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Abstract

This paper presents a learning-based approach to per-
form human shape transfer between an arbitrary 3D iden-
tity mesh and a temporal motion sequence of 3D meshes.
Recent approaches tackle the human shape and pose trans-
fer on a per-frame basis and do not yet consider the valu-
able information about the motion dynamics, e.g., body or
clothing dynamics, inherently present in motion sequences.
Recent datasets provide such sequences of 3D meshes, and
this work investigates how to leverage the associated intrin-
sic temporal features in order to improve learning-based
approaches on human shape transfer. These features are
expected to help preserve temporal motion and identity con-
sistency over motion sequences. To this aim, we introduce
a new network architecture that takes as input successive
3D mesh frames in a motion sequence and which decoder is
conditioned on the target shape identity. Training losses are
designed to enforce temporal consistency between poses as
well as shape preservation over the input frames. Exper-
iments demonstrate substantially qualitative and quantita-
tive improvements in using temporal features compared to
optimization-based and recent learning-based methods.

1. Introduction

Motion retargeting is the process of transferring motion
between digital characters. It is primarily used to create an-
imations based on information captured on real characters
and can therefore enrich creative applications as well as ex-
pand existing moving body datasets, e.g., [6, 7, 24, 21].

Motion retargeting was originally performed using par-
tial shape observations, as obtained with marker-based mo-
tion capture systems, and through skeletal parametrization
of the body pose, e.g., [19, 2, 15]. With the progress of
computer vision algorithms and performance capture sys-
tems, it has since been extended to full shape observations,
e.g., [23, 3], with the objective to enable motion transfer
with fully captured shape information. Such an extension
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Figure 1. Given (in green) a shape identity and a shape motion
sequence our spatio-temporal approach transfers the identity onto
the motion sequence yielding a new sequence (bottom row).

gives access to more realistic body models, but faces an in-
herent difficulty with traditional skeletal parametrizations.
In fact, while efficient, these parametrizations are prone to
artifacts and unrealistic surface deformation as they intro-
duce an intermediate pose representation that tends to be
inaccurate with real characters. Surface-based approaches,
such as [23, 8], were proposed as an alternative solution that
directly deforms the surface of a character given another
character surface in a different pose. Although they relax
the need for skeletal parametrization, these approaches still
build on the assumption that body poses can be modeled in-
dependently of body shapes. This seems difficult in practice
as poses can hardly be formally identified in a consistent
way among different real characters.

More recently, data-driven strategies have been pro-
posed, e.g., [4, 25, 28, 9], that demonstrate better pose and
shape disentanglement abilities and hence better generaliza-
tion. In particular [4, 9] propose to consider shape identities
in the motion transfer, whereas most previous methods fo-



cus on pose transfer. They demonstrate thereby state-of-the-
art results, and we build on this idea that we explore further
with the temporal dimension. Leading motion retargeting
methods transfer shape or pose features in a single frame,
hence a static basis. However, moving shape observations
are inherently temporal shape functions, a property that a
static approach can not exploit. Temporal features that en-
code information on shape dynamics can provide additional
and beneficial information for shape transfer, such as local
shape features that are stable over time.

To this aim, we propose Temporal Shape Transfer Net-
work, a data-driven approach to modify the identity of a
moving character in a captured sequence of 3D meshes.
The network is an autoencoder that considers consecutive
frames in the input sequence in addition to an identity mesh.
The encoder aggregates spatial features over time while the
decoder combines identity shape features to the encoded la-
tent motion representations. A discriminator is introduced
to enforce the decoder to generate realistic shapes, which
appears to be crucial, especially when dealing with un-
known identities. To the best of our knowledge, this is the
first learning-based approach that exploits temporal features
on the problem of shape transfer. Experimental results with
4 consecutive frames already confirm their benefit with a
significant improvement over the state-of-the-art in motion
prediction and shape preservation for long sequences.

2. Related Work
Motion transfer methods can be divided into three main

categories, as detailed below. Note that we focus on works
most relevant to our concern with human shapes.

2.1. Skeletal Motion Transfer

As mentioned before, early strategies for motion retar-
geting are built on skeletal parametrizations, for instance,
joint locations of the human pose. These parameterizations
allow the transfer of motion between rigged meshes, the
surfaces to which skeletal structures are attached through
skinning weights [27, 19]. Surface deformations are then
performed using blending techniques [17, 14], with the ob-
jective to match target poses. While popular for animating
digital characters given synthesized or captured joint loca-
tions, this approach is prone to unrealistic surface deforma-
tions [2, 15], especially with real characters. In addition, it
generally considers the transfer of new poses onto known
identities and is less adapted to the transfer of new captured
identities onto exiting motion sequences [26, 1], hence lack-
ing generalization ability over human shapes.

2.2. Shape Motion Transfer

Omitting the intermediate skeletal parametrizations,
surface-based approaches were later proposed to consider
shape deformations directly, as with mesh deformations and

through optimization-based methods [23, 3, 29, 22, 8, 10].
For instance, Sumner et al. and Baran et al. [23, 29] en-
code the pose of a source character as the deformation of
the associated mesh and transfer it to a target character
through per-triangle affine transformations, therein assum-
ing complete mesh correspondences. This seminal work has
inspired several approaches but still suffers from artifacts
when transferring between significantly different shapes.
Other works have explored semantic deformation transfer
between characters allowing thus for very distinct shapes as
in [3]. These methods usually exploit semantic pose corre-
spondences that can be difficult to obtain in practice. Also,
exploiting such given pose correspondences [8] investigates
the animation of captured characters over time sequences
instead of single frames. All these methods cast the prob-
lem of motion transfer as a pose transfer, assuming the im-
plicit independence between pose and shapes. In contrast,
Basset et al. [5] presents an optimization-based method that
departs from the pose transfer paradigm and explores the
transfer of shape identities instead. However, we follow a
similar strategy with a learning-based approach that applies
to sequences instead of single frames. The experiment sec-
tion provides comparisons with [5].

2.3. Learning-based Motion Transfer

More recently, neural networks have proven efficient
in learning motion transfer by training over examples of
source and target poses [10, 28]. They have also demon-
strated the ability to learn mappings between semanti-
cally different poses of humans and animals in order to
interactively control animation generation [22]. Interest-
ingly, these methods neither require skeletons nor point-
to-point correspondences between source and target. How-
ever, heavy pre-processing needs to be performed for every
pair of source and target characters. Moreover, learning-
based methods usually fail to generalize to unseen ex-
amples and must be re-trained to handle unknown iden-
tities [28], whereas we propose to learn multiple shapes
with a base template that allows generalization over new
identities. Also, most learning-based approaches focus on
transferring pose deformation between characters [25, 28],
which can lead to unrealistic shape deformation with un-
seen poses and limits, therefore the range of admissible
motions. Besides, Wang et al. [25] successfully proposed
to reuse concepts from 2D image style transfer to learn a
spatial adaptive network that is invariant to vertex order.
The method can suffer from stretching artifacts when the
identity shape has body contacts or limbs in proximity, of-
ten occurring with realistic captured data and over long se-
quences. More recently, Chen et al. [9] proposed to exploit
the framework from [25] to disentangle pose and shape in
an unsupervised manner. This approach contributes to the
shape transfer problem with an unsupervised strategy, and



we consider another aspect with the temporal dimension
and the ability to exploit existing datasets with dynamic in-
formation.

Our approach evolves from these previous works to
tackle the inverse problem, where the posed shape deforms
to adopt the style of the identity shape, avoiding, therefore,
the issue of pose transfer between very distinct poses while
maintaining generalization and vertex permutation invariant
properties. The following section focuses solely on gener-
alization and omits vertex permutation, which is inherent in
the state-of-the-art methods [25]. In addition, our method
can robustly transfer unseen shapes to long mesh sequences
and hence suffers less from stretching or unrealistic arti-
facts. Comprehensive comparisons with the state-of-the-art
are provided to validate these aspects.

3. Method
Our method considers temporal sequences of 3D meshes

with the same connectivity, similarly to the state-of-the-
art approaches [5, 25, 28]. However, in contrast to the
frame-by-frame strategy usually followed, our learning-
based method takes as input several consecutive frames that
are fed into the network we propose, as illustrated in Fig-
ure 2. To take advantage of the temporal information, our
network first extracts combined spatial and temporal fea-
tures from the input mesh frames using the encoder pre-
sented in Section 3.1. Given the temporal features and a
shape identity, the decoder transfers the shape identity onto
the input frames while preserving its intrinsic and motion
features over time as detailed in Section 3.2. The resulting
shape deformations can be unrealistic with unseen identi-
ties (i.e., not in the training set), and hence we introduce a
discriminator to complete the architecture to enforce shape
realism (Section 3.3). Our experiments (Section 4) vali-
date this architecture and demonstrate the benefits of tem-
poral features over traditional optimisation-based [5] and
learning-based [4, 25, 28] methods for shape transfer.

3.1. Temporal Features

The objective is to transfer an identity onto a temporal
shape sequence of a moving human body. In order to ex-
ploit the time dimension for that purpose, we expect our
network to extract motion features from the input sequence
that can, in turn, help the decoder generate time consistent
deformations. To this aim, we use an LSTM recurrent neu-
ral network [13] as it has been successfully used for classi-
fication, processing and prediction based on temporal data.
Of particular interest for this work is the LSTM’s ability to
handle either a single or an input sequence to learn depen-
dencies within the sequence without significantly impacting
computational resources.

The temporal encoder Et is therefore a multi-layer
LSTM network that takes as input 4 consecutive frames

from a 3D mesh sequence, and outputs hidden state vectors
ct for each of the input frames (see Figure 2). These hidden
state vectors are spatially correlated through time and, con-
sequently, can compensate for the inability of point based
architecture alone to exploit local surface information, as
illustrated with body contact in Figure 3 with NPT (max-
pool). Additionally, they help better preserving the motion
dynamics present in the input sequence, as illustrated in Fig-
ures 5, 7 and 4.

Each hidden state ct is concatenated with the feature vec-
tor st from the spatial encoder resulting in a temporal fea-
ture vector zt. This feature is thus the latent representation
of a sequence of posed meshes through time, which the de-
coder G receives as input.

3.2. Shape Preservation

When transferring an identity shape onto a moving shape
sequence, it is desirable to preserve the identity shape fea-
tures, or intrinsic features, throughout the sequence as well
as to retain the original motion sequence, or extrinsic fea-
tures, for each frame. The following sections describe the
intrinsic and extrinsic metrics in more detail.

3.2.1 Temporal Intrinsic Shape Preservation

The temporal encoder Et learns temporal dependencies but
does not explicitly enforce intrinsic shape features through
time, which results in a limited accuracy for the shape iden-
tity. To improve this, we define a loss that ensures the
preservation of intrinsic properties of the identity shape
over all the sequences under consideration. In practice,
the intrinsic features are represented by edge lengths on
the identity mesh. The underlying assumption is that hu-
man shapes undergo near-isometric transformations when
moving, which does not impact geodesic distances. Al-
though restrictive, this assumption has proven efficient
to enforce shape preserving deformations, as shown in,
e.g., [18, 12, 5, 25].

The intrinsic loss writes:

Lint =
∑
t

∑
{(i,j)}

| ||ṽ
i
t − ṽjt ||

||vi − vj ||
− 1|, (1)

where {(i, j)} is the set of edges on the template mesh, t
the time and vi, ṽit vertices on the ground truth and the esti-
mation at t respectively.

3.2.2 Extrinsic Motion Preservation

In order to preserve poses over the deformed shapes, we
consider pairwise distances between vertices on meshes.
The objective is to preserve the global structure of the shape,
such as body contacts and relative distances between limbs.



Figure 2. Network architecture: The spatial encoder Es considers input mesh vertex locations and yields a feature st per input frame.
The temporal encoder Et is an LSTM network that takes as input the vertex locations over all frames and outputs a hidden state vector ct
per frame. The decoder G produces the template mesh vertex locations for the new identity frames. For the discriminator D we adopt a
GAN framework to predict real or fake mesh shapes. See supplementary materials for detailed network architectures and hyper-parameter
specifications.

Distances between nearby vertices on the mesh tend to en-
code intrinsic shape properties, but distances between far-
ther vertices characterize poses. Both should correspond
to the estimated shapes and ground truth shapes. While
these distances include the edge length mentioned before,
the constraint applies here on a per frame basis, which im-
pacts the back-propagation differently than the intrinsic fea-
ture preservation and facilitates the decoder convergence in
practice.

Equation 2 below defines the shape pose loss we use.
It compares at each time t the distance matrices U i,j(.) of
the generated vertices Ṽt and of the ground-truth vertices
Vt. The distance matrix U i,j(.) is the upper triangular ma-
trix with all the Euclidean distances between mesh vertices
considered pairwise.

Lext =
1

n

∑
t

||U i,j(Vt)− U i,j(Ṽt)||2F , (2)

where ||.||F denotes the Frobenius norm.
In addition to the spatial distances between mesh ver-

tices, we could also consider the temporal distances cov-
ered by the vertices between successive frames as extrin-
sic features. However, our experiments did not demonstrate
significant improvements using such distances, and we use
them for evaluation purposes only.

3.3. Model Learning

The network is trained in an end-to-end fashion, where
the encoder, decoder, and discriminator models are learned

simultaneously, as illustrated in Figure 2. The overall train-
ing objective function Lg is defined as follows:

Lg = Lint + Lext + Lrec + Ladv, (3)

where Lint and Lext are the intrinsic and extrinsic feature
losses introduced before. Lrec is the reconstruction loss:

Lrec =
∑
{t}

∑
{i}

||vi − ṽi||2, (4)

that accounts for the L2 norm error between the estimated
vertices ṽi and the ground truth vertices vi at each frame.
This loss alone does not guarantee realistic surfaces since it
does not enforce any spatial consistency between the esti-
mated vertices. To this aim, we introduce the discriminator
D that is trained to maximize the probability of predicting
the correct label of both training examples and the decoder
synthesis. This is implemented as a classical adversarial
loss [11]:

Ladv = min
G

max
D

EVt∼pdata
[log(D(V )]

+ Ezt∼pzt
[log(1−D(G(zt)))],

(5)

where pdata and p(zt) denotes the distribution of the train-
ing set and prior distribution for G. The min and max refer
to the minimization of the decoder G loss and the maxi-
mization of the discriminator’s D loss. The respective con-
tributions of the above different losses are evaluated with an
ablation study that is presented in Table 2.



3.4. Implementation Details

All the experiments were carried on a PC with a single
NVIDIA Quadro RTX 5000, 16GB. The network is trained
on 103 epochs where each epoch sees 103 examples. It is
optimized using the Adam optimizer [16] with a momentum
of 0.9, and with a learning rate of 0.001 for both decoder G
and discriminator D, where training data are distinct shapes
from the testing data. Empirically the weights of the ob-
jective function Lg were found to best perform when all
set to 1. The batch size is fixed to one for all settings, and
each batch contains 4 3D mesh frames as a list of vertex
coordinates. Please consult the supplementary material for
more details on training and testing shapes. The encoder
Es receives as input the frames in a batch of size 4, conse-
quently outputting 4 latent variables st = [s0, ..., s3]. On
the other hand, the encoder Et receives as input a sequence
of 4 frames with a batch of size 1. This will generate four
hidden state variables ct = [c0, ..., c3], which are then con-
catenated with st to form zt = [z0, ..., z3] that is fed into
the decoder G.

The training time takes around 41 hours where NPT [25]
takes 24 hours. At inference, the proposed method takes
less than one second, where the optimization methods [5]
requires 20 minutes per frame on average.

4. Experiments
This section presents results and evaluations for the pro-

posed temporal shape transfer network. We use for that
purpose the AMASS dataset [21]. SMPL based datasets
[20], FAUST [6], Dynamic FAUST[7] and realistic clothed
people (3DPW) [24] are also used to evaluate shape trans-
fer generalization capabilities with challenging examples.
A comparison against state-of-the-art learning-based and
optimization methods is given in Table 1 with quantita-
tive results, demonstrating significant improvement in the
shape quality and motion preservation. Qualitative results
are shown in Figures 5, 7, 3 and 4, demonstrating the
ability to preserve motion and shape for long motion se-
quences, and in Figure 6 to illustrate challenging realis-
tic shape transfers with, e.g., clothed people. An ablation
study is presented in Table 2 and Table 3 to quantitatively
evaluate the contribution of each module, input sequence
lengths and loss functions relative to reconstruction, shape
identity transfer, and motion preservation. Code is avail-
able at https://github.com/joaoregateiro/
TemporalShapeTransferNetwork.

4.1. Datasets

The AMASS dataset [21] is used for training and test-
ing, where 18 and 9 body shapes are randomly generated
to create a unique collection of training and testing shapes,
respectively. The generation is performed using the param-

Figure 3. Shape transfer evaluation against state-of-the-art meth-
ods. The color coded error is a mean per-vertex distance between
predicted and ground-truth (GT) shapes. Note that different nor-
malizations are applied to better visualize performances.

eterized template model (SMPL) [20], which allows control
of pose and body shape. The 21 motion sequences are di-
vided into 10 training and 11 testing sequences, which are
generated using the provided motion capture dataset con-
taining approximately 26000 frames for training and test-
ing. This was used as ground-truth data to train our network
and evaluate the contribution of temporal features on mo-
tion preservation and shape transfer (see the supplementary
for more details on the shape and pose diversity in training
and testing).

4.2. Quantitative Evaluation

We conducted quantitative comparisons with two met-
rics: static and temporal shape errors. The static shape error
evaluates the reconstruction error using two different met-
rics. The Root Mean Squared Distance (RMSD) is used to
measure the average accuracy with respect to the ground-
truth, and the Hausdorff distance gives a good measure of
the mutual proximity of two 3D meshes. On the other hand,
the temporal shape error measures vertex trajectory error
with first order differences over time. This instant velocity
error provides additional information on the stability of the



Figure 4. Motion preservation comparison against state-of-the-art
methods. The color coded error is a per-vertex first order deriva-
tive vector comparison between predicted and ground-truth (GT)
shapes. Errors are normalized between 0 and 1.

vertex predictions.
We have compared our method with five state-of-the-

art methods: Neural Human Deformation Transfer (NHDT)
[4], Neural Pose Transfer (NPT) [25], Unsupervised Shape
and Pose Disentanglement (USPD) [28] and Contact Pre-
serving Shape Transfer (CPST) [5] on the same AMASS
dataset. These methods are accessible and solve for shape
or pose transfer on a single frame basis, which provides in-
formative baseline methods to demonstrate the contribution
of temporal features on the problem of human shape trans-
fer.

4.2.1 Static Shape Error

Shape reconstruction errors are evaluated using the RMSD
defined as: RMSD(V, Ṽ ) = 1

n

√∑n
i=1(vi − ṽi)2,

between the generated Ṽ and ground truth V mesh vertices
ṽ, v respectively. The Hausdorff distance between those 2
meshes is defined as:
dH(Ṽ , V ) = max{supv∈V d(v, Ṽ ), supṽ∈Ṽ d(ṽ, V )},
where d(a,B) is the minimal distance from a point a to
a set B.

Table 1 illustrates the reconstruction error for train-
ing and testing data, demonstrating a significant improve-
ment in shape and pose reconstruction with 0.0108m and
0.0283m against 0.0547m and 0.0367m (training and test-
ing with Hausdorff distances) for the best performing model
in the state-of-the-art (NPT with maxpooling [25]).

4.2.2 Temporal Shape Error

The temporal shape error is evaluated by comparing ve-
locities with first order differences in vertex locations, i.e.,
vt+1
i − vti for the vertex i. With these vector values, errors

are estimated by considering both the direction with the an-
gle and the L2 norm error between the terminal points of
the estimated and ground-truth vectors. For every predicted
motion frame and ground-truth, we compute the average
means of the angular velocity differences and the L2 norm
errors for all vertices and all frames of a sequence. Table 1
shows comparisons with the state-of-the-art for these met-
rics. Our method performs best overall, however, the CPST
[5] optimization approach is the best performing method on
the validation set. Although CPST is more sensitive to scal-
ing and body proportions, as illustrated in Figure 3 with
higher reconstruction errors, the costly optimization process
provides some benefits with more accurate vertex trajecto-
ries.

4.3. Qualitative Evaluation

Qualitative results of the proposed network are presented
in the Figures 3, and 5 for reconstruction errors, Figure 4
and 5 for velocity errors, Figures 1 and 6 for the ability
to generalize over other datasets and Figures 1 and 7 for a
sequence example. As illustrated in the latter, results are
consistent across the animation and do not introduce no-
ticeable artifacts, such as foot scatting, jitter, or stretching.
Figure 3 illustrates the reconstruction error performances of
our approach with respect to the state-of-the-art. Figure 4
shows that the proposed method can describe the motion in
the regions with significant changes e.g. arms and legs, and
is comparable to the state-of-the-art. Figure 5 compares the
proposed network to the best performing single frame basis
state-of-the-art method (NPT maxpool [25]). The errors in
Figure 4 are normalized between 0 (blue) and 1 (red). In ad-
dition, Figure 6 show that the proposed network can transfer
the shape style of unseen realistic characters from realistic
body shapes datasets (FAUST and Dynamic FAUST) [6, 7]
and realistic clothed people (3DPW) [24], while preserving



Table 1. Comparison of the proposed network against NHDT [4], NPT [25], USPD [28] and CPST [5]. The values represent the average
Hausdorff (HDFF) and root mean squared (RMSD) reconstruction errors in meters; the L2 norm errors (L2) and angular errors between
velocity vector direction across all motion sequences and for different character shapes. Best results are in bold.

Proposed NHDT [4] NPT maxpool [25] NPT [25] USPD [28] CPST [5]
Dataset Train Val Train Val Train Val Train Val Train Val Train Val

HDFF(m) 0.0108 0.0283 0.1902 0.1145 0.0547 0.0357 0.0617 0.0429 0.1769 0.0528 0.0848 0.0799
RMSD(m) 0.0024 0.0072 0.0734 0.0327 0.0155 0.0092 0.0155 0.0097 0.0704 0.0201 0.0368 0.0328

L2 0.1136 0.1713 0.1538 0.2174 0.4488 0.5800 0.6210 0.8506 1.1225 0.8359 0.2533 0.1549
direction 11.30 ° 14.80° 15.48° 18.26° 31.05° 36.34° 39.86° 47.47 ° 58.10 ° 45.79 ° 20.26 ° 12.08 °

Table 2. Ablation study of the different losses presented in Section 3. In addition to the metrics in Table 1, the average edge length error
(equation 1) over the vertices is given.

Lrec only Lrec,adv Lrec,adv,int Lrec,adv,int,ext

Dataset Train Val Train Val Train Val Train Val
HDFF(m) 0.0138 0.0384 0.0112 0.0342 0.0129 0.0339 0.0108 0.0283
RMSD(m) 0.0036 0.0100 0.0026 0.0083 0.0031 0.0085 0.0024 0.0072

Intrinsic (edge) 0.2347 0.3568 0.2333 0.3606 0.1534 0.2521 0.1459 0.2469
L2 0.1302 0.2009 0.1312 0.1973 0.1208 0.1816 0.1136 0.1713

direction 12.59 ° 16.50 ° 12.36 ° 16.39 ° 11.86 ° 15.26 ° 11.30° 14.80 °

Figure 5. Close-up comparison with state-of-the-art on pose trans-
fer on a single frame basis (NPT [25]). Static: reconstruction er-
rors. Dynamic: velocity errors.

the high-frequency details such as body muscular anatomy
and clothing. Note here that the network has no informa-
tion on clothed shapes at training, illustrating generalization
ability. See the supplementary material for more examples
of unseen realistic characters and video results on animation
sequences.

5. Ablation

An ablation study that evaluates the contribution of the
different losses introduced in Section 3 is presented in Ta-
ble 2. The metric used is detailed in Section 4.2. To further
understand the contribution of the intrinsic features on the
results, we evaluate the edge length preservation. The com-
parison is made using the Lint loss (Equation 1) between
predicted and ground-truth shapes.

The ablation study shows that the reconstruction Lrec is
not sufficient for the task of shape transfer. We see a perfor-

mance increase in the reconstruction errors with the intro-
duction of the adversarial loss Ladv . However, the preser-
vation of the intrinsic shape and motion properties is more
or less stable. The latter is clearly improved with the in-
trinsic shape preservation loss. The addition of the extrinsic
loss, hence the entire proposed network, demonstrates the
best results on the shape reconstruction errors, identity, and
motion preservation.

Table 3 shows the contribution on the number of frames
used as input to the temporal encoder Et in Section 3.1. It
is demonstrated that the benefits will incrementally improve
with the increase in the number of frames. In this work, we
empirically choose four frames.

6. Conclusion
We presented a novel learning-based approach to the

problem of motion transfer between digital characters. Our
main contribution is to investigate the time dimension for
that purpose with a neural network that considers tempo-
ral sequences of shape meshes as input instead of single
frames as traditional in the state-of-the-art. The tempo-
ral aspects are exploited through LSTM networks that en-
code time dependencies between frames as well as through
edge length preservation that enforces intrinsic shape iden-
tity consistency over time. Experimental results demon-
strate that temporal information contributes to better shape
reconstructions in addition to better motion preservations.
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Table 3. Ablation study of the model Lint,ext,rec,adv using different input sequence lengths presented in Section 3.
1 frame 2 frames 3 frames 4 frames 5 frames

Dataset Train Val Train Val Train Val Train Val Train Val
HDFF(m) 0.0161 0.0372 0.0111 0.0411 0.0117 0.0317 0.0108 0.0283 0.0111 0.0371
RMSD(m) 0.0044 0.0101 0.0026 0.0104 0.0028 0.0084 0.0024 0.0072 0.0024 0.0088

Intrinsic (edge) 0.2171 0.3294 0.2064 0.3284 0.1968 0.3154 0.1459 0.2469 0.1862 0.3024
L2 0.1475 0.2065 0.1381 0.1884 0.1238 0.1685 0.1136 0.1713 0.1370 0.2122

direction 12.63 ° 17.09 ° 12.61 ° 15.72 ° 11.84 ° 14.76 ° 11.30° 14.80 ° 13.19 ° 17.36 °

Figure 6. Generalization over real shapes from other datasets (not used for training): 3DW [24], Dynamic Faust [7] and Faust [6], including
shapes with clothing as on the top examples.

Figure 7. Shape transfer from an unseen realistic shape (identity shape on the left) onto a sequence of 3D shapes (top). On the right, a
visualization of both prediction (bottom shapes) and top shape motion for four vertex motions located at the hands and feet, illustrating
motion accuracy.
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