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Abstract

Modeling the human body in a canonical space is a com-
mon practice for capturing and animation. But when involv-
ing the neural radiance field (NeRF), learning a static NeRF
in the canonical space is not enough because the lighting
of the body changes when the person moves even though
the scene lighting is constant. Previous methods alleviate
the inconsistency of lighting by learning a per-frame em-
bedding, but this operation does not generalize to unseen
poses. Given that the lighting condition is static in the world
space while the human body is consistent in the canonical
space, we propose a dual-space NeRF that models the scene
lighting and the human body with two MLPs in two sepa-
rate spaces. To bridge these two spaces, previous methods
mostly rely on the linear blend skinning (LBS) algorithm.
However, the blending weights for LBS of a dynamic neural
field are intractable and thus are usually memorized with
another MLP, which does not generalize to novel poses. Al-
though it is possible to borrow the blending weights of a
parametric mesh such as SMPL, the interpolation opera-
tion introduces more artifacts. In this paper, we propose to
use the barycentric mapping, which can directly generalize
to unseen poses and surprisingly achieves superior results
than LBS with neural blending weights. Quantitative and
qualitative results on the Human3.6M and the ZJU-MoCap
datasets show the effectiveness of our method. Our code is
available at: https://github.com/zyhbili/Dual-Space-NeRF.

1. Introduction

Human body reconstruction and rendering have long
been an active research topic. Multi-view videos are es-
pecially suitable for this task because they record not only
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Figure 1: Our method learns a human body with a neural
radiance field [14] and animates it in arbitrary poses with
no need for fine-tuning or additional input. Since we model
the subject in the canonical space and the lighting in the
world space, we name the method “Dual-Space NeRF”.

the appearance but also the movements and deformation
of a person. Classic reconstruction and rendering tech-
niques show limited image realism due to the complexity
of decoupling the geometry, material and lighting from im-
ages. However, the recently proposed neural radiance field
(NeRF) [14] proves it possible to represent a static scene
with an MLP without explicitly modeling the above fac-
tors. Several recent works [20, 9, 19, 15, 24, 26, 27, 8]
have adapted NeRF onto human body reconstruction and
animation, but challenges remain in the following aspects:

Recent methods that model the human body with
NeRF [14] mostly learn the human body in a canonical
space, but the lighting inconsistency in the canonical space
lacks exploration [20, 9, 19, 15, 24]. When learning a NeRF
in the canonical space, we assume the appearance of a per-
son is consistent across varied body poses. But the fact is
when a person moves, a point in the canonical space comes
to a different place in the world space, resulting in a change
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of the lighting condition. This means that merely model-
ing the appearance of a person in the canonical space is not
enough. Therefore, we propose to model the scene light-
ing with another MLP in the world space, where the scene
lighting is assumed to be static. The lighting MLP takes in
a point position, a normal vector, and a view direction in the
world space, and outputs a lightness coefficient that adjusts
the brightness of the point.

Different from NeRF [ 4] that only depends on the point
position and the viewing direction, our lighting MLP also
takes in a normal vector, still due to the complexity of dy-
namic scenes. For a static scene, the surface normal can
be uniquely determined by the point position, while for our
setting, the surface normal may change when the subject
moves. Unlike IDR [28] that models the lighting condi-
tion and the appearance of an object with one appearance
MLP, our method learns the two factors with separate MLPs
in different spaces to realize correct lighting under unseen
poses. Also, our lighting MLP only predicts a scalar coef-
ficient to rescale the color from the body MLP instead of
directly predicting a color to prevent overfitting.

To bridge the world space and the canonical space, the
key is building pixel-level correspondences across views
and frames. A stream of methods bind points on 3D skele-
tons [ 15, 24] based on the assumption of local rigidity. An-
other stream of methods incorporates geometric priors char-
acterized by anchoring points onto SMPL [1 1], a paramet-
ric human body model. Neural Body [20] binds features
onto SMPL’s vertices and diffuses them into the space be-
fore volumetric rendering. It produces realistic novel views
of the training sequence but degrades on novel poses. An-
imatable NeRF [19] resolves novel-pose synthesis by map-
ping observed points into a canonical space with inverse lin-
ear blend skinning (LBS). Since the LBS weight of a spa-
tial point varies for different poses, Animatable NeRF [19]
learns a neural blending weight network conditioned on the
pose, which requires additional training for novel poses.

To avoid learning the volatile LBS weights, we seek a
pose-independent local position representation that gener-
alizes to novel poses easily. Specifically, we propose a
barycentric mapping (BM) as follows. For a point in the
space, we first project it onto its closest face on the fitted
SMPL mesh. Then we describe this point by the barycentric
coordinates of its projected point and its signed height from
the face. Finally, its corresponding point in the canonical
space is uniquely determined. Note that NPMs [16] lever-
ages a similar barycentric mapping to obtain pseudo ground
truths to train a unidirectional deformation field. While in
our method, we extend BM to support vector transforma-
tion and use it bidirectionally, transforming a point position
from the world space to the canonical space and warping a
surface normal from the canonical space to the world space.
By this barycentric mapping, the body MLP and the lighting

MLP are bridged. BM is parameter-free, enabling pose gen-
eralization without additional input or network fine-tuning.
Though the parameter-free method seems to have inferior
expressiveness, our experiments show its comparable abil-
ity on two datasets and clear advantages under challenging
poses. It is flexible since it anchors a point on the edge
vectors of a face, allowing local deformation along with the
face. It also avoids the artifacts of inverse LBS caused by
blending weighting interpolation (Fig. 7).

Another challenge of this task is the existence of random
variations such as clothing wrinkles. These variations are
neither fully determined by the body pose nor consistent
across frames, making it harder to learn a stable canoni-
cal radiance field. Neural Actor [9] uses the ground-truth
texture map to relieve the ambiguity in training images but
requires a separate image generation network to infer tex-
ture maps from normal maps for testing. Motivated by
SCANimate [22], to model the pose-dependent deforma-
tion, our model is conditioned on the pose parameters. Be-
sides, per-frame latent embeddings are used to capture the
random variations. According to our experiments, the union
of these components is sufficient to represent vivid defor-
mations along with pose changes with no need for an extra
deformation network.

Our contributions can be summarized as follow:

* To ensure the lighting correctness under unseen poses,
we propose dual-space NeRF, which models the static
scene lighting in the world space and the human body
in the canonical space.

* We propose to use the barycentric mapping to build
correspondences between two spaces and validate its
comparable expressiveness and superior generalization
ability under extreme poses.

* We show the effectiveness and interpretability of our
method with quantitative and qualitative results on the
Human3.6M [7] and the ZJU-MoCap [20] datasets.

2. Related Work

3D human reconstruction. As a popular 3D articulated
human model, SMPL [ 1] learns a template mesh from 3D
scans and deforms the mesh with the linear blend skinning
(LBS) algorithm. The mesh-based 3D human model is easy
to manipulate but limited to a fixed topology. Therefore,
neural implicit functions are adopted to model a 3D avatar
that can be animated by SMPL [22, 3, 4, 13]. LEAP [13],
SCANimate et al. [22], and SNARF [3] learn the human
body in a canonical space and articulate the body with neu-
ral blending weights. NASA [4] is a part-based method that
binds an implicit function on each bone. These methods
use 3D data as the input and only account the shape of the
human body.

Dynamic neural radiance field. Neural radiance fields
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Figure 2: The pipeline of our method. Given a point p* in the world space, we use the barycentric mapping to warp a point
p" from the world space into the canonical space to query the body properties. In the canonical space, we compute the
surface normal n¢ and warp it back to obtain the normal vector n" in the world space. We learn a Body MLP to model a
human body in the canonical space and a Lighting MLP to capture the lighting condition in the world space. Finally, we

render an image with volumetric rendering.

(NeRF) [14] can synthesize photorealistic images from ar-
bitrary views with no need for 3D data. However, the vanilla
NeRF is designed for only static scenes. The challenge for
NeRF to model dynamic scenes lies in building correspon-
dences across the timeline. Recent methods define a trans-
formation field that warps an observed point into a canoni-
cal space [21, 25, 17, 18, 6]. HumanNeRF [26] records the
variation of a scene by learning a motion field from monoc-
ular video. Kwon et al. [8] resort to a temporal transformer
to aggregate skeletal, temporal, and spatial features. These
methods exhibit strong ability of replaying events in novel
views but are incapable of generating new contents such as
animating a human body under unseen poses.

Human body animation with NeRF. To animate a
NeRF of a human body, a straightforward solution is in-
corporating 3D human priors. Peng et al. [20] use a set of
latent code to encode the local geometry and appearance
of the human body and bind them onto SMPL[ 1 1] vertices.
Liu et al. [9] introduce Neural Actor, animating NeRF with
blending weights sampled from the nearest vertex of SMPL.
Additionally, an image translation network is used to infer
texture maps to provide residual deformations and appear-
ance details for novel poses. AniNeRF [19] learns a neu-
ral blending weight field to learn the LBS weights for each
particular pose. Since the blending weight field varies with
poses, AniNeRF relies on a per-frame latent vector as a con-
dition for training poses and requires fine-tuning for novel
poses. Xu et al. [27] learn NeRF upon imGHUM [1], a sta-
tistical human body model represented by neural implicit
functions.

3. A Revisit of NeRF

NeRF [14] represents a scene by density o and color ¢
at each spatial point p. To render an image in an arbitrary
view, ¢ and ¢ are accumulated along viewing rays. For-
mally, we denote a viewing ray emitted from the optical
center of a camera through a given pixel on the image plane
by r(m) = o + md, then an approximation of the pixel
color is

K
C(r) = R(r,c,0) = > _ T(my)a(o(my)dy)e(my),

k=1

ey
where R(r, ¢, o) is the volumetric rendering of the color
c with the density o; {mk}szl is a set of discretely
sampled points between the near and the far plane of
the camera; d = mi1 — my is the distance between
the current sampling point and the next one; T'(my) =
exp (— Z:,;ll a(mk/)ékr), and a(z) = 1 — exp(—x).
NeRF learns a radiance field with an MLP in the form of

[o(m), e(m)] = fo(vp(r(m)),va(d)), 2)

where 0 is the model parameter, v, (-) and vq(-) are fixed
positional encoding functions for positions and directions.
The network parameters are optimized by the loss

A A 9
L= NI ZZ HC(Tu) - C(Tij)H27 €)

i=1 j=1
where NNV is the number of images, M is the number of rays
in each image, and r;; is the j™ ray in the i image.



4. Method

Our method learns to reconstruct a person from syn-
chronized multi-view video frames and animates the subject
with novel poses. This is achieved by learning a canonical
neural radiance field [14] of a human body in X-pose. This
canonical radiance field is anchored to SMPL [11] so that
we can animate the radiance field by manipulating SMPL.
In Fig. 2, we show the pipeline of our method with barycen-
tric mapping (Sec. 4.1) and dual-space NeRF (Sec. 4.2).
The dual-space NeRF includes two networks: a Body MLP
(Sec. 4.2.1) to model a human body in the canonical space
and a Lighting MLP (Sec. 4.2.2) to capture the location-
dependent lighting in the world space. And the barycentric
mapping bridges the canonical space and the world space.

4.1. Barycentric Mapping

Considering the sparsity of views and the ambiguity
caused by smooth regions, it is tough to learn robust corre-
spondences across frames purely with images. Therefore,
we adopt SMPL [1 1] as a geometric prior of the human
body by anchoring spatial points on the faces of SMPL.

4.1.1 Position mapping

For a point p* in the world space (Fig. 3), we first determine
its closest face I by measuring its distances to the mean
of vertex positions of each face. Then, we set up a local
description of the point p* by (u, v, h), where (u,v) is the
barycentric coordinate of the projection of p* on the face
F}, and h is the signed distance from F;". Based on the
corresponding face of F}¥ in the canonical space, i.e., F},
we can compute the corresponding point of p* as:

uc x v°

p¢ =0+ uu+vv°+h 4)

[lue x ve]”

where 0 is the first vertex of the face F, u¢ and v are
two edge vectors of F° starting from the vertex o°. Note
that the mapping can be conducted in an inverse direction.

4.1.2 Direction mapping

Based on the position mapping, we can bridge direction
vectors between spaces, also in a differentiable manner. For
the example in Fig. 3, we first represent the direction vec-
tor n¢ by its starting point p© and its ending point pf =
p® + nf. Then we apply the position mapping described
above to get the corresponding positions in the world space,
i.e., p* and pY. Finally, the warped direction vector in the
world space can be obtained by:

v = Pe P 5)

Iy —p*|l

world space

canonical space

Figure 3: The barycentric mapping of positions and direc-
tions. For a point p" in the world space, we first find its
closest face F;”, whose corresponding face in the canonical
space is F. Then, we represent p* as the barycentric coor-
dinate (u,v) of its projection on F} and its signed distance
h from F}Y. Finally, we compute the counterpart of p* in
the canonical space, i.e., p©, with the same local represen-
tation upon F°. The barycentric mapping can also be used
to transform direction vectors.

4.2. Dual-Space NeRF

NeRF [14] astonishes the community for its high ren-
dering realism, especially for the view-dependent visual ef-
fects. Most importantly, NeRF is formulated as a function
of merely a point position p and a viewing direction d.
Physically, the shading of a point also depends on the light-
ing condition and the surface normal, but NeRF omits them
because they can be fully determined by the point position
for a static scene.

However, for animatable human reconstruction and an-
imation, the lighting condition is static only in the world
space while the body shape and the surface normal is con-
sistent only in the canonical space. Therefore, we have to
learn a Body MLP and a Lighting MLP in separate spaces.

4.2.1 Body MLP

Given a point position p* in the world space (also called
the observed space), we use the barycentric mapping
(Sec. 4.1.1) to obtain its corresponding point in the canoni-
cal space, i.e., p©, which is the main input of the Body MLP.
Motivated by SCANimate [22], we encode the quaternion
matrix of the joints of SMPL with a tiny MLP and get the
pose feature J. To prevent artifacts and blur in the results,
we also learn a latent embedding £; € R® for each video
frame 7 to model the random variations that cannot be fully
determined by the body pose.

Formally, we feed the canonical point position p©, pose
features J, and latent embedding £; into the Body MLP to
predict density o and texture t € R3. Here, Eq. (2) is re-
formulated as:

[07 t] = fo, (’Yp(pc)J J, El) (6)



For the Body MLP, density o models the static shape and
texture ¢ models the true color of a human body in X-pose,
both independent of the viewing direction. Moreover, the
surface normal at the position p® can be obtained by the

normalized gradient of density o with respect to p© [23, 2]:
Vo
n=———-r. ™
Vo]l

4.2.2 Lighting MLP

To illustrate the necessity of a separate Lighting MLP, we
consider a point p® on a hand of a subject in the canonical
space. When the subject waves the hand, the correspond-
ing location of p© in the world space moves, resulting in a
change of the lighting condition. Therefore, from the per-
spective of the point p€, the lighting condition varies with
the body pose. Although the per-frame (or per-pose) light-
ing embeddings used by previous methods [19, 17] do help
relieve the inconsistency of lighting in the training frames,
they cannot generalize to novel poses. In contrast, we learn
a Lighting MLP in the world space, making the lighting
condition independent of the body pose.

Concretely, we use the Lighting MLP to predict a light-
ness coefficient

s = f92 (pw, d"[ll’ n'lU)’ (8)

where p* is the point position, d is the viewing direction,
and n® is the surface normal, all in the world space. Dur-
ing ray casting and point sampling, p* and d" are directly
available while the surface normal n® is not. To obtain n",
we first use the barycentric mapping (Sec. 4.1.1) to find the
corresponding point of p* in the canonical space, i.e., p°,
then compute the surface normal of p©,i.e., n®, finally map
n° back to the world space also with the barycentric map-
ping (Sec. 4.1.2). The lightness coefficient s is meant to
scale the lightness of the texture £ for shading with the color

c = st, )

and the final result is obtained by volumetric rendering with
the density o and the color ¢. Here, we model the light-
ing condition with simply a lightness coefficient instead of
a color vector or more complex models because the task is
highly under-constrained, and suppressing the expressive-
ness of the Lighting MLP helps prevent overfitting (Fig. 8).

4.3. Implementation Details

We apply the neutral SMPL [1 1] model for body mesh
fitting. Personalized shape parameters are used for each
subject. The X-pose is chosen as the canonical pose. Our
network consists of 2 parts: the Body MLP is an 8-layers
MLP with a shortcut connected to the fifth layer, and the
Lighting MLP is a 4-layers MLP. We use a 3-layer MLP

to learn the pose feature J. Hidden layers are activated
by ReLLU. The per-frame embeddings are initialized with
Gaussian distribution (N(0,1)). We use the Adam opti-
mizer to train our network for 200 epochs. We set the learn-
ing rate to 0.0005 and exponentially downscale it until the
last epoch to 10 times lower. Weight decay is not used. We
use a batch size of 1 with 5000 rays per batch. We sample
64 points on each ray. To accelerate training and inference,
we abandon the coarse-to-fine strategy [ 14, 20, 19]. Instead,
we adopt the geometry-guided ray marching [9], which pro-
duces a tighter bound. Since we have instance-level human-
parsing masks, we ensure that 5 percent of rays are sampled
around the face in each iteration, and the other rays are ran-
domly sampled in the 2D bounding box. All experiments
are conducted on a GeForce RTX 2080 Ti GPU and take
around two days to converge.

5. Experiments
5.1. Settings

Datasets. ZJU-MoCap [20] is a multi-view dataset con-
taining 9 performers captured by 21 synchronized cameras.
It provides estimated SMPL [ 1] parameters and instance-
level human-parsing masks generated by an established
method [5]. We follow the experimental settings of Neu-
ral Body [20] and AniNeRF [19]. Images corresponding to
four uniformly distributed cameras are used for training and
the rest for evaluation. We conduct experiments on 8 per-
formers. Human3.6M [7] contains four-view videos with
human poses collected by a marker-based motion capture
system. Images corresponding to three views are used for
training and one for evaluation. We use the same protocol
as Neural Body [20] to generate SMPL [ 1] parameters and
masks.

Metrics. We adopt three metrics to evaluate the render-
ing quality, including PSNR, SSIM, and LPIPS [29]. PSNR
is a pixel-wise metric based on the mean squared error,
which is sensitive to noises and random variations. SSIM
measures the structural similarity based on luminance, con-
trast, and structure comparisons. LPIPS [29] measures the
perceptual distance between an image pair in a deep feature
space. Since most pixels in the datasets belong to the back-
ground, we calculate PSNR and SSIM only within the 2D
foreground mask, which is obtained by projecting the 3D
bounding box on to the image plane.

5.2. Image Synthesis in Novel Poses

Baselines. Since we focus on the generalization ability
of the model under novel poses, we compare our method
with two state-of-the-art methods [20, 19] on novel pose
synthesis. For results on novel view synthesis, please refer
to our supplementary material. Note that we cannot com-
pare with some recent works [9, 27] since the official code



Ground Truth Ours

AniNeRF

Ground Truth Ours Neural Body

Figure 4: Results of novel pose synthesis on the ZJU-MoCap [
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] dataset. Our results have fewer artifacts and are more

visually pleasing. Note how our results better preserve the details on the faces of the subjects.
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Figure 5: Results of novel pose synthesis on the Human3.6M [7] dataset. Our results show higher visual quality with fewer
artifacts. Also, note the realistic lighting and shading effects in our results.

is not released so far. Neural Body [20] provides result im-
ages on both ZJU-MoCap and Human3.6M datasets. So
we directly evaluate their results with our metrics. AniN-
eRF [19] releases results only on Human3.6M. So we run
the official code of AniNeRF on ZJU-MoCap and conduct
the same evaluation as above.

An implementation detail of NeuralBody and AniNeRF
is that they only cast rays within the ground-truth human
mask, which leaves them an advantage in comparisons. We
argue that this operation is unreasonable because ground-
truth masks are not always available for novel poses. There-
fore, our method does not leverage the ground-truth human
masks despite being at a disadvantage. Since the Lighting
MLP is undefined beyond the movement range of a sub-
ject in the training frames, we place the avatar at the mean
position of the training sequence when querying the Light-
ing MLP for novel poses. Likewise, the latent embedding
is also not defined for novel poses, so we set it to zeros as
done by previous work [31].

Comparisons on novel pose synthesis. As shown in
Tab. 1 and Tab. 2, our method achieves the best PSNR
and SSIM scores compared to two strong baselines. Since
previous works [30, 10, 9] show that higher PSNR and
SSIM scores do not guarantee better visual quality of im-
ages, we report LPIPS as a perceptual measurement, on
which our method also shows advantages. According to
Fig. 4 and Fig. 5, our method produces fewer artifacts
than AniNeRF [19], indicating a better correspondences
across frames. Meanwhile, the lighting conditions in our
results are closer to the ground truths and the details are
easier to recognize thanks to the reasonable decoupling of
body properties and the environmental lighting. As shown
in Fig. 4 and Fig. 5, Neural Body [20] tends to produce
wrong body structures on Human3.6M when an unseen
pose is far from the seen ones in the training set. While,
our method produces visually pleasing results under novel
poses, demonstrating the robustness of the barycentric map-
ping and the correctness of our lighting model.
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Figure 6: Results of extreme pose synthesis on the “hand stand” sequence from AMASS [12]. “NB” means Neural Body[20],
and “AN” means AniNeRF [19]. Neural Body produces corrupted limbs and faces. AniNeRF makes artifacts and blurs. Our
method renders sharp images with clear details and realistic lighting.

PSNR1 | SSIMH | LPIPS

AN Ours | NB AN Ours | NB AN  Ours

Taichi | 19.606 18.470 19.533 |0.853 0.795 0.862 | 0.054 0.092 0.047
Warmup | 23.907 23.280 24.675 | 0.909 0.901 0.919 | 0.036 0.056 0.031
Punchl | 25.671 25.550 26.042 | 0.881 0.872 0.889 | 0.044 0.053 0.035
Punch2 | 21.595 21916 22.395|0.870 0.838 0.881 | 0.058 0.089 0.050
Swingl | 25.736 18.438 25.776 | 0.908 0.670 0.914 | 0.049 0.212 0.045
Swing2 | 23.802 21.870 24.360 | 0.878 0.836 0.888 | 0.055 0.090 0.049

Twirl | 23.853 22.800 24.300 | 0.902 0.863 0.910 | 0.056 0.078 0.045
Swing3 | 23.248 17.694 23.247 | 0.893 0.792 0.894 | 0.055 0.206 0.053

Average | 23.427 21.252 23.791 | 0.887 0.821 0.894 [ 0.051 0.110 0.044

Table 1: Comparison with baselines on novel pose synthesis
on ZJU-MoCap [20], “NB” means Neural Body [20], and
“AN” means AniNeRF [19]. Our method outperforms both
baselines with a clear margin.

| PSNRT | SSIM?T |
| NB AN

LPIPS|

Ours ‘ NB AN Ours‘ NB AN  Ours

S1 21.932 19.955 23.206 | 0.873 0.855 0.886 | 0.026 0.029 0.027
S5 23.332 20.022 23.025 | 0.893 0.840 0.886 | 0.022 0.025 0.021
S6 23.263 23.637 24.059 | 0.888 0.882 0.893 | 0.041 0.046 0.038
S7 22398 21.762 22.913 | 0.888 0.869 0.885|0.029 0.033 0.027
S8 20.779 21.631 22.659 | 0.872 0.877 0.889 | 0.035 0.032 0.031
S9 22.868 21.948 24.143 | 0.880 0.871 0.887 | 0.029 0.034 0.028
S11 23.538 22.547 24.842 | 0.879 0.875 0.894|0.032 0.030 0.029

Average | 22.587 21.643 23.550 | 0.882 0.867 0.889 | 0.030 0.033 0.029

Table 2: Comparison with baselines on novel pose synthe-
sis on the Human3.6M [7] dataset. “NB” means Neural
Body [20], and “AN” means AniNeRF [19]. Our method
outperforms both baselines in most cases.

Comparison on extreme pose synthesis. Since the dif-
ference between the training and the test poses in a dataset
may not be large enough, we compare the methods on a
challenging pose sequence from the AMASS [12] database.
As shown in Fig. 6, Neural Body produces corrupted limbs
and faces, which show the limitation of the convolution-
based solution. AniNeRF makes artifacts and blurs due
to the instability of the spatially interpolated LBS weights
and the poor generalization ability of the neural blending
weights. Our method renders sharp images with clear de-
tails and realistic lighting thanks to the stable correspon-
dences and reasonable decoupling of body properties and
the environmental lighting. Please refer to our supplemen-
tary video for animated results.

5.3. Ablation Studies

To verify the effectiveness of our main components, we
conduct ablation studies on the “Twirl” sequence of ZJU-
MoCap [20] in terms of novel pose and novel view synthe-
sis. All models are trained for the same number of epochs
(100) for a fair comparison.

Barycentric mapping. To validate the virtue of the
barycentric mapping, we replace it with the inverse LBS
algorithm. For the blending weights, we follow the strategy
of AniNeRF [19], which interpolates the blending weights
from nearby SMPL vertices. The second row of Tab. 3
shows the clear superiority of the barycentric mapping, es-
pecially on novel poses. In the visual comparison (Fig. 7),
inverse LBS produces artifacts around movement-frequent
places like armpits and feet, while the barycentric mapping
still performs well.
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Figure 7: Visual comparison between the barycentric map-
ping and inverse LBS. Inverse LBS with interpolated blend-
ing weights produces artifacts near movement-frequent
places like armpits and feet while the barycentric mapping
renders clear results.
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Scaling Texture

Figure 8: Ablation study of the Lighting MLP. We test with
an alternative design of Lighting MLP that directly predicts
RGB values instead of predicting the lightness coefficient
for texture scaling. However, the Lighting MLP that di-
rectly predicts colors tends to overfit the training frames and
produces distorted colors on the novel pose.

Predicting Color

| PSNR? | ssiMt | LPIPSL

‘ View Pose ‘View Pose ‘View Pose

Full model 31.090 24.216 | 0.970 0.911 | 0.023 0.044
Replace BM with inverse LBS | 30.758 23.301 | 0.968 0.895 | 0.026 0.055
w/o Lighting MLP 30.696 23.465 | 0.967 0.906 | 0.027 0.049

Lighting MLP (predicting color) | 31.270 23.570 | 0.971 0.905 | 0.019 0.047

Table 3: Ablation studies. “View” refers to novel view syn-
thesis, and “Pose” refers to novel pose synthesis. “BM”
means the barycentric mapping. Bold values are the best
scores, and underlined values are the second best.

w/o Lighting MLP. The Lighting MLP plays a vital role
in solving the lighting inconsistency. It models the correct
location-dependent lighting in the world space and benefits
high-fidelity rendering. To validate its usefulness, we dis-
able the Lighting MLP when training and rendering. Then,

our model degenerates to a vanilla NeRF defined in the
canonical space. The third row in Tab. 3 shows significant
degradation in all metrics.

Lighting MLP predicts color directly. We also try an
alternative design of the Lighting MLP that takes in the
body texture and outputs the color instead of predicting the
lightness coefficient for texture scaling. As shown in the
fourth row in Tab. 3, this alternative Lighting MLP per-
form better on novel view synthesis due to higher expres-
siveness but perform worse on novel poses. Thus, the al-
ternative Lighting MLP is just overfitting the colors in the
training frames instead of learning the environmental light-
ing. Similar conclusion can be drawn from Fig. 8, where
the alternative Lighting MLP predicts distorted colors on
the novel pose. We show animated results in our supple-
mentary video.

6. Conclusion

In this paper, we focus on the generalization problem of
human body reconstruction and animation. We propose to
model the human body and the lighting condition in sepa-
rate spaces. To bridge the canonical space and the world
space, we propose the barycentric mapping, which helps us
to transform point positions and surface normals of a hu-
man body between the two spaces, enabling rendering in
the world space with body properties from the canonical
space. Most importantly, the barycentric mapping can di-
rectly generalize to novel poses without additional input or
network training. Thanks to the reasonable decoupling of
body properties and lighting conditions, we obtain clear im-
provements upon two strong baselines.

7. Limitations and Potential Impacts

Our method uses SMPL [11] as a proxy to build con-
nections between the world space and the canonical space.
Therefore, it strongly relies on an accurate SMPL fitting.
In scenarios where SMPL parameters cannot be precisely
obtained, our method is likely to fail. Also, our approach
does not model long-range dependencies and thus is unable
to deal with a performer in a long dress. Our work recon-
structs the appearances of subjects and animates them with
public video datasets. Currently, the rendering realism is far
from fooling people, but attention should be paid to future
versions of related technologies for potential misusing.
Acknowledgments: The work is supported by National
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#61932020, #62172279, Science and Technology Commis-
sion of Shanghai Municipality (Grant No. 20ZR1436000),
Program of Shanghai Academic Research Leader, and
“Shuguang Program” supported by Shanghai Education De-
velopment Foundation and Shanghai Municipal Education
Commission.



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

Thiemo Alldieck, Hongyi Xu, and Cristian Sminchisescu.
imghum: Implicit generative models of 3d human shape and
articulated pose. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 5461-5470,
2021. 3

Mark Boss, Raphael Braun, Varun Jampani, Jonathan T. Bar-
ron, Ce Liu, and Hendrik P.A. Lensch. Nerd: Neural re-
flectance decomposition from image collections. In IEEE
International Conference on Computer Vision (ICCV), 2021.
5

Xu Chen, Yufeng Zheng, Michael J Black, Otmar Hilliges,
and Andreas Geiger. Snarf: Differentiable forward skinning
for animating non-rigid neural implicit shapes. In Interna-
tional Conference on Computer Vision (ICCV), 2021. 2

Boyang Deng, John P Lewis, Timothy Jeruzalski, Gerard
Pons-Moll, Geoffrey Hinton, Mohammad Norouzi, and An-
drea Tagliasacchi. Nasa neural articulated shape approxi-
mation. In Computer Vision—-ECCV 2020: 16th European
Conference, Glasgow, UK, August 23-28, 2020, Proceed-
ings, Part VII 16, pages 612-628. Springer, 2020. 2

Ke Gong, Xiaodan Liang, Yicheng Li, Yimin Chen, Ming
Yang, and Liang Lin. Instance-level human parsing via part
grouping network. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), pages 770785, 2018. 5
Yudong Guo, Keyu Chen, Sen Liang, Yongjin Liu, Hujun
Bao, and Juyong Zhang. Ad-nerf: Audio driven neural radi-
ance fields for talking head synthesis. In IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), 2021. 3
Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian
Sminchisescu. Human3. 6m: Large scale datasets and pre-
dictive methods for 3d human sensing in natural environ-
ments. [EEE transactions on pattern analysis and machine
intelligence, 36(7):1325-1339, 2013. 2,5,6,7, 11, 13
Youngjoong Kwon, Dahun Kim, Duygu Ceylan, and Henry
Fuchs. Neural human performer: Learning generalizable ra-
diance fields for human performance rendering. Advances in
Neural Information Processing Systems, 34,2021. 1,3
Lingjie Liu, Marc Habermann, Viktor Rudnev, Kripasindhu
Sarkar, Jiatao Gu, and Christian Theobalt. Neural actor:
Neural free-view synthesis of human actors with pose con-
trol. ACM Trans. Graph.(ACM SIGGRAPH Asia), 2021. 1,
2,3,5,6

Wen Liu, Zhixin Piao, Jie Min, Wenhan Luo, Lin Ma, and
Shenghua Gao. Liquid warping gan: A unified framework
for human motion imitation, appearance transfer and novel
view synthesis. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 5904-5913,
2019. 6

Matthew Loper, Naureen Mahmood, Javier Romero, Gerard
Pons-Moll, and Michael J. Black. SMPL: A skinned multi-
person linear model. ACM Trans. Graphics (Proc. SIG-
GRAPH Asia), 34(6):248:1-248:16, Oct. 2015. 2, 3, 4, 5,
8,11

Naureen Mahmood, Nima Ghorbani, Nikolaus F. Troje, Ger-
ard Pons-Moll, and Michael J. Black. AMASS: Archive of

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

motion capture as surface shapes. In International Confer-
ence on Computer Vision, pages 5442-5451, Oct. 2019. 7,
11

Marko Mihajlovic, Yan Zhang, Michael J Black, and Siyu
Tang. LEAP: Learning articulated occupancy of people. In
Proceedings IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), June 2021. 2

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020. 1,2, 3,4,5

Atsuhiro Noguchi, Xiao Sun, Stephen Lin, and Tatsuya
Harada. Neural articulated radiance field. In International
Conference on Computer Vision, 2021. 1, 2

Pablo Palafox, Aljaz BoZi¢, Justus Thies, Matthias Niefner,
and Angela Dai. Npms: Neural parametric models for 3d de-
formable shapes. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 12695-12705,
2021. 2

Keunhong Park, Utkarsh Sinha, Jonathan T. Barron, Sofien
Bouaziz, Dan B Goldman, Steven M. Seitz, and Ricardo
Martin-Brualla. Nerfies: Deformable neural radiance fields.
ICCV,2021. 3,5

Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T.
Barron, Sofien Bouaziz, Dan B Goldman, Ricardo Martin-
Brualla, and Steven M. Seitz. Hypernerf: A higher-
dimensional representation for topologically varying neural
radiance fields. arXiv preprint arXiv:2106.13228, 2021. 3
Sida Peng, Junting Dong, Qiangian Wang, Shangzhan
Zhang, Qing Shuai, Xiaowei Zhou, and Hujun Bao. Ani-
matable neural radiance fields for modeling dynamic human
bodies. In ICCV, 2021. 1,2,3,5,6,7, 11, 12

Sida Peng, Yuanqing Zhang, Yinghao Xu, Qianqgian Wang,
Qing Shuai, Hujun Bao, and Xiaowei Zhou. Neural body:
Implicit neural representations with structured latent codes
for novel view synthesis of dynamic humans. In CVPR,
2021. 1,2,3,5,6,7, 11, 12

Albert Pumarola, Enric Corona, Gerard Pons-Moll, and
Francesc Moreno-Noguer. D-nerf: Neural radiance fields
for dynamic scenes. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
10318-10327, 2021. 3

Shunsuke Saito, Jinlong Yang, Qianli Ma, and Michael J.
Black. SCANimate: Weakly supervised learning of skinned
clothed avatar networks. In Proceedings IEEE/CVF Conf. on
Computer Vision and Pattern Recognition (CVPR), June
2021. 2,4

Pratul P. Srinivasan, Boyang Deng, Xiuming Zhang,
Matthew Tancik, Ben Mildenhall, and Jonathan T. Barron.
Nerv: Neural reflectance and visibility fields for relighting
and view synthesis. In CVPR, 2021. 5

Shih-Yang Su, Frank Yu, Michael Zollhofer, and Helge
Rhodin. A-nerf: Articulated neural radiance fields for learn-
ing human shape, appearance, and pose. In Advances in Neu-
ral Information Processing Systems, 2021. 1,2

Edgar Tretschk, Ayush Tewari, Vladislav Golyanik, Michael
Zollhofer, Christoph Lassner, and Christian Theobalt. Non-
rigid neural radiance fields: Reconstruction and novel view



[26]

[27]

(28]

[29]

(30]

(31]

synthesis of a dynamic scene from monocular video. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 12959-12970, 2021. 3

Chung-Yi Weng, Brian Curless, Pratul P. Srinivasan,
Jonathan T. Barron, and Ira Kemelmacher-Shlizerman. Hu-
manNeRF: Free-viewpoint rendering of moving people from
monocular video. CVPR, 2022. 1,3

Hongyi Xu, Thiemo Alldieck, and Cristian Sminchisescu.
H-nerf: Neural radiance fields for rendering and temporal
reconstruction of humans in motion. Advances in Neural In-
formation Processing Systems, 34,2021. 1,3,5

Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan
Atzmon, Basri Ronen, and Yaron Lipman. Multiview neu-
ral surface reconstruction by disentangling geometry and ap-
pearance. Advances in Neural Information Processing Sys-
tems, 33, 2020. 2

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In CVPR, 2018. 5

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 586-595, 2018. 6

Zerong Zheng, Han Huang, Tao Yu, Hongwen Zhang, Yan-
dong Guo, and Yebin Liu. Structured local radiance fields for
human avatar modeling. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 15893-15903, 2022. 6

10



8. Implementation Details

Empirically, the points that are too far away from the
SMPL [11] mesh should not follow the movement of the
human body. To make the learned neural radiance field
less noisy, we exclude these outlier points during volumet-
ric rendering by setting their density values to zeros, and
this operation brings a slight improvement. To determine
whether a given point is an outlier, we apply the following
algorithm:

Algorithm 1 Outlier detection

Input: a sampled point p; SMPL faces F; «; 3; 7y
Output: outlier mask m
1: f < Find_NN_Mesh(p, F)
2: u,v, h < Compute_UV _SignedDistance(p, f)
3: return (u, v < «) OR (u,v > ) OR (|h| > v)

We set « = —4, 8 = 5, and v = 0.1 experimentally.

9. Novel View Synthesis

Although our method targets novel pose synthesis, we
still report results on novel view synthesis. We compare the
methods on the ZJU-Mocap [20] dataset in Tab. 4, where
Neural Body [20] exhibits superiority on PSNR and SSIM,
and achieves comparable LPIPS to our method. Neural
Body anchors features on the vertices of SMPL and dif-
fuses them into a feature grid before volumetric rendering,
avoiding establishing correspondences across frames. It is
favorable for novel view synthesis but degrades on novel
poses. Our method exceeds AniNeRF [19], which explic-
itly builds correspondences across frames like our method,
by a large margin in all metrics. And the results of quan-
titative comparisons are consistent with the rendering re-
sults shown in Fig. 9. Our barycentric mapping establishes
more robust correspondences across poses, producing fewer
structural artifacts such as the extra feet in Fig. 9. On the
Human3.6M [7] dataset, our method shows outstanding per-
formance compared to both baselines as shown in Tab. 5.
Corresponding visual comparisons are shown in Fig. 10,
where our method produces realistic textures, lights, and
shades. Note that Human3.6M [7] is noisier with higher er-
rors in the fitted SMPL parameters and unclear boundaries
in foreground masks compared to ZJU-MoCap [20]. This
explains the obvious degradation of Neural Body on this
dataset and indicates higher robustness towards imperfect
SMPL fits and noisy data of our method.

10. Novel Pose Synthesis

To further verify the generalization ability of our method
on novel poses, we show animated results in our supplemen-
tary video. We animate the subjects of each dataset with a
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\ PSNR? \
| NB AN

30.455
27.199
27.962
28.659
25.866
29.618
28.632
27.583

SSIMt |
AN

LPIPS|
AN

ours | NB

31.623 | 0.966
25.829 | 0.960
27.347 | 0.952
28.487 | 0.928
25.208 | 0.927
29.226
28.494
27.199

27.927 | 0.944

ours | NB

0.972 | 0.028
0.950 | 0.022
0.950 | 0.026
0.925 | 0.027
0.918 | 0.045
0.942 | 0.030
0.933 | 0.034
0.930 | 0.034

0.940 | 0.031

ours

0.024
0.026
0.026
0.026
0.044
0.031
0.035
0.035

0.031

28.050
19.660
24.970
25.760
22.551
23.717
23.793
17.351

0.940
0.849
0.920
0.870

0.038
0.065
0.045
0.054
0.083
0.074
0.069
0.205

0.079

Twirl
Taichi
Warmup
Punchl
Punch2
Swingl
Swing2
Swing3

Average ‘ 28.247

23.232

Table 4: Comparison with baselines on novel view synthe-
sis on the ZJU-MoCap [20] dataset. “NB” means Neural
Body, and “AN” means AniNeRF [19]. Bold values are the
best scores, and underlined values are the second best. Our
method outperforms AniNeRF [19] and is comparable to
Neural Body [20] on the perceptual metric.

| PSNRT | SSIMT | LPIPS|
| NB AN  ours | NB AN ours | NB AN ours
N 22.716 22.415 24.494(0.893 0.890 0.9130.032 0.034 0.032
S5 24439 23228 24.819(0.914 0.891 0.915|0.023 0.027 0.022
S6 22.668 22.689 24.294|0.884 0.866 0.894|0.029 0.034 0.028
S7 22.991 21.793 23.933|0.911 0.886 0.909|0.025 0.030 0.026
S8 21.570 22.666 23.234(0.890 0.897 0.9110.034 0.031 0.027
S9 24.121 24.694 25.691(0.907 0.907 0.9140.029 0.034 0.029
S11 23.537 24.594 25.622|0.892 0.903 0.914|0.039 0.035 0.032
Average ‘ 23.149 23.154 24.584 ‘ 0.899 0.891 0.910 ‘ 0.030 0.032 0.028

Table 5: Comparison with baselines on novel view synthesis
on the Human3.6M [7] dataset. “NB” means Neural Body
[20], and “AN” means AniNeRF [19]. Bold values are the
best scores, and underlined values are the second best. Our
method achieves the highest performances on PSNR, SSIM,
and LPIPS.

pose sequence from the other dataset. In pursuit of diver-
sity and complexity, we select the “Swing3” sequence from
ZJU-Mocap and the “S9” sequence from Human3.6M. Be-
sides, we compare our method with the baselines on three
more challenging pose sequences from the AMASS [12]
database. Neural Body [20] can hardly generalize to ex-
treme poses. AniNeRF [19] lacks high-fidelity details such
as wrinkles and lighting. In extreme pose #3, AniNeRF pro-
duces artifacts like corrupted faces, while our method gives
stable results.

11. Lighting MLP Validation

To further interpret our Lighting MLP, we visualize
its effect in our supplementary video by manipulating the
querying points of the Lighting MLP. By rotating the query-
ing points along a certain axis, we can observe a change in
the lighting on the human body. While, if the subject walks
out of the moving boundary in the training frames, the ren-
dering results will be dim because those locations are unde-
fined for the Lighting MLP.
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Figure 9: Results of novel view synthesis on the ZJU-MoCap [20] dataset. The results of Neural Body [20] and our method
exhibit fewer artifacts compared with AniNeRF [19].

12



L
Ground Truth Ours Neural Body AniNeRF Ground Truth Ours Neural Body AniNeRF

Figure 10: Results of novel view synthesis on the Human3.6M [7] dataset. Our results show higher fidelity with clear textures
and realistic lighting and shading.
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