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Abstract

Efficiency and robustness are increasingly needed for
applications on 3D point clouds, with the ubiquitous use
of edge devices in scenarios like autonomous driving and
robotics, which often demand real-time and reliable re-
sponses. The paper tackles the challenge by designing
a general framework to construct 3D learning architec-
tures with SO(3) equivariance and network binarization.
However, a naive combination of equivariant networks
and binarization either causes sub-optimal computational
efficiency or geometric ambiguity. We propose to locate
both scalar and vector features in our networks to avoid
both cases. Precisely, the presence of scalar features makes
the major part of the network binarizable, while vector
features serve to retain rich structural information and
ensure SO(3) equivariance. The proposed approach can be
applied to general backbones like PointNet and DGCNN.
Meanwhile, experiments on ModelNet40, ShapeNet, and
the real-world dataset ScanObjectNN, demonstrated that
the method achieves a great trade-off between efficiency,
rotation robustness, and accuracy. The codes are available
at https://github.com/zhuoinoulu/svnet.

1. Introduction
3D point cloud processing has become a popular topic in

recent years, with its broad applications like autonomous
driving, augmented reality, and robotics. Deep neural
networks are the first choices for building high accuracy ar-
chitectures to recognize point cloud data, though often with
huge computational cost and memory storage. Nowadays,
applications on edge devices need more running efficiency
and model compactness, meanwhile, rotation robustness,
to deal with unseen environments with arbitrary poses in
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Figure 1. Binarization on different types of architectures.

3D data. Numerous efforts have been taken in tackling the
challenge in either model efficiency by leveraging network
binarization [32], which has the charming advantages of
up to 32× and 64× reduction in memory storage and
inference speed, respectively [33], or rotation robustness by
manipulating geometric features [51, 8, 50]. We believe it
can be solved within a single framework.

We start by discussing a naive combination with SO(3)
invariant networks and network binarization by taking ad-
vantage of the latest approaches on both sides (Fig. 1,
Tab. 6). Generally, rotation-invariant networks utilize pose-
preserving features during inference, which can be the
rotation invariant ones [51, 46, 22, 1] in form of scalar
geometric attributes like vector norms and angles, or the ro-
tation equivariant ones [6, 36] with vectors like coordinates
or directions. On one hand, directly binarizing invariant
scalar features and model weights still preserves rotation
invariance and gives great speedup via replacing floating-
point multiplications to the cheap XNOR-Count operations
(or binary operations), while this combination may cause
inevitable loss of geometric information [22, 46], leading
to unsatisfactory prediction accuracy. On the other hand,
as binarizing equivariant vectors destroys rotation equivari-



ance, merely binarizing weights and leaving those vectors
unchanged gives another viable but sub-optimal option as
the expensive floating-point multiplications are converted
to additions, instead of the cheaper binary operations.

Motivated by the recent works on molecular repre-
sentation learning [17, 16, 35, 34], where both invariant
scalar features and equivariant vector features are updated
and the two interact with each other during inference (in
the rest of the paper, we use “scalar” and “vector” to
represent “invariant scalar feature” and “equivariant vector
feature” respectively for simplicity), we propose to build
the 3D point cloud learning architectures in a similar way,
namely, with dual use of scalars and vectors in feature
updating. Despite the similar form, our motivation is dif-
ferent. For molecular processing, scalar and vector features
naturally exist in data like bond types, electronegativity of
the atoms (scalars), and atom orientations, edge directions
(vectors), making it more intuitive to update both types
of features. While it is not the case in 3D point clouds
where usually only the coordinates (vectors) of points are
given1. Consequently there is a lack of investigation where
both are used. We adopt scalars and vectors from the
perspective of enhancing model efficiency when it comes
to network binarization and rotation robustness: keeping
vector features unchanged and binarizing scalars and model
weights (Fig. 2). The setting of dual use makes a difference
compared with the conventional sole use of scalars or
vectors, to particularly construct binary rotation invariant
networks for point clouds. Firstly, scalars make a major
part of the network fully “binarizable”, which is key to gain
high efficiency, and conveniently introduce nonlinearity for
the model during inference, which provides another benefit
as it is nontrivial to introduce nonlinearity for a pure vector-
based equivariant model [6, 29]. A certain amount of scalars
on their own also enlarge the network capacity. Vector
features, in contrast, makes an integral part to preserve the
structural information without geometric ambiguities and
ensure rotation equivariance. Although introducing a few
addition operations from leaving vectors full-precision and
binarizing weights, the vast majority of computations in the
models are still made up of the cheapest binary operations
due to the binarization of scalars. Finally, the invariance of
the network is achieved by converting the equivariant vector
features in the last layer to invariant ones.

Based on the scalar-vector architectures, we can naively
adopt existing binarization algorithms to achieve both effi-
ciency and rotation invariance. The derived networks are
dubbed as SVNet. As a “by-product”, we also found the
full-precision versions of SVNets provided state-of-the-art
performances among prior ones which handle complicated
geometric attributes [1, 51, 22] or adopt pose disambigua-

1invariant scalar features need to be manually created via geometric
attributes like norms and inner products of vectors.

tion algorithms [48, 18, 53] for rotation invariance. It again
indicates the potential of dual use of scalar and vectors for
rotation-robust point cloud representation.

We summarize the contributions as follows:

1. We proposed the dual use of invariant scalar and
equivariant vector features for building efficient binary
and rotation robust networks for 3D point clouds.

2. We proposed a novel feature updating block for the
case of dual use of scalars and vectors. The block is
applicable to general backbones such as DGCNN [40]
and PointNet [30], to enable high model efficiency and
SO(3) equivariance.

3. We conducted extensive experiments on widely used
datasets, proving that our method can achieve compa-
rable results with the complexity significantly reduced
in terms of both memory storage and computational
cost. The full-precision versions of the derived ar-
chitectures also obtained state-of-the-art performance
compared with the latest methods.

2. Related Work

SO(3) symmetry on point clouds. Both rotation in-
variance and equivariance can achieve SO(3) symmetry for
deep neural networks on point clouds. On one hand, works
on the former can leverage invariant geometric attributes
like vector norms, distances, and relative angles to extract
features [1, 51, 22]. This kind of method often suffers
from inevitable information loss caused by converting the
vectors to scalars, where most of the positional information
collapses. Another popular solution on invariance is to
identify the canonical directions of the shape, via PCA [48,
18, 21, 50] or SVD [53]. Precisely predicting canonical
directions can be well-tackled [9], this paradigm may suffer
from the presence of potential geometric ambiguities which
hinder their performances [21]. Clarification of possible
ambiguities can also lead to linear growth in network
complexity [21]. On the other hand, equivariant neural
networks have been developed with the theory of group
convolution [3, 4] and steerable filters [5, 41]. An arbitrary
3D input can be projected to a unit sphere, or regular
3D voxels, and processed with group convolution either
spatially or spectrally. The spatial-based methods [43, 2]
cannot easily guarantee equivariance on continuous groups
and are often aided by extra data augmentation. In the
spectral domain, the calculation of convolution involves
the complicated Fourier transformation, and introducing
nonlinearity becomes nontrivial [4, 8]. We can also take
advantage of the equivariance-preserving steerable filters
which can be pre-defined like spherical harmonics [37, 29]
or learned [41, 42]. While the filter kernels are not
binarizable to preserve equivariance. A more practical and
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Figure 2. The overall structure of SVNet towards rigorous rotation invariance and model efficiency.

efficient way is vector mapping, where the three “coordi-
nates” of vectors share the same weights/coefficients, as
done in [6, 36]. Vector mapping also enjoys the advantage
that the weights are equivariantly binarizable.

Binary neural networks (BNNs). BNNs were pioneered
by Hubara et al. [14] for 2D image recognition using
CNNs, where both activations and weights are binarized,
thus achieving substantial network compression (up to 32×
reduction in memory storage) and acceleration (up to 64×
faster in inference speed [33]). The charming advantages
of BNNs also introduced considerable attention for later re-
searchers [33, 25, 54]. The most related work of ours in the
BNN literature is BiPointNet [32], which was possibly the
first binarization approach to deep learning on point clouds.
BiPointNet conducted binarization on the rotation sensitive
structures like PointNet, without analysis or solutions on
SO(3) equivariance. In our method, once the network is
made binarizable with SO(3) equivariance, it is compatible
with most of the BNN methods in the literature.

Others. Our work also relates to the methods series on
point clouds [30, 31, 40, 52, 23, 44]. Please refer to [11]
for a more comprehensive review. At the same time, we are
inspired by approaches on molecules like geometric vector
perceptrons on molecular structures where both scalar and
vector features were utilized [35, 17, 16].

3. Method

3.1. Problem statement and overall framework

Without loss of generality, we introduce two example
tasks on point clouds. Suppose O = {o1, o2, ..., on} is a
given unordered point set, with each point assigned with
a 3D coordinate: oi ∈ R3. For the classification task, a
network functions as a map: O → Z, where Z is an integer
representing the category of O. In a part segmentation
task, the network then turns to a dense prediction function:
(O, C) → Zn, where C is the category of O, by assigning

each point oi to an integer that indicates which part of the
original shape the point belongs to. The purpose of this
paper is to make the network own the following properties:
SO(3) Equivariant: Any basic layer f l in our network:
f l(X l) = X l+1, where l is the layer index, X l and X l+1

represent the input and output of this layer respectively,
should meet:

Rl+1
g ◦ X l+1 = f l(Rl

g ◦ X l) ∀g ∈ G, (1)

where Rl+1 and Rl are the group representations of G (in
our paper, Rl+1 = Rl is a 3× 3 rotation matrix), and Rg ◦
X a rotation g on X as G is the continuous SO(3) group.
The above equation means that rotating the input first then
passing it through the function f l gives the same result if
we first pass it through f l and then rotate the output.

Specifically, in the proposed SVNet, X is formed as
(S,V) with S and V representing scalar and vector features
respectively. Rotation on X is defined as:

Rg ◦ X = Rg ◦ (S,V) = (S, RgV). (2)

A stacking of equivariant convolutional layers will result
in an equivariant network (supposing the index of the last
equivariant layer is L), as

fL(...f2(f1(R1
g ◦ X 1))) = fL(...f2(R2

g ◦ f1(X 1)))

= fL(...R3
g ◦ f2(f1(X 1))) = ...

= RL+1
g ◦ fL(...f2(f1(X 1))). (3)

In SVNet, V1 can be created by using the original
coordinates and relational positions between points. While
S1 are generated from O via invariant geometric attributes
(e.g., norms). The whole network can be made SO(3)
invariant by converting the output VL to invariant ones with
the same strategy.
Efficient: We take advantage of the BNNs to compose
SVNet, where weights and scalar features are binarized,



such that most of the multiplication operations can be
circumvented by instead using much more efficient addition
and binary operations.

3.2. Design of SVNet

Given an input X = (S,V) with S ∈ Rp×N and V ∈
R3×q×N , where N is the number of nodes or edges and
p (q) is the feature dimension (or the number of channels)
for scalars (vectors), the core of SVNet is to design a
“binarizable” convolutional layer where Eq. 1 holds.
Vector mapping Generally, the invariant S can be freely
manipulated with existing linear and nonlinear functions
(including binarization). To equivariantly update vectors
features V , we can build linear mapping functions along
the feature dimension q and share the mapping along
coordinates [36, 6].

As points are orderless, each v ∈ R3×q in V shares
the same mapping functions for permutation equivariance.
Supposing the weight matrix is W ∈ Rq×q′ , the linear
mapping on v is defined as:

v′ = fv(v;W ) = vW, (4)

transforming v to v′ ∈ R3×q′ (and sequentially, V to
V ′ ∈ R3×q′×N ). It can be easily proved that fv is SO(3)
equivariant: Rgfv(v;W ) = Rg(vW ) = (Rgv)W =
fv(Rgv;W ). At the same time, binarization on W does
not affect this equivariance.
SVBlock: the basic building block The design should
also satisfy the following conditions. Firstly, proper nonlin-
ear functions should be incorporated during the updating
of S and V to make the network more discriminative.
Secondly, S and V should interact with each other for better
information fusion to strengthen network representation.
The proposed SVBlock architecture is illustrated in Fig. 3,
which we elaborate in detail as follows.

When updating scalar features, similar to [6], we first
generate an equivariant coordinate system for each v ∈ V
using vector mapping, and project v to invariant features:

vc = vWc; (5)

vin = vTc v, (6)

where Wc ∈ Rq×3. vin is variant since vin = WT
c (vT v),

which can also be interpreted as a linear transformation
of the covariance matrix of v. The updating of S can
be implemented by concatenation with the obtained Vin,
followed by a multi-layer perceptron (MLP) module and
nonlinear functions. The process is shown in Fig. 3 (a).

When updating vector features, a problem we have
to consider is that vector features V cannot be directly
processed with nonlinear functions like ReLU or Sigmoid
function. Although Vector Neurons [6] proposed equivari-
ant direction learning and projection, we find this can be

addressed more efficiently in our situation, by generating
nonlinear re-weighting factors from scalar features. The
factors are used to multiply with vector features. Hence this
also introduces interactions between scalars and vectors.

Specifically, we again use vector mapping to linearly
update V , where the dimension of V changes from q to the
target dimension q′. Next, S is compressed along N using
average pooling, resulting in Scom ∈ Rp, which is then used
to generate the re-weighting factors for the linearly updated
vectors by MLP and Sigmoid, as shown in Fig. 3 (b).

The proposed SVBlock differs from geometric vector
perceptrons [17, 16] with the presence of data-dependent
coordinate systems (Eq. 5) for converting V to invariant
features, and the way to generate re-weighting factors which
is made lightweight with average pooling.

Instantiating SVNet SVNet is not a detailed network ar-
chitecture but can be instantiated by plugging SVBlock into
general backbones, making our method widely applicable.
The pipeline of build SVNet is as follows.

1. Extract (S,V) for the first SVBlock: Given an un-
ordered point set O = {o1, o2, ..., on} with oi ∈
R3, we firstly find the k nearest neighboring points
{oij |j = 1, 2, ..., k} for each point oi. The vector
features of each (oi, oij) pair is vij = [oi; oij − oi] ∈
R3×2. Based on that, we calculate the scalar features
for the (oi, oij) pair by putting vij in Eq. 5 and 6,
getting sij ∈ R6 (by flattening R3×2 to R6). The
vector features of oi is vi ∈ R3×2×k, and of O is
V ∈ R3×2×(k×n). Similarly, the scalar features of O
is S ∈ R6×(k×n). We can regard (k × n) as a single
dimension.

2. Aggregation: Aggregation of S or V can be done by
pooling along the k dimension, resulting in S ∈ Rp×n

and V ∈ R3×q×n. In DGCNN, we can use the same
strategy in 1 to extend the “k” dimension back (please
also refer to the original paper [40]).

3. After the last SVBlock: V is converted to invariant
features using Eq. 5 and 6 again, which is then concate-
nated with S. The network ends with a binary MLP
with nonlinear functions according to the backbone
architecture. In this step, we can safely binarize both
features and weights as there are only scalar features.

Binarization on SVNet It should be noted that the
main focus of the paper is to propose an effective SO(3)
equivariant framework from the perspective of network
binarization. In other words, we enable SVNet to be
compatible with previous BNN techniques. For simplicity,
we binarize SVNet based on the following equations and
use STE [12] for gradient calculation (please see Appendix
A for a more detailed description). With a more powerful
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Eq. 5 Eq. 6 Scalar updating Re-weighting factors Vector updating
Vanilla block - - NC1C2 (MACs) - -
SVBlock 3

2NC1 (ADDs) 3
2NC1 (MACs) 1

2NC1C2 (BOPs) 1
12C1C2 (MACs) 1

12NC1C2 (ADDs)

Total (C1 = C2 = 256,N = 1024)
Vanilla block 67.1M MACs
SVBlock (FP) 39.9M MACs
SVBlcok 0.4M MACs + 6.0M ADDs + 33.6M BOPs

Table 1. Computational cost of feature updating in a conventional network block (vanilla block) and SVBlock.

binarization method applied, the network can be further
enhanced:

Y = Sign(X) · Sign(W ) if both X and W are binarized,
(7)

Y = X · Sign(W ) if only W is binarized,
(8)

where W , X , and Y represents the weights, input, and
output respectively, Sign(a) = +1 if a ≥ 0 otherwise -1,
“·” means matrix multiplication.

In SVNet, Eq. 7 corresponds to the linear transformation
of scalar features while Eq. 8 the vector mapping of vector
features. The former can be implemented with BOPs
(binary operations) and the latter with ADDs (additions),
both are much more efficient than the original MACs
(Multiply-Accumulates) in a full-precision counterpart.
Why is SVNet efficient? We give an example on com-
paring the computational cost between a vanilla network
block, where only scalar features are used) in conventional
methods [30, 40], and SVBlock, by analyzing the com-
plexity of feature updating. For the former, the scalar
features are updated with function: RC1×N → RC2×N . To
keep the same amount of features, SVBlock functions as:
(R

C1
2 ×N ,R3×C1

6 ×N ) → (R
C2
2 ×N ,R3×C2

6 ×N ). As shown
in Tab. 1, the existence of both scalar and vector features
makes the full-precision SVBlock (FP) more compact than

a vanilla counterpart (39.9M MACs vs. 67.1M MACs).
With binarization, most of the MACs is replaced with BOPs
in SVBlock, which is the key to achieve better efficiency.

4. Experiments
In this section, we evaluate the proposed SVNet on the

tasks of 3D object classification and part segmentation,
based on the widely used ModelNet40 [45], ShapeNet [47],
and ScanObjectNN [38] datasets. To show its rotation ro-
bustness and compare it with other methods, we follow the
training/testing settings as in prior literature: z/z, z/SO3,
and SO3/SO3, where z and SO3 mean “random rotation
around z axis” and “random rotation” respectively. All
the experiments were conducted with Pytorch library [28].
We adopt batch normalization [15] following [6, 36] and
keep the first and last layer of SVNet full-precision to avoid
severe information loss. Please also refer to Appendix B for
a more challenging scenario where there was no rotation
during training but was during testing.

4.1. Experiments on ModelNet40

ModelNet40 [45] has been extensively used for synthetic
shape classification, including 12,311 CAD models with
40 man-made object categories (e.g., airplane, bathtub,
etc.). The dataset was split into 9,843 models for training
and 2,468 for testing. To make a fair comparison with
prior methods, we randomly extracted 1,024 3D points



Method Binarized z/z z/SO(3) SO(3)/SO(3)

Rotation
sensitive

PointNet∗ [30] ✗ 85.9 17.0 74.7
DGCNN [40] ✗ 90.3 33.8 88.6
PointNet++ [31] ✗ 91.8 28.4 85.0
PointCNN [23] ✗ 92.5 41.2 84.5
ShellNet [52] ✗ 93.1 19.9 87.8
BiPointNet∗ [32] ✓ 39.9 13.7 16.6

Rotation
invariant

RIConv [51] ✗ 86.5 86.4 86.4
ClusterNet [1] ✗ 87.1 87.1 87.1
Yu et al. [48] ✗ 89.2 89.2 89.2
RI-GCN [18] ✗ 89.5 89.5 89.5
GC-Conv [50] ✗ 89.0 89.1 89.2
Li et al. [22] ✗ 89.4 89.4 89.3
SGMNet [46] ✗ 90.0 90.0 90.0
Li et al. [21] ✗ 90.2 90.2 90.2

Rotation
equivariant

Spherical CNNs [8] ✗ 88.9 78.6 86.9
α3SCNN [24] ✗ - - 88.7
Poulenard et al. [29] ✗ 90.5 88.2 89.3
VN-DGCNN [6] ✗ 89.5 89.5 90.2

Rotation
equivariant
(Proposed)

SVNet-PointNet (FP) ✗ 86.3 86.3 86.6
SVNet-DGCNN (FP) ✗ 90.3 90.3 90.0
SVNet-PointNet ✓ 76.3 76.3 75.8
SVNet-DGCNN ✓ 83.8 83.8 83.8
SVNet-DGCNN† ✓ 86.8 86.8 86.8

Table 2. Comparison on ModelNet40. † indicates a two-step
training scheme. “∗” indicates our implementations using the code
provided by the authors. Numbers show overall accuracies (%).

from each model for both training and testing. SVNet
was instantiated with DGCNN [40] and PointNet [30]
backbones. Following [6], it was trained for 250 epochs
for the DGCNN backbone with a cosine annealing learning
rate [26], and 200 epochs for the PointNet backbone with
a multi-step annealing learning rate by decaying (×0.7) in
every 20 epochs. For both cases, the learning rate was
initialized as 0.001 and decayed towards 0, batch size was
32, and the Adam optimizer [19] was adopted. We also
trained a full-precision version of our model, namely SVNet
(FP) for each backbone, for a better comparison.

In Tab. 2, SVNet was compared with prior state-of-
the-art methods including the rotation-sensitive, rotation-
invariant, and rotation-equivariant ones. We had two main
findings. Firstly, the full-precision version SVNet (FP)
achieves 90.3% accuracy, surpassing the latest Vector Neu-
rons [6] with 89.5% accuracy via the sole use of vectors,
and SGMNet [46] with 90.0% accuracy via pure scalars,
validating the effectiveness of the proposed scalar-vector
configuration. Secondly, when binarized, the complexity
of the network is significantly reduced in both memory
and computational cost (Tab. 4). Nevertheless, SVNet
still retains rigorous rotation invariance with competitive
prediction performance. For instance, with our vanilla
binarization, it achieves 83.8% accuracy regardless of the
training/testing settings, vs. 39.9%, 13.7%, and 16.6%
by BiPointNet [32]. In addition, with a more powerful

Method Binarized z/SO(3) SO(3)/SO(3)

Rotation
sensitive

PointNet [30] ✗ 41.8 62.3
DGCNN [40] ✗ 49.3 78.6
PointNet++ [31] ✗ 48.3 76.7
PointCNN [23] ✗ 34.7 71.4
ShellNet [52] ✗ 47.2 77.1
BiPointNet [32] ✓ 31.4 36.0

Rotation
invariant

RIConv [51] ✗ 75.3 75.5
RI-GCN [18] ✗ 77.2 77.3
Li et al. [22] ✗ 79.2 79.4
SGMNet [46] ✗ 79.3 79.3
Li et al. [21] ✗ 81.7 81.7

Rotation
equivariant

Poulenard et al. [29] ✗ 78.1 78.2
VN-DGCNN [6] ✗ 81.4 81.4

Rotation
equivariant
(Proposed)

SVNet-PointNet (FP) ✗ 78.2 78.6
SVNet-DGCNN (FP) ✗ 81.4 81.4
SVNet-PointNet ✓ 67.3 67.3
SVNet-DGCNN ✓ 68.4 68.9
SVNet-DGCNN† ✓ 71.5 71.5

Table 3. Comparison on ShapeNet. Numbers show results
on mean intersection of union (mIoU, %) over all classes.
Underline numbers in our submission version were both 80.9 as
we incidentally used label smoothing, which were unnecessary.

binarization technique2, SVNet achieves 86.8% accuracy,
being highly comparable with most of the prior works
which adopted full-precision weights and activations.

4.2. Experiments on ShapeNet

We used the ShapeNet part dataset [47] to evaluate our
method on the part segmentation task. The dataset consists
of 16,881 shapes with annotations of 50 parts in total,
from 16 categories. It was split into 14,007 and 2,874
shapes for training and testing respectively. Different from
ModelNet40, we utilized 2,048 points for each shape during
training and testing. Again, we built SVNet via DGCNN
and PointNet backbones. For both cases, SVNet was
trained for 200 epochs with batch size of 32, using Adam
optimizer [19] with an initial learning rate of 0.001. The
learning rate was decayed to 0 with cosine annealing [26]
for DGCNN and multi-step annealing with step size of 20
and decaying rate of 0.5 for PointNet.

The experimental results and comparison with prior
state-of-the-art methods are given in Tab. 3. Similar to 4.1,
we also give a comparison of network complexity in Tab. 4.
We can get the consistent observations as in 4.1: the full-
precision SVNet with DGCNN backbone achieves com-
parable results beating most of the prior rotation invari-
ant/equivariant methods; equipped with SVBlock, the orig-
inal backbones can be effectively improved in terms of

2A two-step binarization, by firstly training the network with full-
precision weights and activations, then training with binary weights and
activations.



ModelNet40 ShapeNet

Method Params MACs ADDs BOPs z/SO(3) Params MACs ADDs BOPs z/SO(3)

DGCNN

Original [40] 57.7M 2.4B 0 0 33.8 46.7M 4.4B 0 0 49.3
Vector Neurons [6] 92.8M 3.2B 0 0 89.5 41.8M 6.6B 0 0 81.4
SVNet (FP) 49.7M 1.4B 0 0 90.3 43.2M 7.2B 0 0 81.4
SVNet 3.4M 0.05B 0.2B 1.2B 83.8 4.0M 0.2B 1.0B 6.0B 68.4

PointNet

Original [30]∗ 111.1M 0.4B 0 0 17.0 267.0M 5.8B 0 0 41.8
Vector Neurons∗ [6] 63.1M 2.0B 0 0 85.6 162.6M 20.5B 0 0 79.8
SVNet (FP) 78.8M 1.5B 0 0 86.3 234.8M 14.2B 0 0 78.2
BiPointNet∗ [32] 4.2M 0.01B 0 0.4B 13.7 9.0M 0.1B 0 5.7B 31.4
SVNet 8.7M 0.03B 0.2B 1.2B 76.3 14.0M 0.2B 0.2B 13.8B 67.3
SVNet-small 4.3M 0.02B 0.03B 0.2B 66.4 7.2M 0.1B 0.2B 5.2B 64.3

Table 4. Complexity comparison on ModelNet40 and ShapeNet. The numbers show overall accuracies (%) for ModelNet40 and mIoU (%)
for ShapeNet. Params (memory storage of the model) were recorded in bits. We also constructed SVNet-small to compare with BiPointNet
with similar complexity. “∗” indicates our implementations using the code provided by the authors.

Method Binarized z/z z/SO(3)

Rotation-sensitive

PointNet [30] ✗ 68.2 17.1
DGCNN [40] ✗ 78.1 16.1
PointNet++ [31] ✗ 77.9 15.8
PointCNN [23] ✗ 78.5 14.9

Rotation-robust RIConv [51] ✗ 67.9 67.9
LGR-Net [53] ✗ 72.7 72.7

Rotation-robust
(Proposed)

SVNet (FP) ✗ 76.2 76.2
SVNet ✓ 52.9 52.9
SVNet† ✓ 60.9 60.9

Table 5. Comparison on ScanObjectNN with the setting
PB T50 RS. Numbers show overall accuracies (%).

rotation robustness; and finally, under binarization, SVNet
shows a considerable reduction in memory and computation
with high predictive results. Similarly, the performance can
be further boosted with extra binarization technique as on
ModelNet40.

4.3. Experiments on ScanObjectNN

ScanObjectNN [38] is a real-world dataset having 2,902
object with 15 categories. Different from synthetic ones
like ModelNet40 [45], it also contains background points,
making classification much more challenging. To evaluate
our method, we adopted the hardest setting in this dataset:
PB T50 RS, which consists of 14,298 objects revised from
the base ones, with 11,416 and 2,882 objects for training
and testing, respectively. We adopted the same training
settings in 4.1 using DGCNN backbone. The results are
shown in Tab. 5. The network complexity of SVNet is
almost the same as in Tab. 4 with the DGCNN backbone,
with the only difference in the last linear layer due to
different numbers of categories.

S : V Property Params MACs ADDs BOPs z/SO(3)

1 : 0 invariant FP 58.0M 2.5B 0 0 84.8
Binary 2.5M 0.1B 0 2.4B 71.7

2
3 : 1

9 equivariant FP 52.3M 1.7B 0 0 90.3
Binary 3.2M 0.05B 0.1B 1.6B 83.4

⋆ 1
2 : 1

6 equivariant FP 49.7M 1.4B 0 0 90.3
Binary 3.4M 0.05B 0.2B 1.2B 83.8

0 : 1
3 equivariant FP 60.7M 1.4B 0 0 89.2

Binary 11.0M 0.08B 1.3B 0.001B 83.4

Table 6. SVNet variants with different scalar-vector proportions
on feature channels. “⋆” indicates the finally adopted one in the
paper. See Tab. 4 for other notes.

4.4. Ablation and visualization

If not specified, the following studies were conducted
using the DGCNN backbone on the ModelNet40 [45]
dataset. The training settings followed Section 4.1.

How do we need S and V? In our experiments, we
equally divided scalar and vector features (i.e., S ∈ RC

2 ×N

and V ∈ R3×C
6 ×N ), so that both have the same amount

of features. One may consider: What if we only use
scalar features or vector features? What if we change this
proportion? We conducted such exploration as illustrated
in Tab. 6, with different scalar-vector proportions. One
design principle in this study is to make the complexity of
other SVNet variants approximate or higher than the one
adopted in our paper, and observe if the adopted one still
achieves equal or better performance. We show how this
study matches our original motivation.

Specifically, the proposed SVNet can be regarded as a
general form of architectures in prior approaches, where
only scalar or vector features are used. One case is the
pure invariant version of SVNet (corresponding to S :
V = 1 : 0 in Tab. 6). This can be implemented by



Figure 4. Visualization of part segmentation predictions on
ShapeNet testing data using different structures. The input is
randomly rotated before being fed to the models. Top to bottom:
airplane, table, guitar. Left to right: input, ground truth, results
from PointNet [30], results from SVNet-PointNet (FP), results
from SVNet-PointNet

Scalar
concatenation

Vector
re-weighting

Overall accuracy
(z/SO(3), %)

Full-precision

✗ ✗ 88.8
✗ ✓ 89.0
✓ ✗ 90.8
✓ ✓ 90.3

Binary

✗ ✗ 79.5
✗ ✓ 79.5
✓ ✗ 81.5
✓ ✓ 83.8

Table 7. Influences of different components in SVBlock.

converting all the vectors (from the original coordinates
and relational positions of points) to scalars using Eq. 5
and 6. Though most of the computation can be implemented
with BOPs, the invariant SVNet suffers from a considerable
accuracy degradation. This simple generation of scalar
features causes severe loss of information on geometric
structures which leads to potential ambiguities. To solve
this, prior methods take nontrivial effort on generating
invariant geometric attributes from different perspectives
like angles and distances [1, 51], or by considering global
information [50]. While we found this problem can be
trivially alleviated by introducing more vector features, as
shown in the third and fourth rows of Tab. 6.

The other extreme case of SVNet is when we completely
discard scalar features in SVBlock (corresponding to the
last row of the table). This reduces our method to ones like
Vector Neurons [6] or REQNN [36]. The performance in
this case is competitive. While compared with the “stan-
dard” SVNet we adopted in our experiments, it suffers from
a sub-optimal level of efficiency as most of its computation
turns to ADDs, rather than BOPs.

Feature interactions in SVBlock Another consideration
is the effectiveness of interactions between scalars and
vectors during feature updating. In Tab. 7, we validated the
two interaction modules in SVBlock: scalar concatenation
and vector re-weighting, as introduced in 3.2. Both SVNet
(FP) and SVNet were investigated since we wanted to see if
there are any differences in full-precision and binary struc-

tures. The observations are generally consistent. For both
structure types, interactions lead to better performances,
especially for binary structures. The only exception is for
the full-precision models, vector re-weighting is not that
necessary, which implies the nonlinearity is primarily for
scalar features. In that case, vector mapping preserves
structural information while scalar updating provides fea-
ture discrimination. In contrast, for binary structures, both
interactions are needed.

Visualization In Fig. 4, we gave qualitative evaluations
by visualizing the part segmentation predictions based on
PointNet. The original PointNet is rotation sensitive, which
produces unstable predictions if the testing input is ran-
domly rotated. As shown in the figure, the issue was
desirably solved when configuring it via SVNet.

Future work As we mentioned in the paper, techniques
for building strong binary networks like knowledge distil-
lation [13], learnable thresholds [49], attentions [27], and
multi-step training [27] can further boost SVNet. Another
potential future direction is to extend SVNet for transform-
ers [39, 7, 10] and graph convolutional neural networks
(GCNs) [20] on regular/irregular data, which have been
proved to be powerful, yet energy-consuming architectures.
SVNet has a similar form to transformers or GCNs, i.e.,
information aggregation from orderless points (tokens in
transformers) and point-wise updating (token-wise feed-
forward updating in transformers). A rotation-robust prop-
erty with high running efficiency is fundamentally desirable
for such models for wider applications.

5. Conclusion

In this paper, we proposed a general 3D learning struc-
ture named SVNet that integrates binarization and SO(3)
equivariance for point clouds. Binarization aims to enhance
the network efficiency via constraining features and weights
to {-1, +1}, so that most of the computation can be im-
plemented with efficient binary operations rather than full-
precision multiplications. Meanwhile, SO(3) equivariance
enables the network to be robust to 3D rotations, which is
the key for 3D point cloud models to adapt to environments
with unseen poses. We analyzed the necessity of using both
scalar and vector features, which leads us to obtain a better
trade-off between efficiency, equivariance, and accuracy.
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