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Abstract

We study the practical task of fine-grained 3D-VR-
sketch-based 3D shape retrieval. This task is of particular
interest as 2D sketches were shown to be effective queries
for 2D images. However, due to the domain gap, it remains
hard to achieve strong performance in 3D shape retrieval
from 2D sketches. Recent work demonstrated the advantage
of 3D VR sketching on this task. In our work, we focus on
the challenge caused by inherent inaccuracies in 3D VR
sketches. We observe that retrieval results obtained with a
triplet loss with a fixed margin value, commonly used for
retrieval tasks, contain many irrelevant shapes and often
just one or few with a similar structure to the query. To mit-
igate this problem, we for the first time draw a connection
between adaptive margin values and shape similarities. In
particular, we propose to use a triplet loss with an adaptive
margin value driven by a ‘fitting gap’, which is the similar-
ity of two shapes under structure-preserving deformations.
We also conduct a user study which confirms that this
fitting gap is indeed a suitable criterion to evaluate the
structural similarity of shapes. Furthermore, we introduce
a dataset of 202 VR sketches for 202 3D shapes drawn from
memory rather than from observation. The code and data
are available at https://github.com/Rowl1ng/
Structure-Aware-VR-Sketch-Shape-Retrieval.

1. Introduction

Progress in VR/AR technologies poses requirements on
the availability of 3D content, thereby contributing to the
active development of research on 3D shapes [3, 8, 39, 2].
This is further accompanied by the growth of large 3D
shapes collections. In our work, we study 3D VR sketch-
ing, 3D sketching by means of a VR headset and VR con-
trollers1, in a minimal sketching interface as an intuitive tool

1Note that in general, a 3D sketch can also be created using Kinect or
some 2D digital devices. As different sketching setups result in different

for 3D shapes retrieval and exploration.
Sketch was proven to be an efficient media for 2D im-

ages retrieval [41, 29]. However, despite recent attempts to
address the domain gap between 3D shapes and 2D sketches
[24, 20], instance-level retrieval of 3D shapes from 2D
sketches remains challenging at large. On the contrary, re-
cent works [22, 23] demonstrate the advantage of 3D VR
sketches for 3D shapes retrieval. Despite encouraging re-
sults, these models return many irrelevant shapes among
the top retrieval results (Fig. 1). This is largely due to the
abstraction and distortion inherent in VR sketches. In this
work, we strive for a system that accounts for such inaccu-
racies during training and returns among the top retrieval re-
sults shape that are structurally similar to the query sketch.

Traditionally fine-grained retrieval is evaluated by rank-
ing the retrieval results for each query according to a used
distance metric and counting the percentage of instances
that have ground-truth among the top-k ranked results. As
freehand sketches frequently contain distortions, top-k ac-
curacy does not allow to take into account the cases where
the top retrieval results perfectly match the sketch but do
not contain the ground-truth itself, as we show in Fig. 2.
To measure structural similarities between 3D shapes, we
adopt a fitting gap [32, 33] that evaluates how similar a
given 3D shape is to another 3D shape under a structure-
preserving deformation. In particular, we propose an adap-
tive margin scheme for a triplet loss, commonly used for
retrieval tasks [35, 28, 36, 11], to explicitly exploit this fit-
ting gap. We further leverage the recent progress in deep
structure-preserving deformation methods [39, 14] to com-
pute the fitting gap on the fly during training. We demon-
strate that our approach outperforms losses proposed in the
context of deformation-aware retrieval [32, 33] in the task of
the structure-aware 3D shape retrieval from a 3D VR sketch.
Furthermore, for the first time, we leverage the fitting gap as
an evaluation criterion for retrieval. To this end, we conduct
a user study that shows that this criterion by far outperforms

quality of sketches and their distortions, we refer to sketches created with
VR headsets/controllers as 3D VR sketches.
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Figure 1: We propose an adaptive margin scheme within a triplet loss ubiquitously used for retrieval tasks. As shown in this
figure, this strategy allows to obtain more ‘relevant’ retrieval results that closer match the input sketch and the ground-truth
3D shape structure. The green square highlights the ground-truth 3D shape among the retrieval results, while the red circles
mark erroneous retrieval results (dissimilar shapes).
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Figure 2: The VR sketches shown here were collected from the ‘reference’ 3D shapes [23]. The inherent distortions and
sparsity of VR sketches pose challenges for the fine-grained 3D shape retrieval task. There may be a similar 3D shape that
matches the overall sketch dimensions similar or better than the ground-truth but may have a worse (a) or better match (b) in
structure and details than the ground-truth. Therefore, we argue for a practical retrieval system that should be able to not only
take the overall shape dimensions into account (a), but match the shapes with a similar structure (b). Likewise, the evaluation
requires criteria that allow evaluating the structural similarity of the retrieved shapes (b).

the Chamfer distance in measuring structural similarities,
as judged by a human observer. Last but not least, we also
show that this fitting gap-based criterion provides additional
insights into retrieval performance.

In summary, our contributions include: (i) a novel for-
mulation of a triplet loss with an adaptive margin value
driven by the fitting gap between a ground-truth 3D shape
and a given gallery shape, (ii) a perceptual study of 3D
shapes distance measures on their effectiveness on evaluat-
ing structural similarities, (iii) adoption of the fitting gap as
a distance metric to evaluate how well the retrieved results
preserve structure and provides more fine-grained insights
into retrieval performance, and (iv) a new test set of VR
sketches drawn from memory.

2. Related Work
Sketch Based Retrieval Our work is inspired by the suc-
cess of fine-grained and category-level 2D-sketch-based im-
age retrieval (SBIR) methods [34, 27, 41, 21, 4, 29, 42].
Similar to majority of these works we leverage the triplet
loss, commonly used in the context of fine-grained and
category-level retrieval [35, 28, 36, 11].

However, 2D-sketch-based 3D shape retrieval (SBSR)
was mostly demonstrated in the context of category-level
retrieval: the pioneering hand-crafted feature based meth-
ods [6, 40, 18, 19] and the more recent deep learning based
methods [37, 34, 45, 5, 13, 25]. Qi et al. [24] are the first to
target fine-grained retrieval of 3D shapes from 2D sketches.
They show that existing methods for Fine-Grained (FG)

SBIR and category-level SBSR perform poorly on the task
of FG-SBSR. Similarly to this work, we are interested in
fine-grained retrieval of a 3D shape (retrieval of a particular
shape instance), but consider a 3D VR sketch as a query.
In the supplemental, we show that our method outperforms
[24] results by 7.44 points in top-1 retrieval accuracy on a
similar training and test set sizes on a chair category.

VR-Sketch-Based Shape Retrieval We are not the first
to consider 3D-VR-SBSR, but as with 2D sketches, most of
the existing methods for 3D-shape retrieval target category-
level retrieval [16, 17, 15, 38, 22]. The earlier works
[16, 17, 15, 38] relied on the dataset of 300 human-drawn
3D sketches of 30 classes, each with 10 sketches obtained
with a Kinect-based virtual 3D drawing system (not avail-
able online anymore). Luo et al. [22] proposed a heuristics-
based algorithm to generate synthetic 3D sketches from the
reference 3D shapes, that they leveraged to train deep mod-
els. Giunchi et al. [9, 10] considered fine-grained retrieval
of 3D shapes when a VR sketch is created on top of some
reference 3D shape. In their case, the VR sketch comprises
a set of dense ribbon-like strokes. Luo et al. [23] stud-
ied FG-3D-VR-SBSR from sparse quick sketches and intro-
duced the first dataset comprising 1,497 3D VR sketch and
3D shape pairs of chairs. They performed benchmarking on
common 3D shape retrieval methods and demonstrated en-
couraging results. In our work, we exploit their dataset and
propose an adaptive margin scheme for a triplet loss, taking
into account structural similarities between shapes.



Triplet loss with adaptive margin Triplet loss is com-
monly used for retrieval tasks [35, 28, 36, 11]. It requires
defining for each training set sample the sets of positive
(‘similar’) and negative (‘dissimilar’) samples. It results
in the latent space where ‘similar’ instances are encoded
closer than ‘dissimilar’ ones. It performs well in classifica-
tion tasks, but is less suitable for the continuous ratings [12],
which is the case for our problem, as we want all top-k re-
trieval results to be structurally similar to the query sketch.
Variants of adaptive margin schemes were shown to be effi-
cient for pose estimation [43], image retrieval [44, 12] and
facial expression recognition [31].

Deformation-aware retrieval Our problem of retrieving
a 3D shape that matches the structure of a 3D query sketch
bears similarities with the problem of deformation-aware
retrieval [32, 33]. These works address the problem of re-
trieving a clean and complete 3D model from a noisy and/or
partial 3D scan. They argue for the scenario where the
goal is to retrieve the shape that after the deformation is
the closest to the query. In this context, they define the
fitting gap as the difference between the deformed gallery
model and the query. In our case, the fitting gap is mea-
sured between gallery shapes and a ground-truth 3D shape
of a query sketch. Our work is closest to [33], where they
exploit the fitting gap to ensure that the gallery shapes are
embedded closer to the query shapes they can deform into.
They leverage the regression loss, first proposed in [32]. In-
stead, we propose a strategy for an adaptive margin value
setting driven by a fitting gap. We show its superiority
over the regression loss. Further, Uy et al. [33] jointly train
for the deformation and retrieval in an alternating fashion,
keeping one module fixed when optimizing the other and
vice versa. Their deformation module and embedding space
are optimized for deforming the retrieved shapes to the tar-
get shapes. In our work, the deformation module is trained
first and then used to guide the training to obtain the em-
bedding space where shapes/sketches with similar structure
are close to each other. Our perceptual study indicates the
validity of this measure for 3D shapes structural similarity,
outperforming existing ones. We aim at 3D VR sketch un-
derstanding and retrieval of a gallery shape that matches the
query sketch best, prioritizing structural similarities.

3. Method
Following [23], we represent 3D shapes and 3D sketches

as point clouds, and train the model via a Siamese training
with a triplet loss [35, 28, 36, 11]. As a 3D sketch and shape
encoder we exploit PointNet++[26], where the same set of
weights is used to encode both modalities.

We denote the feature embedding of a sketch S as s ∈
R512 (source) and a shape T as t ∈ R512 (target). For a
given batch of N sketch-shape pairs, in [23] the triplet loss

is defined as follows:

LT = 1/|Nn
S |

∑
tnS∈Nn

S

[d(s, tpS)
2 − d(s, tnS)2 +m]+, (1)

where tpS is an embedding of the shape T p
S matching the

considered sketch S. Nn
S = ∪Tn

S is a set of negative shape
examples, Tn

S , which are all shapes in a batch excluding
T p
S . m is a margin, [·]+ denotes the clipping of negative

values (a hinge loss), and d is a Euclidean distance in the
embedding space. Feature vectors are L2 normalized. The
triplet loss ensures that the source sketch and its matching
shape are closer in the feature space than the source sketch
and all other 3D shapes.

We propose an adaptive margin that determines how far
to push the embeddings of a sketch s and its matching
shape from the embeddings of shapes tnS in the negative set
of shapes based on how similar the 3D shapes T p

S (sketch
matching shape) and Tn

S (some shape from the set of neg-
ative shapes) are. In particular, let δ(·, ·) be some distance
between two 3D shapes. Then, for each shape, we com-
pute distances to each other shape. Let MS(T

p
S , N

n
S ) be the

maximum distance from the shape T p
S to shapes in Nn

S . We
compute the margin value for each pair of shapes T p

S and
Tn
S as follows:

m := m(T p
S , T

n
S ) = α+ (β − α)

δ(T p
S , T

n
S )

MS(T
p
S , N

n
S )
, (2)

where α and β are method hyper-parameters. This mapping
has nice properties: in the unlikely case that all the shapes
in the batch are similar, this loss will try to push them far
apart, still satisfying fine-grained retrieval requirements. In
the more likely case and on condition of a sufficiently large
batch size, MS(T

p
S , N

n
S ) will be similar between batches,

ensuring consistent behavior of the mapping driven only by
δ(T p

S , T
n
S ).

3.1. Choice of the distance δ in 3D space

One obvious choice of the distance between two 3D
shapes is the Chamfer distance [1], which is by far the most
commonly used distance for training and evaluating similar-
ities between two 3D shapes [7]. In this work, we consider
additional criteria to compare 3D shapes which prioritize
structural similarities.

First, we define an asymmetric fitting gap as the distance
between the sketch matching shape T p

S and the deformed
target/gallery shape Tn

S to the T p
S :

δACD(T p
S , T

n
S ) := CD(D(Tn

S ;T
p
S), T

p
S), (3)

where D(Tn
S ;T

p
S) is a deformation operator that deforms

Tn
S to T p

S , and CD denotes the Chamfer distance. We re-
fer to this definition of δACD(·, ·) as the asymmetric fitting
gap since we only deform the target shapes to the source
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Figure 3: Examples of shapes for which asymmetric or
symmetric fitting gaps are preferred (Sec. 4.1). The shapes
in the black rectangles show the top-5 ranked 3D shapes ac-
cording to the asymmetric δACD or symmetric δSCD fitting
gaps. The shapes in the purple and green rectangles are the
deformation results and their respective fitting gap values.
The arrows indicate the deformation direction. Thus, the
shapes in the purple rectangles are the gallery shapes de-
formed towards the query shape.

ground-truth (sketch matching) shape. The intuition behind
the asymmetric fitting gap follows the findings by Uy et
al. [32] that while one shape can be easily deformed into
another, it might not be true in the opposite direction. The
direction of the deformation is driven by the observation
that the structure of the retrieval results is more likely to
be what the user had in mind if the retrieval results can be
deformed to the target shapes.

Then, we define a symmetric fitting gap δSCD(T p
S , T

n
S ) as:

1/2 (CD(D(Tn
S ;T

p
S), T

p
S) + CD(Tn

S ,D(T
p
S ;T

n
S ))) . (4)

The rational behind the symmetric fitting gap is that if the
deformation can be accurately performed in both directions,
then the shapes are more likely to have the similar structure.
However, the risk is that the results for some shapes may be
biased due to the efficiency of the deformation of the source
into the target shapes.

As the deformation operator, we leverage a recent neural
deformation operator [39] that allows efficient computation
of the margin value during training, and was shown to work
well on diverse classes of shapes. We train the deforma-
tion operator on the 3D shapes from the chair class of the
ShapeNet dataset. We visualize the deformation results in
supplemental materials.

4. Perceptual study
In this section, we study the appropriateness of the fitting

gap as an evaluation criterion of the structural similarities

between 3D shapes, as judged by a human observer. First,
we compare the asymmetric and symmetric fitting gaps.
Second, we evaluate the asymmetric fitting gap against the
Chamfer distance and F-score.

4.1. Symmetric vs. asymmetric fitting gap

Data preparation We select a subset of 24 diverse shapes
from the ShapeNet chair category, on which the top-5 re-
trieved shapes for two versions of the fitting gap differ visu-
ally strongly from each other (some examples are shown in
Fig. 3). Then, for each shape, we perform a nearest neigh-
bor retrieval among the 5,274 shapes. We represent shapes
as point clouds by uniformly sampling 1,024 points.

Task We showed to 39 participants the top 5 ranked re-
trieval results according to two versions of the fitting gap.
We asked the participants to select the retrieval results that
have the most similar structure to the reference, as judged
from left to right.

Results For all shapes and all participants, the asymmet-
ric fitting gap was chosen 49.50% of the time, while the
symmetric fitting gap was 50.50% of the time. While on
average there is no clear preference for one over the other,
we observe that the best measure depends on a shape, as
shown in Fig. 3: on different shapes, one measure is chosen
over another with a clear gap. Which fitting gap is preferred
is driven by how easy one or another deformation direction
is. Thus, the example on the left shows the shape for which
computing deformation in both direction results in more re-
liable ranking. Meanwhile, for the example on the right the
ranked results are dominated by the deformation direction
from the query to the gallery shapes.

4.2. Fitting gap vs. Chamfer distance

In this experiment, we select a subset of 25 diverse
shapes from the ShapeNet chair category. Then, for each
shape, we perform a nearest neighbor retrieval among 5,274
shapes according to one of the 3 measures described below.
The task in this study is the same as the one described in the
previous section.

We evaluate the Chamfer distance against the two vari-
ants of the asymmetric fitting gap. We choose the asym-
metric fitting gap because it requires less computation and
performs similarly to the symmetric fitting gap on average.
As the first variant of the fitting-gap-based measures, we
consider an asymmetric fitting gap, where the distance after
the deformation is computed via Chamfer distance (Eq. (3)).
We also evaluate the asymmetric fitting gap, based on the F-
score with the threshold values set to 0.01:

δAF (T
p
S , T

n
S ) := F-score(D(Tn

S ;T
p
S), T

p
S) (5)

It was observed that the Chamfer distance is sensitive to ge-
ometric layout of outliers, and F-score was proposed as an
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Figure 4: Human preferences on retrieval results according to different measures, excluding the groundtruth. The Chamfer
Distance (CD), δACD (Eq. (3)) and δAF (Eq. (5)) are selected by participants as the best measure reflecting shapes structure
similarity for 16% (4 shapes), 72% (18 shapes) and 12% (3 shapes) of shapes considered in the study, respectively. The
values below each measure symbol show the percentage of participants who selected a particular measure for a given shape
as the best. The images in green rectangles show the deformations of the top-5 ranked shapes towards the query shape. The
numbers above each shape image are the values of the evaluated measure.

additional metric [30]. The ShapeNet 3D shapes are nor-
malized to fit a unit bounding box.

Results We collect responses from 15 participants. Fig. 4
shows representative distributions of human preferences.
On average the Chamfer distance CD is preferred 22.19%
of the time, δACD (Eq. (3)) is preferred 56.15% of the time,
and δAF (Eq. (5)) is preferred 21.66% of the time. We ob-
serve a good agreement between the participants: the stan-
dard deviations in choosing CD, δACD and δAF comprise
6.85, 7.34 and 7.36 respectively. Yet, there is a larger spread
in preferences among the shapes (Fig. 4): the standard devi-
ations in choosing CD, δACD and δAF comprise 22.29, 23.48
and 19.26 respectively. In Fig. 4(c) it can be seen that the
Chamfer distance is more likely to be selected when it is too
‘easy’ to warp any shape to the source groundtruth shape,
and the fitting gap is not informative. However, such cases
are not very frequent. It also can be seen that the F-score is
not very good in capturing the differences between shapes
due to small details (Fig. 4(a)). Even though in Fig. 4(b) δAF
is preferred by the majority of participants, it can be seen
that the fitting gap with the Chamfer distance allows us to
retrieve shapes with closer form of the chairs’ legs, and con-
taining a hole in the back similar to the ground-truth.

5. Experiments and Analysis

5.1. Datasets

For training and testing we exploit the dataset of 3D VR
sketches by Luo et al. [23]. This dataset consists of 1,005
unique 3D sketch and shape pairs from the ShapeNet chair
category, created by 50 participants. VR sketches in this
dataset were collected by displaying the reference shape in

the area separate from the sketching area. We refer to this
dataset as FVRS – a dataset of Freehand VR Sketches.

We use the same split for testing, training and validation
sets as was proposed in [23], comprising 202, 702 and 101
sketches, respectively. During testing we perform retrieval
from 5,794 shapes unseen during training and validation.
The test set contains all the sketches of 5 randomly selected
participants (50 sketches), and a subset of sketches of each
of the remaining 45 participants (152 sketches). The 45 par-
ticipants’ sketches are split proportionally across the train-
ing, validation and test sets. We represent our sketches and
shapes by uniformly sampling 1,024 points.

As in our envisioned application scenario a human is
sketching from memory or imagination, we collected a
small set of sketches from memory to (1) test the perfor-
mance on such data and (2) being able to analyze the differ-
ences with previously collected data from observation. The
participants could only sketch when the reference shape was
invisible, ensuring that they needed to memorize the refer-
ence. They were instructed to sketch the features of the ref-
erence shape that discriminate it from others. They could
go back to the reference at any time, as the task of memo-
rizing an arbitrary shape is somewhat artificial. This allows
to better approximate the scenario where people draw some
concrete shapes from memory. For a fair evaluation, we
collect additional sketches for the same 202 shapes as the
202 sketches in the test set of the FVRS datasset. We hire
10 participants, where 8 sketch 20 shapes each and 2 sketch
21 shapes. We refer to this new dataset as FVRS-M – a
dataset of Freehand VR Sketches by sketching from Mem-
ory. The analysis and comparison of sketches from FVRS-M
and FVRS is provided in Fig. 5 and its caption.
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Figure 5: FVRS-M vs. FVRS: In each triplet of images, the
1st image is a reference shape, the 2nd is a sketch from
FVRS[23], and the 3rd is a sketch from our new dataset
FVRS-M. “id” denotes each participant’s unique identifier.
The 1st row shows examples where the participants sketch-
ing from the visible reference preserved the overall pro-
portions better, while the 2nd row shows cases where the
participants sketching from memory reproduced the overall
proportions better. Large difference in proportions in these
sketches further support our goal of designing a structure-
aware retrieval method. The 3rd and 4th rows show exam-
ples in which participants in both sketching scenarios accu-
rately reproduced structure and shape dimensions. The 5th
row shows that when sketching from memory, participants
draw complex details approximately. Finally, one partici-
pant drew too quick and non-detailed sketches (row 6).

5.2. Evaluation criteria

We evaluate the accuracy of the retrieval using 4 differ-
ent metrics. In all cases, our sketches, source shapes, de-
formed source and target shapes are represented as point
clouds, and points-to-points distances are used for the eval-
uation. First, we evaluate the results in terms of Top-k ac-
curacy – the standard fine-grained retrieval metric. Top-k
accuracy computes the percentage of queries for which the
ground-truth shape is among the top k ranked retrieval re-
sults. In addition, we compute 3 additional criteria allowing
us to make more informed conclusions on how similar the
shapes are to the ground-truth among the top k ranked re-
trieval results. First, we evaluate the similarity in terms of
the average Chamfer distance (Avg CD) between each of
the shapes in the top-k ranked results and the ground-truth.
Then, we evaluate the structural similarity (Avg δA/S

CD ) based

on the average asymmetric/symmetric fitting gap δA/S
CD be-

tween each of the shapes in the top-k ranked results and the
ground-truth.

5.3. Results

All models are evaluated by training for 500 epochs. We
evaluate using cross-validation. We keep the test set fixed
and partition the rest of the data (803 sketch-shape pairs)
into 5 different subsets. For each of the 45 sketchers, we
split their sketches proportionally, randomly, between the
validation and training sets. We select 101 sketches as the
validation set and 702 sketches as the training set. The re-
sults in the paper are obtained by the last checkpoint. Re-
sults chosen by other metrics on validation set can be found
in supplemental materials.

5.3.1 Adaptive vs. fixed margin

First, we compare our model against the state-of-the-art,
comprising training with a triplet loss based model with
a constant margin value [23] with and without data aug-
mentation (Tab. 1). As data augmentation, we apply global
sketch/shape distortions as was proposed by Luo et al. [23].

We tested three constant margin values in the range
[0.3, 0.9] and found the value of 0.6 to give the best top-k re-
trieval accuracy and 0.3 to perform better according to other
criteria. When the data augmentation is used, the margin
value of 0.6 consistently outperforms other constant margin
values settings. Please see the supplemental for the detailed
comparison. The results in Tab. 1 are computed with the
margin value of 0.6.

We set our method hyper-parameters α and β in Eq. (2)
to 0.3 and 1.2, respectively. The ratio on the right in Eq. (2)
takes values in the range (0, 1], so the margin value is in
the range (0.3, 1.2]. Our ablation study in the supplemen-
tal shows that our method is relatively robust to small vari-
ations in the values of these parameters, and consistently
outperforms the fixed margin setting.

Tab. 1 shows that the proposed adaptive margin scheme
results in better performance according to all measures eval-
uating the average similarity (Avg X) for the top-1, 5, 10
ranked retrieval results – retrieving the 3D shapes with bet-
ter structural similarities to the sketch query’s ground-truth
3D shape (Tab. 1). Moreover, the fitting gap based baselines
(the last 4 rows in Tab. 1a, Tab. 1b) also have higher top-k
retrieval accuracy.

Importantly, we observe that for the models with the
fixed margin value, the average fitting gap value (Avg δA/S

CD )
of the top-5 ranked retrieved results on validation set starts
to increase after roughly the 30th epoch, and only the fitting
gap value for the top-1 ranked retrieved results decreases.
This may not be desirable if a user is interested in finding a
set of similar shapes, rather than only one.



Table 1: Quantitative comparison (Sec. 5.3) of the proposed method against state-of-the-art [23]. The usage of data augmen-
tation with sketch and shape distortions is denoted by ∗. The best result in each column is highlighted in bold, and the second
best result is underlined. Acc denotes the top-k retrieval accuracy – the percentage of queries that contain a ground-truth
among its top k ranked retrieval results. Avg X denotes the average distance between the ground-truth 3D shape and the
ranked top-k retrieval results according to the criterion X: CD is the Chamfer distance, δA/S is the asymmetric/symmetric
fitting gap, δA/S

CD is defined in Eq. (3) and Eq. (4), for the δA/S
F the distance between the shapes after deformation is computed

as an F-score with the threshold set to 0.01. Avg X values are multiplied by 1e2

(a) On the sketches from the FVRS dataset [23].

Acc ↑ Avg CD(T p
S , T

n
S ) ↓ Avg δACD(T p

S , T
n
S ) ↓ Avg δSCD(T p

S , T
n
S ) ↓ Avg δAF (T p

S , T
n
S ) ↑ Avg δSF (T

p
S , T

n
S ) ↑

Model t-1 t-5 t-10 t-1 t-5 t-10 t-1 t-5 t-10 t-1 t-5 t-10 t-1 t-5 t-10 t-1 t-5 t-10
[23] 24.55 43.76 52.57 3.93 4.88 5.17 1.27 1.59 1.69 1.23 1.56 1.67 85.29 81.44 80.18 85.69 81.67 80.35
[23]∗ 24.95 44.46 53.37 3.50 4.64 4.99 1.15 1.51 1.63 1.12 1.50 1.62 86.58 82.36 80.94 86.91 82.50 81.00
CD 23.47 41.49 49.01 3.18 3.98 4.22 1.10 1.43 1.52 1.07 1.40 1.50 86.92 82.95 81.84 87.22 83.19 82.02
CD∗ 24.65 43.86 53.27 2.89 3.95 4.21 1.09 1.40 1.49 1.06 1.37 1.47 87.23 83.50 82.25 87.51 83.64 82.37
δACD 24.55 43.86 52.67 3.23 4.16 4.49 1.10 1.40 1.50 1.08 1.39 1.48 86.96 83.26 82.09 87.27 83.43 82.23
δACD

∗ 27.23 47.13 55.25 3.05 4.22 4.54 1.05 1.38 1.49 1.03 1.36 1.47 87.48 83.57 82.32 87.73 83.73 82.45
δSCD 25.45 43.96 53.37 3.07 4.13 4.38 1.09 1.41 1.50 1.06 1.38 1.47 87.18 83.21 82.14 87.59 83.49 82.37
δSCD

∗
26.53 46.14 55.15 2.93 4.13 4.49 1.06 1.39 1.48 1.03 1.36 1.45 87.63 83.71 82.39 88.01 83.95 82.57

(b) On the sketches from the FVRS-M dataset.

Acc ↑ Avg CD(T p
S , T

n
S ) ↓ Avg δACD(T p

S , T
n
S ) ↓Method top-1 top-5 top-10 top-1 top-5 top-10 top-1 top-5 top-10

[23] 15.94 34.55 43.76 4.63 5.27 5.55 1.43 1.64 1.74
[23]∗ 17.92 36.63 44.36 4.18 5.04 5.39 1.32 1.6 1.71
δACD 17.43 35.35 43.66 3.81 4.58 4.87 1.24 1.46 1.55
δACD

∗ 19.41 38.42 47.33 3.91 4.6 4.87 1.22 1.43 1.51
δSCD 16.63 34.36 43.17 3.91 4.6 4.87 1.26 1.49 1.55
δSCD

∗ 18.51 36.53 45.45 3.8 4.57 4.83 1.22 1.43 1.52

FV
R
S

FV
R
S
-M

Figure 6: Qualitative evaluation: The lines in each sub-figure show top-10 ranked retrieval results when data augmentation is
used for [23], δACD (asym*) and δSCD (sym*) models. The green square denotes the ground-truth matching shape.

On the newly collected sketches from memory FVRS-M
we obtain lower retrieval accuracy on average (Tab. 1b) as
compared to performance on sketches from FVRS (Tab. 1a).
Our adaptive margin scheme results in better performance
according to all criteria: top-k retrieval accuracy and mea-
sures evaluating the similarity of the top-k retrieval results.

To demonstrate that our approach is not limited to a chair
category, we generate synthetic 3D VR sketches for two

additional categories: ‘lamp’ and ‘airplane’. We rely on
the method proposed in [22] and set the abstractness level
to 1.0, as it was demonstrated to match freehand sketches
best. However, as we demonstrate in the supplemental their
method still produces very dense sketches for the shapes
from the ‘airplane’ category, closely resembling the 3D
shapes. We show in Tab. 2 that our method with an adap-
tive margin outperforms constant margin setting in terms of



Table 2: Quantitative comparison of the proposed method against state-of-the-art on lamp and airplane shapes. Please see
Tab. 1 for the notations.

Acc ↑ Avg CD(T p
S , T

n
S ) ↓ Avg δACD(T p

S , T
n
S ) ↓ Avg δSCD(T p

S , T
n
S ) ↓ Avg δAF (T

p
S , T

n
S ) ↑ Avg δSF (T

p
S , T

n
S ) ↑

Category Model t-1 t-5 t-10 t-1 t-5 t-10 t-1 t-5 t-10 t-1 t-5 t-10 t-1 t-5 t-10 t-1 t-5 t-10

lamp
[23]∗ 63.87 83.23 86.45 1.20 6.37 8.82 0.39 1.54 1.98 0.43 1.86 2.43 95.38 82.57 78.09 94.96 81.55 76.51
δACD

∗ 67.74 87.10 92.26 1.11 4.00 5.08 0.33 1.24 1.45 0.32 1.35 1.64 96.11 85.29 82.67 95.99 85.02 82.06
δSCD

∗ 65.81 85.16 91.61 0.98 3.78 4.98 0.34 1.21 1.46 0.34 1.31 1.64 95.95 85.71 82.75 95.96 85.54 82.24

airplane
[23]∗ 81.33 92.00 93.33 0.24 1.34 1.69 0.16 0.59 0.68 0.16 0.62 0.72 99.27 93.58 92.40 99.24 93.29 92.03
δACD

∗ 82.22 93.78 95.56 0.20 1.11 1.40 0.14 0.52 0.61 0.15 0.53 0.63 99.44 94.69 93.48 99.39 94.54 93.25
δSCD

∗ 82.67 96.00 96.00 0.23 1.08 1.33 0.14 0.49 0.57 0.15 0.51 0.59 99.38 94.97 93.93 99.33 94.83 93.75

TL

RL

TL

RL

Figure 7: Qualitative comparison of the regression loss (RL) [32] and the triplet loss (TL) with an adaptive margin (Eqs. (1)
and (2)). The lines in each sub-figure show top-10 ranked retrieval results for (1) TL: δACD with triplet loss , and (2) RL: δACD

with regression loss. The green square denotes the ground-truth matching shape.

Table 3: Comparison of the regression loss (RL) [32] and the triplet loss (TL) with an adaptive margin (Eqs. (1) and (2)).
Please see Tab. 1 for the notations.

On the sketches from the FVRS dataset [23].
Acc ↑ Avg CD(T p

S , T
n
S ) ↓ Avg δACD(T p

S , T
n
S ) ↓ Avg δSCD(T p

S , T
n
S ) ↓ Avg δAF (T

p
S , T

n
S ) ↑ Avg δSF (T

p
S , T

n
S ) ↑

Model t-1 t-5 t-10 t-1 t-5 t-10 t-1 t-5 t-10 t-1 t-5 t-10 t-1 t-5 t-10 t-1 t-5 t-10
δACD TL 24.55 43.86 52.67 3.23 4.16 4.49 1.10 1.40 1.50 1.08 1.39 1.48 86.96 83.26 82.09 87.27 83.43 82.23
δACD RL 15.35 31.98 39.11 3.62 4.12 4.28 1.22 1.35 1.41 1.23 1.38 1.44 84.85 83.42 82.81 84.88 83.31 82.68

On the sketches from the FVRS-M dataset.
Acc ↑ Avg CD(T p

S , T
n
S ) ↓ Avg δACD(T p

S , T
n
S ) ↓ Avg δSCD(T p

S , T
n
S ) ↓ Avg δAF (T

p
S , T

n
S ) ↑ Avg δSF (T

p
S , T

n
S ) ↑

Model t-1 t-5 t-10 t-1 t-5 t-10 t-1 t-5 t-10 t-1 t-5 t-10 t-1 t-5 t-10 t-1 t-5 t-10
δACD TL 17.43 35.35 43.66 3.81 4.58 4.87 1.24 1.46 1.55 1.26 1.49 1.59 85.07 82.54 81.45 85.19 82.53 81.41
δACD RL 9.01 21.88 28.32 4.35 4.57 4.70 1.36 1.43 1.46 1.40 1.49 1.53 83.01 82.32 81.99 82.99 82.09 81.71

top-k accuracy and all distance metrics.

5.3.2 Comparison with regression loss

For 3D shape to 3D shape retrieval, Uy et al. [32] proposed
a regression loss, to retrieve a 3D shape best matching a
query 3D model after deformation. Here, we adopt this loss
to our problem, and use our definition of the asymmetric
fitting gap as the distance between 3D shapes, and the L2

distance as the distance in the feature space. Please see the
supplemental for details.

Tab. 3 shows that, in certain cases, Regression Loss (RL)
results in slightly better criteria, measuring the average sim-
ilarity of the top-5/10 retrieval results to the ground-truth.
However, RL results in significantly worse retrieval per-
formance according to top-k retrieval accuracy (Acc) and
the criteria evaluating the average similarity of the top-1 re-
trieval results. For additional evaluation and details please
refer to the supplemental.

RL encourages the distribution of distances in the latent
space to approximate the distribution of distances between
3D shapes. Thus, many similar shapes are encoded close
to each other in the latent space. Meanwhile, triplet loss’s
primary goal is to ensure that the distance between simi-
lar shapes is smaller than the distance between dissimilar

shapes. Our formulation with the adaptive margin allows to
achieve a desired trade off (Fig. 7).

6. Conclusion and future work
In this work, we propose an adaptive margin setting al-

lowing for structural similarities of shapes to play an impor-
tant role in ranking retrieval results. We further show that,
due to inaccuracies inherent to sketches, top-k retrieval ac-
curacy, the standard for retrieval evaluation, might be insuf-
ficient to drive out conclusions on retrieval performances.
We deploy a recent off-the-shelf neural deformation oper-
ator to compute the fitting gap that measures the similarity
between two 3D shapes under deformation. We conduct
a user study that shows the superiority of this fitting gap
over the Chamfer distance in measuring structural similari-
ties. We deploy fitting gap as one of the criteria to measure
retrieval results and as a distance metric for the adaptive
margin scheme. We show that our results outperform state-
of-the-art retrieval methods for sketch-based 3D shape re-
trieval. Our perceptual studies show that both symmetric
and asymmetric fitting gap can lead to sub-optimal rank-
ings. In the future, we would like to improve the robustness
of the fitting gap driven retrieval by considering not only
the distances after the deformation, but also how much the
shapes need to be deformed.
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