)

where

ξ∧ =

[
ρ
φ

]
=

[
φ× ρ
0T 0

]
∈ R4×4, (12)

φ× =

 0 −φ3 φ2
φ3 0 −φ1
−φ2 φ1 0

 ∈ R3×3, (13)

ρ ∈ R3 is the minimal parameterisation of the quadric
position, φ ∈ R3 is the minimal parameterisation of the
quadric orientation, and

TWQ �SE(3) T′WQ = log (T′
−1
WQTWQ)

∨
(14)

where [
φ× ρ
0T 0

]∨
=

[
ρ
φ

]
. (15)

The �-manifold over D3 is given by:

S �D3 s = S + D(s) (16)

S �D3 S′ = D−1(S− S′), (17)

where D−1(·) is the inverse of the function D(·), mapping
the diagonal elements of the input matrix in Dk to a vector
in Rk.



Fig. 2: The factor graph for the SLAM formulation with
quadric surfaces. Variable nodes in the graph represent sensor
poses (x) and quadrics (π). Factor nodes in the graph
represent odometry measurements (u), quadric observations
(o), and a prior on the first pose (p).

C. SLAM Formulation

We formulate the quadric mapping problem as a least-
squares optimisation, using a factor graph to represent the
estimation problem as a graphical model [15]. The factor
graph of our problem is shown in Fig. 2.

SLAM using quadrics is very similar to sparse keypoint-
based SLAM. We want to jointly estimate the pose of the
sensor in each frame (x0, x1, . . . , xm) along with the
parameters of all observed quadric surfaces (π0, π1, . . . ,
πn).

D. Quadric Measurement Model

We model the uncertainty in a measurement of a quadric
surface Cπ from pose TWC by zero-mean Gaussian noise
ν with a 9x9 covariance matrix Σ:

Cπ = h(TWC ,π)�SE(3) ν, ν ∼ N (0,Σ), (18)

where h(·, ·) is the measurement prediction function that
transforms the quadric from the world frame to the sensor
frame and leaves the scale parameters untouched:

h(TWC ,π) = (T−1WCTWQ, S). (19)

The probability of a quadric estimate π̂ and pose estimate
x̂ given a measurement Cπ̃ is given by:

p(x̂, π̂|Cπ̃) = η exp

{
−1

2
‖h(TWĈ , π̂)� Cπ̃‖2Σ

}
, (20)

η =
1√

(2π)9|Σ|
. (21)

Therefore, the least-squares cost function that minimises
the negative log-likelihood is given by:

c(x̂, π̂) =
1

2
‖h(T̂WC ,π)� Cπ̃‖2Σ. (22)

This is the cost function used for the observation factors in
the factor graph (see Figure 2).

E. Quadrics of Revolution

While general quadrics are a potentially useful representa-
tion for SLAM, there are a number of additional constraints
that we may wish to place on quadric surfaces. For example,
quadrics of revolution (such as spheroids, paraboloids, circu-
lar cones, and circular cylinders) are quadrics where some or

all of the scale parameters are constrained to be equal. These
constrained quadrics are of particular interest, as they occur
regularly in human-made environments and there are many
off-the-shelf RANSAC-based methods designed to quickly
detect these types of surfaces from point clouds (e.g. [38]).

Although our proposed representation is minimal for
general 2D quadric surfaces, it is not minimal for these
constrained quadrics. This means that using our general
quadric representation for quadrics of revolution will result
in rank-deficient information matrices, which is not suitable
for least-squares estimation. To see why, consider the sphere
in Table I. For spheres, all scale parameters are constrained
to be equal, meaning that the surface is invariant to all
rotations. Similarly, circular cylinders and cones are invariant
to rotations about their axes. Some quadrics can also be
invariant to certain translations. For example, infinite planes
are invariant to translations perpendicular to their surface
normal. Infinite planes are also invariant to the scaling
parameters.

Our representation can be easily adapted to handle these
constrained quadrics by reducing the minimal parameter
space to exclude the invariant transformations and scaling.

The Jacobians of these constrained quadrics are also
simple adaptations of the Jacobian for the general quadric.
For example, since the sphere is invariant to rotation, instead
of estimating ξ =

[
ρT,φT]T where ρ ∈ R3 is the minimal

parameterisation for the quadric position and φ ∈ R3 is
the minimal parameterisation for the quadric orientation,
we estimate ξsphere = ρ. The derivative of the residual with
respect to the optimisation parameters is now ∂e/∂ξsphere
rather than ∂e/∂ξ, but this can be easily amended by
chaining a simple matrix to the Jacobian for the general
quadric:

∂e

∂ξsphere
=
∂e

∂ξ

∂ξ

∂ξsphere
(23)

=
∂e

∂ξ

[
I3×3
03×3

]
. (24)

In Table II, we provide several adaptations for common
constrained quadrics. Note that for the circular cylinder, we
have changed the order of the signature for simplicity. This
is because the cylinder is a cone with its apex at infinity and
so this permutation of rows is required. This permutation is
normally covered by the orthonormal matrix, but to have a
canonical right cylinder in the quadric frame, we start with
a permuted signature.

IV. EXPERIMENTAL RESULTS

To demonstrate how our representation can be used, we
introduce a proof-of-concept SLAM system using quadrics
as landmarks and present some results from the TUM RGB-
D dataset [3]. All experiments are run on a laptop computer
with an i7-6700HQ 2.60GHz CPU.

Our system takes depth maps as input. For each depth
map, we backproject the points to 3D and estimate the
corresponding surface normals for the point cloud using the
PCL 1.11 implementation of [39].



Quadric Signature Minimal Parameterisation Position Orientation Scale ∂ξ/∂ξQ

General – (ρ1, ρ2, ρ3, φ1, φ2, φ3, α, β, γ) (ρ1, ρ2, ρ3) (φ1, φ2, φ3) (α, β, γ) –

Plane (+1, 0, 0, 0) (ρ1, φ2, φ3) (ρ1, 0, 0) (0, φ2, φ3) (1, 1, 1)

1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

T

Sphere (+1, +1, +1, -1) (ρ1, ρ2, ρ3, α) (ρ1, ρ2, ρ3) (0, 0, 0) (α, α, α)

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

T

Circular
Cylinder (+1, +1, 0, -1) (ρ1, ρ2, φ1, φ2, α) (ρ1, ρ2, 0) (φ1, φ2, 0) (α, α, 1)

1 0 0 1 0 0
0 1 0 0 1 0
0 0 0 0 0 0

T

Circular
Cone (+1, +1, -1, 0) (ρ1, ρ2, ρ3, φ1, φ2, α) (ρ1, ρ2, ρ3) (φ1, φ2, 0) (α, α, 1)

1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 0

T

TABLE II: Our representation for general quadric surfaces can be easily extended to provide minimal representations for
quadrics of revolution. Here, examples are provided by planes, spheres, circular cylinders, and circular cones.

Fig. 3: Our proof-of-concept quadric SLAM system takes depth maps as input. For each depth map, we estimate the surface
normals and then use the backprojected depth points and normals to segment the input into various quadrics. From left to
right: colour, depth, normals, and quadric segmentation for a single frame in the TUM RGB-D dataset [3].

Using the points and normals, we estimate the frame-to-
frame odometry using an ICP point-to-plane technique.

We then use the normals to help segment the point cloud
into planes, spheres, circular cylinders and circular cones
using the CGAL 5.2 implementation of Efficient RANSAC
[38]. The Efficient RANSAC algorithm samples a set of
points, fits candidate shapes to the sampled set, and then
evaluates how well the remaining points are approximated
by the candidate shape. After a number of attempts, the
shape that fit the most points is extracted, and the algorithm
continues by sampling from the remaining points. While
the CGAL 5.2 implementation does not output the resulting
quadrics in our representation, the conversion to our rep-
resentation is trivial. For example, when fitting a sphere,
Efficient RANSAC gives the centre and radius, which are
simply the translation component of TWQ and the inverse
of the scale parameter, respectively. An example of the
estimated normals and resulting segmentation is presented
in Fig. 3.

The observed quadrics are then matched to those quadrics
currently in the map. To do the data association, we simply
compare each observed quadric against all other quadrics of
the same class in the map and match it with the quadric
that has the lowest error under a threshold. The matching
error is calculated using the cost function in (22), where
the estimated sensor pose is the estimated previous pose
concatenated with the latest odometry measurement.

The new pose and any new quadrics are added to the factor
graph, along with the odometry and quadric measurements.
To prevent any spurious quadric detections from polluting the
map, we require a quadric to have been observed in 5 frames
before it is added. The graph is then optimised using an
iterative dog leg method [14] in GTSAM 4.0 [40]. Note that
we are not doing any marginalisation and so are performing
an entire batch optimisation with each step.

Results from the fr2 desk sequence of the TUM RGB-D
dataset [3] are shown in Fig. 1. The front-end of the system
takes the depth map as input (not shown) and outputs the



System Component Median Runtime (ms)

Normal Computation 18

Quadric Segmentation 156

Data Association 5

Graph Optimisation 12

TABLE III: The per frame runtime for key components in
our proof-of-concept SLAM system. Note that since we do
a full batch optimisation for each frame, the optimisation
time grows as the graph increases in size. Using more so-
phisticated techniques such as bounded window keyframing
with marginalisation or iterative methods such as iSAM2 [15]
would be obvious improvements.

quadric segmentation shown in the top right. In this case,
the front-end has detected 5 planes (two on the floor, the
top of the desk, the side of the desk, and a small region
corresponding with the phone and textbook), and a sphere
(the globe). These are then matched with quadrics already
in the map leading to matches for both floor planes, the top
of the desk and the globe. A sliding-window reconstruction
of the map at this stage is shown in the bottom left where
each quadric has been assigned a random colour (both floor
planes have been matched with the same quadric).

Results from the fr3 long office household sequence are
shown in Fig. 4. The top row shows the input colour
and depth images, along with the detected quadrics. The
bottom right shows a sliding window reconstruction of the
point cloud projected onto the estimated quadrics, with each
unique quadric being assigned a random colour. The bottom
left shows a close up of the reconstruction of the globe where
each point is assigned the corresponding colour from the
image. Since our representation enforces constraints on the
quadric, the resulting reconstruction is a perfect sphere.

We present runtime statistics for key components of our
system in Table III. As currently implemented, the front-end
of our system is capable of running at approximately 5 Hz.
As we are currently doing a full batch optimisation with each
frame, the time required to optimise the graph grows as the
graph increases in size. Using more sophisticated techniques
such as bounded window keyframing with marginalisation or
iterative methods such as iSAM2 [15] should speed up the
per frame optimisation time considerably, particularly during
long sequences.

V. CONCLUSION

As human-made environments typically have a lot of
structure (planes, but also other smooth structures such as
cylinders and spheres), we believe that quadric surfaces are
a useful representation in 3D SLAM. To this end, we have
introduced a minimal representation for quadric surfaces,
suitable for inclusion in least-squares estimation formula-
tions. Our representation is based on a decomposition of
the homogeneous quadric representation into pose and scale
parameters. Unlike most existing quadric representations in
SLAM, our representation is capable of handling all quadric

Fig. 4: Example output when running on the
f3 long office household sequence from the TUM RGB-
D dataset [3]. Top Row: Colour, depth, and quadric
segmentation from a single frame. Bottom Left: Close up on
globe (notice it is a perfect sphere). Bottom Right: A sliding
window reconstruction of the quadrics in the map created
by projecting the points associated with each quadric onto
the estimated quadric surface (each quadric is assigned a
unique random colour).

surfaces, not just ellipsoids. As a proof-of-concept, we have
presented a simple SLAM system using our representation.

As this work has demonstrated that quadrics can be in-
cluded in a least-squares formulation, future work can focus
on developing more sophisticated 3D SLAM systems using
quadric surfaces. To make an accurate and robust real-time
3D SLAM system using our representation, several improve-
ments would need to be made. The quadric segmentation is
the current bottleneck in the front-end of our system and
prevents it from running at more than 5 Hz. One possible
solution is to include other features, such as points, in the
system, and to do frame-to-frame tracking with the simpler
representations, detecting quadrics only on more infrequent
keyframes. Including these additional features would also
help in situations where there are insufficient constraints on
the quadrics due to a lack of observations. Another possible
speed up is to try and predict the presence of quadrics
using a trained neural network, amortising the search cost.
Performance improvements could also be made on the back-
end of our system by replacing the batch optimisation on
every frame with an iterative solver such as iSAM2 [15] or
using bounded window keyframing with marginalisation.

While our method uses a quadric representation to estimate
actual surfaces rather than rough bounding volumes as in [28]
and [29], it assumes that the quadric parameters are directly
observable. Although we have shown that this can be done
by using off-the-shelf algorithms such as Efficient RANSAC
[38], it is slower and possibly less robust than the implicit
quadric detections used in those other methods. An inter-
esting possible future direction would be the combination
of these two approaches: using the rough bounding volumes
to detect objects and split the point cloud, and using our
proposed method to estimate surfaces within those volumes.
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