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Efficient Symbolic Computation of Approximated 
Small-Signal Characteristics of Analog Integrated Circuits 

Piet Wambacq, Francisco V. FernBndez, Georges Gielen, Willy Sansen, and Angel Rodiguez-VBzquez 

Abstract-A symbolic analysis tool is presented that generates 
simplified symbolic expressions for the small-signal character- 
istics of large analog integrated circuits. The expressions are 
approximated while they are computed, so that only those terms 
are generated which remain in the final expression. This principle 
causes drastic savings in CPU time and memory, compared with 
previous symbolic analysis tools. In this way, the maximum 
size of circuits that can be analyzed, is largely increased. By 
taking into account a range for the value of a circuit parameter 
rather than one single number, the generated expressions are also 
more generally valid. Mismatch handling is explicitly taken into 
account in the algorithm. The capabilities of the new tool are 
illustrated with several experimental results. 

I. INTRODUCTION 
URRENT tools for small-signal symbolic analysis of C analog integrated circuits, like for instance ISAAC [ 11 

and ASAP [ 2 ] ,  are able to evaluate network functions in the 
s-domain with the complex frequency variable and the circuit 
parameters (capacitances, resistances, transconductances, etc.) 
kept as symbols. These functions are typically given as an 
expanded cancellation-free sum of products, 

in which xT = (21, Z Z , . . . , X Q }  is the vector of symbolic 
circuit parameters and the f i  and gj  are sums of products. 

Since these expressions are calculated automatically, analog 
designers are released from the involved calculations needed 
to get insight into the ac behavior of circuits. Also, analog 
cells can be automatically sized for given ac specifications 
through the iterative optimization of the symbolic equations 
generated for their gain, poles, zeros, terminal impedances, 
PSRR, CMRR, etc. Other potential applications of symbolic 
analyzers, for synthesis, statistical optimization, testability, 
etc., exploit also the computational advantages to perform 
repetitive evaluations of precalculated models [3]. However, 
these applications can be realized at fully only if the au- 
tomatic generation of symbolic expressions runs parallel to 
the automatic pruning of insignificant terms in these expres- 

Manuscript received July 13, 1994; revised November 4, 1994 
P. Wambacq, G. Gielen, and W. Sansen are with Katholieke Universiteit 

Lueven, Dep. Elektrotechniek, ESAT-MICAS, B-3001 Heverlee, Belgium. 
F. V. Fernandez and A. Rodnguez-Vhquez are with Department of Analog 

Circuit Design, Centro Nacional de Microelectr6nica. Edif. CICA, E-4101 2 
Sevilla, Spain. 

IEEE Log Number 9408739. 

sions-similar to what expert analog designers do when they 
analyze circuits by hand. 

Although existing analyzers like ISAAC and ASAP in- 
corporate such simplification feature, their algorithms have 
two important drawbacks: a) simplifications are performed 
only after the exact symbolic expression is generated in an 
expanded sum-of-product format; and b) the significance of 
each term in the sums-of-products is assessed on the basis 
of numerical evaluations using typical values of the circuit 
parameters, at a single point of the design parameter space. 
Since the size of the exact symbol expressions increases 
exponentially with the number of nodes and elements in 
the circuit, the first drawback puts an upper limit on the 
complexity of analyzable circuits; around ten transistors if each 
transistor is represented by a high-frequency model containing 
about nine circuit elements. On the other hand, approximating 
symbolic expressions by considering just a single point of the 
parameter space does not seem to be consistent with the very 
nature of the symbolic analysis procedure, where the exact 
numerical value of the parameters is, by definition, unknown 
a priori. Even in the case symbolic analysis is used to study 
critical parameter variations in an already sized schematic, 
simplifying by using just information about a nominal point 
may lead to important inaccuracies in mismatch-sensitive 
characteristics, as for instance PSRR or CMRR of operational 
amplifiers. 

This paper presents a simplification algorithm to overcome 
both drawbacks above. First of all, the complexity limits 
of analyzable circuits are extended by generating only the 
dominant terms, without first computing the complete exact 
expression. In this approach, which is denoted as simplijication 
during generation, the dominant terms are generated until 
the accuracy falls within a given user-supplied accuracy. As 
shown in Fig. 1, this is a much more efficient approach, 
both in terms of memory usage and CPU time, than the 
classical approach followed in [l], [ 2 ] .  The idea of simpli- 
fication during generation was first mentioned in [4], and 
later found also in [ 5 ]  and [ 6 ] .  However, simplifications in 
[4] and [ 6 ]  are performed at a nominal point of the design 
space, and, consequently, any evaluation of the expressions in 
another operating point might cause large errors. To reduce 
these errors, this paper further elaborates the approach in [5] 
to combine the concept of simplification during generation 
with the use of ranges [7 ] ,  instead of single values, for the 
circuit design parameters. This increases the compliance of 
generated expressions, while keeping the computation time 
and the memory resources needed for symbolic analysis of 
large analog circuits bounded. Also, the combination of both 
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Fig. 1. Schematic representation of the memory usage during simulation 
time with the classical approach (a) and with the proposed approach of 
simplification during generation (b). Classically, a symbolic expression is first 
generated in a nested format. For a reliable approximation, the expression is 
then expanded and the cancelling terms are elaborated. This expansion can 
lead to a huge number of terms whose storage exceeds the memory limits 
(dashed line), while only a few terms are retained after approximation. This 
problem is circumvented if the expression is simplified when it is generated: 
the memory usage increases with the required accuracy or the number of 
terms of the symbolic expression. 

techniques, simplification during generation and the use of 
ranges, demonstrate better results than previous approaches 
for the handling of matching between symbolic parameters 
and mismatches. 

Section I1 presents the concept and outlines the algorithms 

the IC-th power, spanning trees in decreasing order must be 
generated containing exactly IC capacitance branches. This 
can be formulated as the following graph-theoretical problem: 
given a graph with n nodes and with red (corresponding to 
(trans)conductances) and blue (corresponding to capacitances) 
weighted branches, enumerate in decreasing order the spanning 
trees that contain exactly IC blue branches and n - k - 1 red 
branches, in which IC can have a value between zero and n - 1. 
For this problem, an algorithm [9] has been developed whose 
time complexity and memory requirements increase linearly 
with the number of generated spanning trees. 

111. GENERATION OF THE NUMERICAL 
REFERENCE AND APPROXIMATION OVER RANGES 

The tree enumeration procedure described above obviously 
needs a stopping criterion to know when enough terms have 
been generated. The generation of terms for a certain power IC 
of s in the enumerator or denominator can stop when 

ICnum. evaluation of generated terms1 
(num. value of coeficient of sk I > (1 -Ek). (2) 

- 
used for simplification during generation. Section 111 explains 
how intervals are incorporated in the stopping criterion that 
controls the generation of terms. In Section IV it is explained 
how matching elements and corresponding mismatches are 
handled in the new approach. Finally, Section V presents 
examples that demonstrate the suitability of the techniques 
presented for analog cells containing more than 20 transistors, 
which approaches the size of practical circuits used in todays 
IC designs. 

In this equation, the numerical evaluation is performed in 
a nominal operating point of the circuit. The denominator 
in (2) represents the numerical value of the coefficient of 
sk in either the numerator or denominator of the network 
function. The complete coefficients are never generated and, 
hence, their numerical value must be calculated in advance 
(without knowing the symbolic expressions). This is efficiently 
performed using the polynomial interpolation method [lo]. 

For the extension of the stopping criterion of (2) to intervals, 

11. SIMPLIFICATION DURING GENERATION 
The idea of simplification during generation needs a term by 

term generation mechanism, which finds the terms in decreas- 
ing order of magnitude, without skipping any term. This can 
be achieved with the undirected tree enumeration method [8]. 
This is a topological method that operates on two weighted 
graphs, the voltage graph and the current graph, which are 
easily derived from the given (small-signal) network. A term is 
valid only if its corresponding branches constitute a spanning 
tree in both graphs. The symbolic term is given by the product 
of the branch weights (admittances) in any of the graphs. 
The sign of a term is determined separately, using topological 
information of both graphs. By augmenting the network in a 
special way with fictitious elements, it is possible to generate 
the terms for both numerator and denominator at the same 
time [8]. 

The number of trees increases exponentially with the circuit 
size. Since we are interested only in the dominant terms 
and therefore not in all trees, the new algorithm enumerates 
spanning trees in the voltage graph in decreasing order. For 
every spanning tree, it is checked whether the corresponding 
branches in the current graph constitute a spanning tree as 
well. If so, a valid term is found and its sign is determined. 

This technique is performed for every power of the fre- 
quency variable s in both the numerator and denominator 
of the network function. For a nonzero power of s, say 

it is assumed that a symbolic parameter z can take a value 
inside a given interval determined by its lower bound X L  and 
its upper bound XH. 

The introduction of intervals for the symbolic circuit pa- 
rameters gives rise to multidimensional intervals for the value 
of the coefficients fi and gj from (1). These are computed by 
an interval extension of the polynomial interpolation method. 
The resulting interval for a coefficient is usually a pessimistic 
overestimate. Therefore, intervals are narrowed using the 
algorithm described in [ 1 I]. 

Intervals for the small-signal circuit parameters are either 
determined by specifying a relative variation around a given 
nominal value, or they can be derived from intervals of the bias 
values and technological parameters. Intervals for symbolic 
terms or sums of products are then determined using the direct 
interval extension [ l l ] ,  or, more accurately, with the mean 
value form [ l l ] .  

The stopping criterion given in (2) can now be reformulated 
as: 

(3) 

In this equation (SL ,  S H ]  represents the interval of the coeffi- 
cient of sk obtained as described above. The interval [GL, G H ]  
denotes the interval of the sum of the significant terms that 
have already been generated. The symbols L and U denote 
the lower and upper bound of an interval, respectively. 

L(l[GL, GHll) > - tk), 
U(I[SLr SHII) 
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Fig. 2. CPU time on a SUN SPARC 10 for the symbolic computation with a 
25% error of the voltage gain Vout/K, of the resistive ladder network. The 
dotted line corresponds to times measured with ASAP (conventional symbolic 
analyzer). The solid line corresponds to the new approach. 

The use of intervals provides a very good trade-off between 
accuracy and complexity. Obviously, more terms appear in the 
final result than when using fixed values, and if the intervals 
are taken too wide, then the interpretation of results can 
become complicated again. 

IV. MATCHING ELEMENTS 

Matching elements play an important role in analog and 
especially in differential integrated circuits. In symbolic cal- 
culations they are represented by the same nominal symbol. 
After doing so, product terms can occur with exactly the same 
symbols, so that they cancel or add, depending on their sign. 
The detection of matching terms requires a lot of overhead in 
CPU time and memory consumption in conventional symbolic 
analyzers [ 11, [2]. With the new technique, however, matching 
terms are easily detected: since they are equal in magnitude, 
they are generated one immediately after the other. Hence, 
the cancellations can be elaborated by looking only at the last 
few generated terms that have the same magnitude as the last 
generated term. 

Mismatches are modeled explicitly by adding a small sym- 
bolic mismatch element in parallel with the nominal element. 
From that moment, both elements are handled independently, 
and with their own numerical magnitude. For example, the 
transconductances of two matching transistors M I A  and M ~ B  
are written as gmM1 and gmM1 + ASmMleA, respectively. 
In this way, product terms containing mismatch symbols are 
generated much later than the corresponding nominal terms 
and only when necessary. 

In techniques previously used [ 11, [2] in symbolic analyzers, 
mismatch terms were always given a magnitude (the maximum 
deviation) and a sign. This is not realistic, since their sign is 
not known in advance. This problem is overcome here by 
representing a mismatch term by a symmetric interval around 
zero. 

V. EXAMPLES 

The new technique not only exceeds the limits of a con- 
ventional symbolic analyzer, it can also-for smaller cir- 
cuits-generate an approximate expression in a CPU time that 
is up to several orders of magnitude smaller than with con- 
ventional analysis. This is shown with the symbolic analysis 
of the resistive ladder network shown in Fig. 2,  which is often 
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Fig. 3. A filly differential BiCMOS operational transconductance amplifier 
with common-mode feedback. 

1 0‘ 

!Io3 1 o2 

/ 
IO’ 

relatlveemr 10’ IO-’ IO-* IO” loJ IO” 
# terms 32 182 664 1898 1606 9334 

#different terms 7 36 120 339 788 1606 

Fig. 4. CPU time (in seconds on a SUN SPARC 10 workstation) versus the 
relative error of the generated symbolic expression for the denominator of the 
low-frequency differential-mode gain of the BiCMOS amplifier (Fig. 3). The 
number of tenns that corresponds to the accuracy is indicated as well. 

used as a benchmark circuit for symbolic analyzers. The CPU 
time is shown as a function of the number of stages for the 
symbolic computation of the voltage gain with a 25% error. 
The dramatic increase in CPU time with the number of stages 
for conventional symbolic analysis is due to the fact that the 
exact expression must be generated. 

The efficiency of the simplification during generation tech- 
nique in terms of CPU time is illustrated with the symbolic 
computation of the system determinant of the BiCMOS am- 
plifier of Fig. 3. This circuit, containing twenty transistors, 
is far too complex to be analyzed with classical symbolic 
analyzers. Fig. 4 indicates how with the new technique the 
CPU time increases with the accuracy of the generated sym- 
bolic expression and hence with the number of terms, just 
as with the principle idea shown in Fig. 1. In contrast with 
the conventional symbolic analysis approaches, the less terms 
are generated (the larger the error), the less CPU time is 
required, which is a very “natural” way of generating terms 
that constitute a large expression. 

For large circuits complicated expressions may be gener- 
ated. This is illustrated in Fig. 5 ,  which shows the symbolic 
expression of the low-frequency differential-mode gain of the 
amplifier of Fig. 3. This expression has been generated in 
58 s on a SUN Sparc 10. The expression, however, can be 
further simplified without increasing the error by a symbolic 
postprocessing procedure, that factorizes the expressions and 
that takes advantage of the fact that the error on a ratio of 
two coefficients of a network function is often much smaller 
than the error on the coefficients individually. Doing so, the 
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Fig. 5.  Approximated expression (E = 20%) for the low-frequency differ- 
ential-mode gain of the circuit of Fig. 3. The terms are sorted in decreasing 
order. Due to matching, several product terms occur more than once, which 
explains the occurance of integer coefficients 4 and 8. The element geq2 is a 
lumped element 111 consisting of the parallel conductances goM9 and g O Q p .  
Elements from the bias circuitry (like g m M 6 )  or from the common-mode 
feedback circuitry (like g m ~ 4 )  that don’t influence the differential-mode gain 
at all, disappear after factorization. 

differential-mode gain reduces to 

(4) 

It is found that the output conductance of the bipolar cascode 
is too small, even with the inclusion of intervals, to contribute 
significantly to the conductance seen at the output node. 

An even more complex circuit is the commercial pA741 
opamp. This circuit contains 23 nodes, 22 transistors, and 
13 resistors. The generation of a symbolic expression for the 
amplifier’s transfer function with an error of 0.1% (1 10 terms) 
requires 38 seconds on a SUN Sparc 10 workstation. 

VI. CONCLUSION 
A new program has been presented that generates approxi- 

mated symbolic expressions for small-signal characteristics of 
analog circuits. The approximation is performed during the 
generation of the expression. In this way, only the necessary 
terms of the simplified symbolic expressions are generated, 

which contrasts to approaches of conventional symbolic an- 
alyzers which require a lot of over head for the generation 
of the exact symbolic expression, which is then pruned. The 
new approximation technique also takes into account a range 
for the value of the symbolic circuit parameters rather than 
one single value. This extends the range of validity of the 
generated symbolic expressions. Moreover, the new technique 
allows an accurate control of the approximation error. The 
interpretability of the expressions can be enhanced by further 
postprocessing. Several examples have demonstrated that this 
approach enables the symbolic analysis of large analog inte- 
grated circuits of the size of practical analog cells, which were 
impossible to analyze properly before. 
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