
Proximity Graphs for Crowd Movement Sensors

Cristian Chilipirea, Andreea-Cristina Petre, Ciprian Dobre
Faculty of Automatic Control and Computers

University Politehnica of Bucharest

Bucharest, Romania

Email: {cristian.chilipirea; ciprian.dobre}@cs.pub.ro, andreea.petre@cti.pub.ro

Maarten van Steen
CTIT

University of Twente

Enschede, Netherlands

Email: m.r.vansteen@utwente.nl

Abstract—Sensors are now common, they span over different
applications, different purposes and some over large geospatial
areas. Most data produced by these sensors needs to be linked to
the physical location of the sensor itself. By using the location of a
sensor we can construct (mathematically) proximity graphs that
have the sensors as nodes. These graphs have a wide variety of
applications including visualization, packet routing, and spatial
data analysis.

We consider a sensor network that measures detections of
WiFi packets transmitted by devices, such as smartphones. One
important feature of sensors is given by the range in which they
can gather data. Algorithms that build proximity graphs do not
take this radius into account.

We present an approach to building proximity graph that takes
sensor position and radius as input. Our goal is to construct
a graph that contains edges between pairs of sensors that are
correlated to crowd movements, reflecting paths that individuals
are likely to take. Because we are considering crowd movement,
it gives us the unique opportunity to construct graphs that show
the connections between sensors using consecutive detections of
the same device. We show that our approach is better than ones
that are based on the positioning of sensors only.

Keywords: crowd movement, sensors, geolocation, graphs

I. INTRODUCTION

Increasingly more applications require the use of multiple

sensors that spread over a geospatial area. Most sensors have a

geolocation characteristic: data generated by these sensors has

meaning only when the location of the sensor is considered.

When we consider multiple sensors that measure the same

characteristic the location of these sensors in relation with

each other is also important.

The physical location characteristic is most apparent in

applications that take sensor data and construct map-based

visualization of an area. An application area of increasing

interest is crowd monitoring using sensors that process WiFi

packets [1]. This is the application area we focus our analysis

on in this paper. Our sensors are able to detect and parse WiFi

packets and extract MAC addresses that can then be used to

track a WiFi-enabled device.

When one considers multiple sensors that gather the same or

correlated data, it is important to consider the spatial locality of

the sensors themselves and in relation to each other. Regardless

of sensor type, measurements from closely positioned sensors

have stronger correlations and more similarity than distant sen-

sors. Proximity graphs achieve such a distinction by mapping

the relation between sensors from a spatial perspective.

We present multiple methods for constructing proximity

graphs for distributed sensor networks and analyze these

graphs for two distinct deployments of crowd-monitoring sen-

sors based on WiFi detections. These algorithms take as input

the location of the sensors and generate a proximity graph.

Proximity graphs generally do not consider the range that a

sensor is expected to “cover.” We present a new proximity-

graph generator algorithm that takes as input the location of

sensors as well as the range at which sensors function and

show how the resulting graph compares with other algorithms.

II. RELATED WORK

When multiple sensors are measuring the same feature that

is expected to vary linearly between two neighboring sensors it

is possible to obtain all values between them by interpolating

the values they produce. A concrete example is computing

noise levels between two sensors by using just the two data

points from the sensors. In the case of crowd monitoring,

interpolation can be applied to crowd densities, if we expect

them to vary linearly between the sensors. A solution for this

problem uses a proximity graph for the sensor to compute the

interpolated values between multiple sensors [2].

A different use case is given in [3] where the proximity

graph is used to make a sensor network more energy efficient

by improving the communication between multiple sensors

while still maintaining redundancy unlike the case of a mini-

mum spanning tree.

Localization is a problem that is still being researched. Even

though at a global scale the GPS, [4] solves this problem with

a reasonable error margin, at finer scales, for instance inside

a building the problem requires a level of accuracy that is

difficult to achieve (apart from the fact that using GPS indoors

is difficult to oftentimes impossible). Proximity graphs are

used in these cases in different ways. One way is to better

estimate the location of the sensors themselves [5]. Another is

to predict the performanaace of positioning systems through

fingerprinting [6]. Yet another is in tracking a target in a

mobile sensor network [7].

In contrast to the situation where we take a known sensor

network and try to build a proximity graph that best matches

real-life data, [8] and [9] use data obtained from mobile

devices about static WiFi access points. Then, like us, they

build a proximity graph of these access points. They do not

compare multiple proximity-graph generation methods, as they

2015 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing

978-1-4673-9473-4	/15 $31.00 © 2015 IEEE

DOI 10.1109/3PGCIC.2015.147

310

2015 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing

978-1-4673-9473-4	/15 $31.00 © 2015 IEEE

DOI 10.1109/3PGCIC.2015.147

310



do not have the location of the access points, but instead

generate a graph by putting an edge between any two access

points that are seen by a mobile device at the same time.

This method is similar to the way we obtain our proximity

graphs from real-life data. It differs in the way that it does not

construct edges between access points with nonoverlapping

ranges even though possible pathways or correlations between

them may exist.

III. PROXIMITY GRAPHS

Consider a WiFi-packet sensor system. The sensors are the

nodes of a graph G = (V,E) with vertices V = {vi|vi is
a sensor} and edges E = {eij = (vi, vj) ∈ V 2|i < j}. G
represents the graph with edges between all nodes (a Full
Mesh). We note that V is the same for all the graphs we

present here, the sensor list does not change, and they also

have a location and a radius that do not change.

The Relative Neighborhood Graph (RNG) [10] is defined

as Grng = (V,Erng) with Erng = {eij = (vi, vj) ∈ V 2|i <
j; ∀vk ∈ V : dij < max(dik, djk)} where dij is the Euclidean

distance between vi and vj . In other words, two vertices are

joined if there is not another vertex that is closer to both than

they are to each other.

An RNG is also a Gabriel Graph (GG) [11] which is defined

as Ggg = (V,Egg) with Egg = {eij = (vi, vj) ∈ V 2|i <
j; ∀vk ∈ V : d2ij < d2ik+d2jk} where dij is again the Euclidean

distance between vi and vj . Two vertices are joined if the

smallest circle having the two on its circumference does not

contain another vertex.

Finally, Gabriel graphs form a subset of graphs con-

structed through a Delaunay Triangulation (DT) [12] in

which vi, vj , vk are connected as a triangle if the circle

circumscribing them does not contain any other vertex.

The Sphere of Influence Graph (SIG) [13] has Gsig =
(V,Esig) with Esig = {eij = (vi, vj) ∈ V 2|i < j; ∀vk, vl ∈
V : dij < dik + dil} where two vertices are joined if their

Euclidean distance is less than the sum of the distances to

each of their respective nearest neighbor.

We define Inferred Graphs (IG) as a set of graphs ob-

tained from real-life data, equal in size with the number

of edges of a full mesh. Gig,k = (V,Eig,k) with Eig,k =
first k elements of {eij = (vi, vj) ∈ V 2|i < j} ordered by

fij where fij is the number of unique devices that have

consecutive detections at the sensors at the ends of the edge

eij . Here the smallest graph would include only the most

popular edge (the one were most devices have consecutive

detections) and the following graphs would add edges with an

increasingly lower popularity until the full mesh is reached.

We have yet to find an optimal number of edges for these

graphs and we believe it to be application dependent.

As stated previously, our goal is to create a graph with a

minimal number of edges that contains all the edges between

pairs of sensors that are correlated, or, in the case of crowd

monitoring that contain paths people are likely to take. Given

this, an edge is part of our graph if and only if the area between

vA and vB is not covered by other nodes, as can be seen in

Fig. 1: Test if edge exists between A and B.

Fig. 1. We also join vi and vj when their respective sensors

are in each other’s range. In Fig. 1 we see how our algorithm

works with nodes that have different radiuses. If the straight

line between A and B is partly covered by the range of another

node, then there is a very low probability that when a device

moves from A to B we obtain a detection at vA followed by

a detection at vB without there being a detection at the node

between the two.

An algorithm that detects edges eij for our proximity graph

takes a set of possible lines from Ci (the circle representing

the radius of vi) to Cj and counts how many intersect the

radius circle Ck of any other sensor k. The proximity graph

algorithm can be compared to the Ray-Casting algorithm. The

number of lines that need not intersect any other sensor was

empirically determined to be 80% of the total number of lines

drawn between the two sensors.

We define the proximity graph obtained in our solution

as GH = (VH , EH). Here we have the vertices VH =
{vi = (ci, ri)|vi is a sensor} with ci as the location, a GPS

coordinate of the sensor and ri the range from which our

sensor can receive packets. We consider the signal radius of

a sensor to be an ideal circle. In reality the shape of this

area varies because of signal reflection on existing buildings,

other obstacles in the path of the signal and even atmospheric

differences. Our algorithm permits the use of radiuses that can

be varied from sensor to sensor. In the absence of accurate

information we use a radius of 100m, consistent with usual

WiFi ranges. The set of edges EH = {eij = (vi, vj) ∈ V 2
H |i <

j; {vk..vl} ∈ VH , i, j /∈ {k..l}, Ct circle of radius rt around
center ct, {Ck..Cl} interupt most paths from vi to vj}.

IV. CORRELATION WITH INFERRED GRAPHS

To compare the different types of graphs we mentioned

in the previous section we needed a real-life application. We

used deployments of WiFi-packet sensors used to measure the

density and movements of crowds. We deployed a system in

the city of Arnhem, The Netherlands. The system gathered

data from five sensors placed at reasonable distances (between

70m and 300m) from each other.

We also used a distinct data set that uses the same type

of sensors like the ones we deployed. This second data set

consisted of data from 27 sensors placed in the city of Assen,

also The Netherlands. In this case two sensors were placed

further away than the rest, the latter which were grouped near

the center of the city.

311311



(a) RNG (b) GG (c) DT

(d) SIG (e) Our Solution (f) Full Mesh

Fig. 2: All Proximity Graphs for the Arnhem Sensors

Both data sets were gathered in two similar cities during

popular events that brought more than 100,000 visitors to each

city. The data sets vary in size, the Arnhem set spans over one

day, while the Assen one spans over 3 days.

Fig. 2 shows the results of running all six graph-generation

algorithms described in the previous section over the Arnhem

data set. The numbers represent the ID of the sensor as

it was set by our system. It is easy to see the relation

between the common proximity graph algorithms, that of

RNG ⊇ GG ⊇ DTG. We argue that our solution is the

most useful one. For instance, the edge 2-3 is missing in the

Delaunay Triangulation. Considering a radius of our sensors

of 100m (the distance between 3 and 5 is of about 80m),

one can easily identify paths that an individual can take from

sensor 2 to sensor 3 without being detected by sensor 5. This

is made even more obvious in the Sphere of Influence Graph

between the sensors 2 and 10. The only difference between

our solution and a full mesh for this scenario is given by the

4-10 edge. We argue that there are no practical paths to move

from sensor 4 to sensor 10 without being detected by sensors

2, 3 or 5. This is confirmed by Table I, where the edge 4-10

is the one with the lowest value. There we can see the number

of unique devices moving between all the hotspots.

We define a movement to be a set of two detections of the

same device at two different sensors, at two distinct moments

in time, with no detection of the same device between these

two moments (in other words, they are successive detections).

The other generated proximity graphs have an even smaller

number of edges, minimizing the possible paths that individ-

uals can take to move from one hotspot to the other. This is

not favorable.

Fig. 3 we see the results of running the Delaunay Tri-

angulation algorithm and our solution over the 27 sensors

placed in Assen. Because of the large number of sensors the

differences and the required edges are not as clear as they

were in the Arnhem case, where the full mesh had only 10

edges. We argue here that even though the graph resulted from

the Delaunay Triangulation looks less crowded and all nodes

seem to be connected to their neighbors, these connections

are not sufficient. Because sensors are placed extremely close

together, causing a lot of overlap, the DT removes a lot of

edges that contain paths. This is mostly visible in the zoomed

out images, the two sensors that are far away have only few

edges, in the DT version, to the cluster of nodes in the center

of the city. In our version we can see extra edges that go

towards nodes that could have detections because there are

road paths that could lead directly to these nodes. We have

not added here the graphs for the other algorithms in order to

preserve space. DT is also the algorithm that compares best

to our solution, all other have similar or worse results.

Inferred graphs show the most likely edges that should

be considered when building a proximity graph. To further

312312



TABLE I: Arnhem Unique detections for sensor pairs

Vi 2 2 3 4 2 3 3 2 5 4
Vj 3 4 5 5 5 4 10 10 10 10
# Unique Devices 6040 3009 2331 2220 1856 1604 925 237 92 90

DT zoomed in DT zoomed out Ours zoomed in Ours zoomed out

Fig. 3: Proximity graphs for the Assen sensors

validate our solution we compare the graphs that we generated

with all possible inferred graphs from the Assen data set. To

make the comparison we take all combinations of generated

and inferred graphs and build a confusion matrix [14] for them.

We consider the inferred graphs to be the ground truth and

the generated graphs as the test. After we built the appropriate

matrix for each case we calculate the accuracy with which our

generated graph matches the inferred one. We consider edges

that appear in the graph to be true/positive, while all other

possible edges are false/negatives. The accuracy is calculated

as
∑

true positives+
∑

true negatives
∑

total population
.

The results can be observed in Fig. 4. We note here that all

the generating algorithms construct graphs with a fixed number

of edges, while the Inferred method can generate graphs with

any number of edges between 1 and the number of edges

present in the full mesh.

The algorithm we use to make inferred graphs generates a

large number of these graphs, equal in size with the number

of possible edges, for any given data set. As mentioned before

all edges from the full mesh graph are ordered decreasingly

with the number of pairs of consecutive detections identified

between the nodes that make the edge. A question that still

remains unanswered is: how many edges should the inferred

graph have and is there such a graph that is optimal? We

assume that this number is application-domain dependent. This

is why in Fig. 4 we compare with all the possible inferred

graphs.

There is also a noticeable effect on the accuracy: generated

graphs with small number of edges match the inferred graph

with small number of edges more accurately than the ones with

large number of edges and the same is true in reverse. This

is why at left part of Fig. 4 our method is the least accurate,

because it also generates the most edges. We have however

identified possible candidates for the optimal inferred graph.

These are represented in Fig. 4 with the black vertical lines and

are, in ascending order: 100 edges - �movements/�devices >
1.1; 112 edges - more than 1000 unique devices; 117 edges

- more than 1000 movements; 130 edges - average time

Fig. 4: Comparison of proximity graphs and IG

difference < 5400s (1 and a half hours); 192 edges - that

have: �movements/�devices > 1 and normalized average

time difference between departure from first sensor and arrival

at the second < 0.5 and average time difference between

departure from first sensor and arrival at the second < average

of all these values.

In all these cases our solution is the one with the highest

accuracy compared to the other methods to generate proximity

graphs. This shows how adding the functioning radius of the

sensor to the generation algorithm can improve the result.

Furthermore we checked the edges visually, by identifying

which match roads and walkways that people can take, to

confirm that our solution indeed fits best.

Because of the high correlation between the generated

graphs using our solution and the inferred graphs, given by

the real-life data set, with an accuracy of over 80% we can

assume there is a high correlation between the proximity

graphs generated using sensor location and radius, and the

graph generated using crowd movement data. This implies

that a possible application for the proximity graphs is the

validation of sensor data for crowd movements, a large number

of consecutive detections at sensors not connected in the

proximity graph would raise alarms.

313313



V. CONCLUSION

Considering static sensor networks and more accurately,

sensors of WiFi packet used for detecting crowd movements

we show how multiple proximity graph types can be applied

to the system and how it compares to a proximity graph

inferred from crowd behavior. The inferred proximity graphs

were obtained from traces from two distinct deployments of

WiFi-packet sensor networks.

We presented a solution to construct a proximity graph

considering not only the location of all sensors but also

their radius. We show, through direct comparison and through

extensive analysis, how our solution manages to outperform

the other proximity graph types, for this scenario. The work

in identifying the best proximity graph type for this application

needs to be continued, in this paper we do not claim to

have obtained a perfect solution and there might be room for

improvement. One possible direction for this research is the

use of the maps in the calculation of the proximity graph.

ACKNOWLEDGMENT

The work has been funded by the Sectoral Operational

Programme Human Resources Development 2007-2013 of the

Ministry of European Funds through the Financial Agree-

ment POSDRU/187/1.5/S/155420, and national project Mo-

biWay, Project PN-II-PT-PCCA-2013-4-0321. We thank Roel

Schiphorst from BlueMark Innovations for providing us with

the Assen data set and to Spyros Voulgaris and Claudio

Martella for their support and suggestions during this project.

REFERENCES

[1] A. Ruiz-Ruiz, H. Blunck, T. Prentow, A. Stisen, M. Kjaergaard: Analysis
methods for extracting knowledge from large-scale WiFi monitoring to
inform building facility planning, PerCom (2014).

[2] M. Sonia: Distributed interpolation schemes for field estimation by
mobile sensor networks, Control Systems Technology, 18(2):491–500,
2010.

[3] C. Jean, D. Simplot-Ryl: Energy-efficient area monitoring for sensor
networks, Computer 2 (2004):40–46.

[4] H.-W. Bernhard, H. Lichtenegger, J. Collins: Global positioning system:
theory and practice, Springer, 2013.

[5] G. Craig, Y. Koren: Distributed graph layout for sensor networks, Journal
of Graph Algorithms and Applications, 9(3):327–346, 2005.

[6] S. Nattapong, P. Krishnamurthy: Location fingerprint analyses toward
efficient indoor positioning, PerCom (2008).

[7] O.-S. Reza, P. Jalalkamali: Collaborative target tracking using distributed
Kalman filtering on mobile sensor networks, American Control Confer-
ence (2011).

[8] S. Ricardo, R. Morla, A. Maio, J. Coelho: Analysis of the Logical
Proximity between 802.11 Access Points, Conferłncia sobre Redes de
Computadores (2013).

[9] P.-P. Carlos, A. Moreira: Analyzing the quality of crowd sensed WiFi
data, PerCom Workshops (2014).

[10] G. Toussaint: The relative neighborhood graph of a finite planar set,
Pattern Recognition, 12(4):261-268, 1980.

[11] K. Gabriel, R. Sokal: A new statistical approach to geographic variation
analysis, Systematic Zoology, 18(3):259-270, 1969.

[12] D. Boris: Sur la sphère vide. Bulletin de l’Académie des Sciences de
l’URSS, 6:793-800, 1934.

[13] T. Michael, T. Quint: Sphere of influence graphs in general metric
spaces, Mathematical and Computer Modelling, 29(7):45–53, 1999.

[14] S. Stehman: Selecting and interpreting measures of thematic classifica-
tion accuracy, Remote Sensing of Environment, 62(1):77-89, 1997.

314314


