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Abstract—This paper presents a CMOS chip for the parallel a typical rate of 25 frames per second. Such a huge rate
acquisition and concurrent analog processing of two-dimensional may be managed by conventional computers for operations

(2-D) binary images. Its processing function is determined by g,ch a5 auto-focus, image stabilization, control of the

a reduced set of 19 analog coefficients whose values are pro-I minance/chrominan tc. However. real-tim moletion
grammable with 7-b accuracy. The internal programming signals u ance/chrominance, etc. nowever, real-ime completio

are analog, but the external control interface is fully digital. On- Of more intricate spatio-temporal operations requires bulky
chip nonlinear digital-to-analog converters (DAC’s) map digitally and sophisticated processors. In contrast to this, the smallest
coded weight values into analog control signals, using feedback insects, albeit equipped with really tiny brains, are capable of
to predistort their transfer characteristics in accordance to the analyzing complex time-varying scenes in real-time [1].

response of the analog programming circuitry. This strategy - o ..
cancels out the nonlinear dependence of the analog circuitry with This contrast between artificial and natural vision systems

the programming signal and reduces the influence of interchip iS due to the inherent parallelism of the latter. Particularly,
technological parameters random fluctuations. The chip includes the cells of the natural retina combine photo-transduction
a small digital RAM memory to store eight sets of processing and collective parallel processing for the realization of low-
parameters in the periphery of the cell array and four 2-D a6 jmage processing operations (light adaptation, feature

binary images spatially distributed over the processing array. tracti ti Vi i t with th .
It also includes the necessary control circuitry to realize the EXIraction, motion analysis, etc.) concurrent wi € acqui-

stored instructions in any order and also to realize programmable Sition of the image [1]. Inspired by this, new generations of
logic operations among images. The chip architecture is based onimage processing systems have addressed the incorporation of
the cellular neural/no_nlinear_ network uni_versal machine (CNN- distributed para”e] processing a|ready at the p|ane of the image
UM). It has been fabricated in a 0.8um single-poly double-metal - go156; One common strategy is to incorporate the sensory and
technology and features 2:s operation speed (time required . L .
to process an image) and around 7-b accuracy in the analog the processing C|rCU|t_ry on the same semmonductqr substrate
processing operations. [2]. CMOS technologies offer unique features for this type of
chip due to the availability of good CMOS photo-transduction
devices [3] and the possibility to realize linear and nonlinear
processing functions with simple CMOS circuitry [4], [5].
A number of CMOS retinas have been previously reported
. INTRODUCTION in literature [2]. In many cases their development has empha-
ONVENTIONAL image-processing systems use &ized light adaptation, i.e., the capability to adapt the response
charge-coupled device (CCD) camera for parallélf the two-dimensional (2-D) optical sensor to the lighting
acquisition of the input image and serial transmission &Pnditions of the incoming image, while image processing has
the digitalized image to a separate processing element.ramained secondary. Some circuits which incorporate process-
results in huge data rates which conventional computdfg capabilities are intended for fixed processing functions
are not capable of analyzing in real-time. For instance, [@]. On the other hand, the programmable circuits found in
color 512 x 512 pixel camera delivers about 20 MB/s, fotiterature have neither accurate standard control interfaces nor
the capability of flexible operation. Besides, their develop-
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Fig. 1. System block-diagram and basic cell architecture.

formulated as well-defined tasks on signal values placed ovelOther programmable CNN chips have been reported in
regular 2-D spatial distributions and with direct interactionthe literature [13]-[16]. However, none of them incorporate
among signals limited to local receptive fields. Consequentihe additional CNN-UM functionalities presented here, nor
they are directly mappable onto cellular nonlinear (or neuraghe optical interface. Also, it is common to limit the local
networks (CNN'’s), which are arrays of nonlinear dynamimterconnections to vertical and horizontal directions, while
analog processing units (cells), arranged on regular gridhe chip described here allows simultaneous interaction among
where direct interactions among cells are limited to finite locaklls located in vertical, horizontal, and both diagonal direc-
neighborhoods. tions. Despite these extended capabilities, the achieved cell
With the addition of a few key functionalities, CNN’s havedensity (27.5 cells/m#) roughly doubles those previously
evolved into a broader concept, the CNN universal machineported, with similar technology resolution. Other favorable
(CNN-UM) [10], on which the architecture of the chip reportediifferences include a higher complexity (in terms of total
here is based. In particular, as compared to previous warkmber of cells in the array) and the completely digital
by the authors [6], [11], this chip includes the followingexternal interface.
CNN-UM extended capabilities: a) electrically programmable
local analog interactions; b) on-chip memories for internal
storage of instructions (sets of local interconnections values)| SysTEM ARCHITECTURE AND PROCESSINGALGORITHM
which can be loaded from the outside of the chip and used
any number of times in arbitrary order; c) four spatially-
distributed 2-D on-chip image-memories (each local proces
includes its corresponding pixel of each stored image, allowir¥
parallel data transferences in the network); d) a programmaB
Boolean operator at each local processor for parallel lo
operation among images; e) multiplexing and control circuit
for the realization of complex processing tasks (for instan
sequential and/or bifurcated-flow algorithms) based on t . . .
stored instructions and the available internal image-memori e state va_naple; and cell inpuk.., which r_epresents the
and f) completely digital interface, making the chip easy tgxter_nal excitation of the _CeII. Each cell r_eahzes a_nonlmear
control with conventional computing systems. transient evolution according to the following evolution 1aw,
The chip, whose fundamental operation is analog and
continuous-time, is realized in 0;8n CMOS single-poly Tcd—tc = —g[z.(t)] +d. + Z {@cd¥a + beqtia Ve
double-metal technology and intended for focal-plane array dEN,(c)
processing of binary images. To that purpose, it incorporates (1a)
a 2-D optical interface for image acquisition with adaptivéhereg(.) is a nonlinear dissipative term
contrast adjustment. The additional CNN-UM functionalities

Fig. 1(a) shows the architecture of the chip, which consists
(a core programmable array processor plus peripheral cir-
itry used for electrical 1/0, control, storage of the processing
efficients, and conversion of the external digital program-
ing codes into the internal analog programming signals.
rocessing is according to the paradigm of CNN’s and is
scribed by using three variables per cell: cell statecell

Htput, y.(t), which is a saturation-type nonlinear version of

allow the chip to operate as a powerful front-end for mz+1)-1 z<-1

the realization of simple and medium-complexity image g(x) = lim ; |z <1 (1b)
processing tasks, including sequential and bifurcated-flow m(z—1)+1; x>1
algorithms!

1CNN-UM's realize the vast majority of image processing tasks through 2This evolution law is slightly different from the original one [9], [10].
proper selection of the interaction strengths and/or task sequencing, &twvever, as it is demonstrated in [17], it features the same processing
can hence be considered as general-purpose image processing compfutecsion as the original while yields larger cell densities and smaller power
[10], [12]. consumption.
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and whereN,.(c) denotes the interacting cell neighborhood. In 7o Neighbors

our chip this includes the nine nearest neighbors (the cell itself, W,

plus the adjacent cells at the top, at the bottom, at the right,

and at the left; in the vertical, horizontal, and both diagondl:

directions). <
The input to the above evolution law consists actually dfe

two 2-D images: one is the matrix of initial values of the

state variable$z.(0)]; the other is the matrix of inputs:f],

assumed time-invariant during processing. The output image

is the matrix f.(¢)]. In most applications only the steady-

state value of this output, reached after the network transient

evolution, is significant for processing [9]. This steady-state, ° Output ", O_\_I_/_o £.(0)

and hence the processing function performed by the system,

is determined by the set of coefficienis; (feedback coef- Fig. 2. Block diagram of the analog cell processing circuitry.

ficients), the set of coefficients.q; (control coefficients), the

offset termd.., and the state of the spatial boundary cells ipe loaded or downloaded, on a row by row basis, through

the array. These are the electrically programmable coefficienis external 1/0O bidirectional bus. Finally, because the spatial

of the network. boundary conditions also play an important role for processing,
Our chip, as is common in CNN's, has the property of tranghe cell array is surrounded by a ring of border cells with

lational invariance, meaning that the interconnection pattepnogrammable output variable.

does not change throughout the array, and can therefore be

described by a scalar (offset term) and twox33 template Il. LOCAL ANALOG CIRCUITRY

matrices whose entries represent the strength of the feedbac||§ig 2 shows a block diagram of the cell analog processing

and control mterac':tlons. Thus, leaving gs!de the bqundary Cev.j'?cuitry, including different functional blocks: integrator, non-
state, the processing fqnctlon qf the chip |s.determ|ned by on Xearity, memory, and programmable interconnection synapse.
19 parameters, rendering feasible the routing of programmiplese (atter are time-multiplexed, meaning that the 18 param-
pontrpl lines. On the other hand, _th|s property O_f translath-n. ers associated to the feedback and the control templates are
invariance does not over—ponstraln the processing Capab"'tlﬁﬁjlemented using only nine synapse. To that purpose, the
of the CNN, as the results in [9], [10], and [12] demonstrate. |t contribution” b.qug [see (1)] is first calculated at
particular, [12] shows a full catalog of the processing functiong, oy computation cycle (bear in mind that the inputs remain
which can be realized by translaﬂonal-myanant C_NN’s. constants during one such cycle) by programming the nine

Most of the cell area (about 70%) is occupied by thgynanse with the values of the control coefficiehts, and

analog circuitry required to realize (1). The cell also containgiying the disabled integrator with the input cell varialle
other circuitry, as the inset of Fig. 1(b) shows. The functionfne result is stored in an analog current-mode memory. Note
associated to this circuitry are the following. that during this process a sign inversion takes place. This is
 Photo-Transduction and Light-Adaptatioiach cell in- internally solved using a weight inversion circuit, active only
cludes a photo-sensor and a collective computation adajuring the control contribution computation. After the result
tive circuit [18] for automatic contrast enhancement. has been stored in the analog memory, the nine synapse are re-

* Local Logic Unit (LLU): A fully programmable two-input programmed with the feedback coefficientg, the integrator
Boolean operator is included in each cell, providing this enabled, its initial condition is set te.(0), and the value
capability of parallel logical operations among binarpreviously stored in the analog memory is added (actually
images. subtracted) to the feedback contributidn a.qy, to realize

* Memory Storage (LLM)Each cell incorporates four im- (1). The sign inversion performed by the analog memory
age pixels which can be loaded from the image-sensohtains a functional cancellation of the output-referred offset
the output of the processing circuitry, or the output of thef the synapse. The offset terf. is generated by another
LLU. synapse circuit driven by a constant reference signal.

» Local Communication and Control Unit (LCCUhich The analog processing circuitry is fully differential and
connects the source and destination of signal transfé@erates in transconductance mode. The synapse inputs are
realized inside the cell. voltages, which eases the intrachip distribution of template

Eight complete sets of CNN processing coefficients Cé:,c_,)ef_ficie_nts (common to all (_:ells in the array), and the intracell

be stored on chip. Although the internal control is analoﬁl'lsmbm'o” of the state-variable to all the cell synapses. On
the coefficients are codified and stored in digital form, witf€ other hand, the synapse output is a current, thus facilitating
a resolution of 7 Bsign, in accordance to the expecte§ummation at the integrator input nodes.

accuracy of the analog processing circuitry [5]. On the other

hand, any stored image can be used as any of the tfyoProgrammable Synapse: Control Strategy

input images of the network, or as input to the Boolean The programmable synapse is a key building block of
operator. Besides the parallel optical loading, images can atsassively parallel analog processing systems. Its design must

From Neighbors

KCL summing point

i

Analog Mcmory
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Fig. 3. Architecture of the tuned D-A control strategy.

face structural and parametric optimization to combine largeFig. 3 illustrates the control strategy adopted in our chip,
cell densities and moderate accuracy [19]. However, a previombich combines the benefits of analog and digital control. It
step is to choose whether to use digital or analog signalsisosimilar to the strategy used for on-chip filter tuning [20].
control the weights. Ten peripheral tuning stagesi.e., located in the periphery

In a general electrically programmable analog synapse, thiethe cell array) are employed to generate analog weight
input (z) and output §) signals must be analog. On the othesignals from their digitally coded values. The analog weight
hand, the control signak() may be either analog or digital. signals are then used to control the synapse within the cells

In the case of a generic digitally controlled synapse, ii8 the array, using only ten global routing channels (20 for

transfer characteristic may be written as follows differential schemes).
Each peripheral weight tuning stage consists of an analog-
y=wpPp(©, T)Sp(z) (2) controlled synapse and a digital-controlled synapse connected

in a feedback loop. The latter is driven by the digitally coded
where wp is a digital code for the control signakp(e) Wweightwp, while the former is driven by the output of the
is an approximately linear and continuous function20f© tuning loop, yielding the following steady-state value:
is the vector of technological parametei,is the absolute
temperatureSp(e) as well asPp(e) depend on the circuit wa = P wpPp(8, T) Sp(rer) ' @)
structures used at the synapses. Sa(wa, Tret)

On the other hand, for a generic analog-controlled synapse, . .
the transfer characteristic may be written as Assu_mlng that inner synapses are perfectly matched (same
functions, same technological parameters, and same tempera-

y=Pa(wa, ©, T)Sa(wa, z) 3) ture) to the ones qsed at the tuning stage, and combining (3)
and (4), one obtains

where the relationship between the output and the control B
signal may be nonlinear and the functién () may change y=wpPp(0, T)Sp(Tret)
with the value of the control signal.

The equations above highlight advantages and drawbacks\ffich retains the feature of linearity with the weight of the
each strategy. Digital control yields inherent linearity (excludyjgital synapse and attenuates the dependence of the function
ing quantization) with the weight signal. Also, because the ') with 1. Note also that the control interface is digital,
functions Sp,(e) and Pp(e) are independent of the weight,ang hence the weights are easily storable using conventional
their influence can be eliminated by using some inverggyita| memories. On the other hand, since the internal routing
functlon c.ancellatlon tef:hnlque—5|m|lar to what happens, f%TgnaIs are analog, the area occupation due to the routing
instance, in a current mirror. In contrast to this, functifor(e)  channels is the smallest possible. In addition, as for digitally
depends on the weight signal, and the output signal of tigntrolled synapses, process parameter variations will not

analog synapse may be a nonlinear function of the weighsect the linearity of the programmed weight values.

In addition, digitally-coded weight signals are much better

suited for on-chip storage than analog ones. Some crucial

System_level advantages of analog_contro“ed Synapses aF@emember that, becau$e the CNN network is translatlo_nally Invariant,

thei I d tion and their red and because the computation of control and feedback contributions are not
elr smaller area and power consumption a elr redu ultaneous, only ten different coefficient values (including the offset term

number of control routing lines. d.) must be transmitted at any time instant to the cell-array.

SA(wA, JZ)
Sa(wa, Trer)

()
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TABLE |
CHARACTERISTICS OF THESELECTED SYNAPSE CIRCUIT
. Characteristic Expression
1
i (24) 1(0_‘%]2
: k 4 B,
1
1
: oxox 2 GVTX 1 1 Wax 2 Bx 2
, +/1 + — B—
| X max Xmax Xmax x
I
oW \2 ow. \2
Fig. 4. Selected analog synapses. All transistors are p-channel. Wmax Wmax
GY{)Y 2 wmax 2 (Sv\‘ 2
B. Analog Synapses : 1+ 22 :
. . . ymax xmax wmax
The second step in the design of the programmable in-
terconnections is the choice of the synapse circuitry. The . =
ynap y Design Wiem = Vyem

major functional issues here are linearity with the input signal Qs

. . . Conditions w. = x
and sensitivity to technological parameter mismatches. An imax = “max
exhaustive analysis of the area-accuracy tradeoff of alternative

CMOS synapse [5] has lead us to choose the structure of  2xmum ! _ B2
Fig. 4, which consists of a linear multiplier core with four Supply Current PDmax = g max
transistors operating in ohmic region [21] and two SouUrce- paximum

follower buffers. The transfer characteristic of the multiplier Output Current Ymax = Hppmax
core (dashed box in Fig. 4) can be expressed as

voltages and large-signal transconductances of the MOS tran-

wheref, = yioCox(W/L) s the large-signal transconductanc%istors enclosed in the dashed box in Fig. 4. Mismatch effects

of the inner transistors; is the differential input signal, and; on the source-followersofw;) and current-conveyors input

o e e ore AU btset 1, can b separaely compute n sl
maobifity deg c8nvenience, the errors in the offset terms are normalized by
effects, the measured transfer characteristics are shown to, be

. . : the"maximum values of the corresponding signals,{, and
h'gThrE; I:;;Ei(\)’\gthof (:::f (?ggig';ii\./ely loaded) source foIIowexmaX)' These simplified error expressions correspond to the
. . L } timum design conditions given in the fifth row of Table I,
buffers results in a nonlinear characteristic with respect to té§7 9 g

. . . . i ich assume that the internal weight;J and input signals
new differential weight signalv. However, it can be shown have approximately the same signal range, (o, = Tum),

maftat:te Itlr?sasrgﬁr\lglethf(r)ﬁ(S)SVZCrtstc:jitgenlgtp:trestl:?es tprzzsgg\:ggﬁoand that the common-mode component of the internal weight
o : . Ignals equals the dc voltage at the low-impedance input nodes
of integral nonlinearity (INL) values smaller than 0.4% an 9 g 9 b b

C . f the current conveyorsuf.,, = vyem). This last condition
total harmonic distortion (THD) values below 0.2% for up t?s accomplished by t%’e jclfmmon—rfy\od)e circuitry in the weight-

2 V differential input range. On the other hand, the non"neﬂﬁning stages. The sixth row shows the maximum current

dependence with the analog weight signal is transformed IO 1 is drawn from the power supply under these design

a Ii_near relationship With resp_ect to its digital code by th(Caonditions' while the seventh row shows the maximum output
tuning strategy described previously. current delivered by the synapses.

The second functional issue is related to mismatch Sen.s"SimiIar expressions have been obtained for other synapse

tIVI;y.rE)IIﬁS:; nrt Ir?tsian(r:,is |Of ithe| Sar:lemS)g%)se:dv\gllr: av:a, ' ternatives, allowing a comparison in terms of mismatch sen-
general, erent technological parametets, a emper- itivity, signal range, and linearity under the same constraints

ature, T’. The influence of the former is better understooa area occupation and power consumpfi@ur choice of the

With_reference to the following behavioral representation ?gpology in Fig. 4 is based on a clear superiority with respect
a mismatch-affected synapse: to other alternatives, in particular as compared to synapse
circuits based on MOS transistors operating in the saturation

Ak
v k<1 + 7) (w=Woo) (@ = Xos) + Yoo (7) strong-inversion region.

where k equalsg,, and the termsAk, W,,, X, s, andY,,,

representing the gain error and three different offset sources,The buffers have only a slight influence on the erroifiia;. The effect
ofc' the current conveyors input offset voltage is cancelled as a side effect of

are nomlnally nuII._ n . ) the computation of theontrol contribution, as explained earlier.
Table I shows simplified expressions for the variances ofsry, power expended by the buffers in Fig. 4 is about 50% of that in the

these errors as functions of the variances of the threshetde cell.
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Fig. 5. (a) Measured dc characteristics of the programmable synapse and (b) statistical characterization of the programmable synapse.
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Fig. 6. (a) Schematics of the cell integrator and nonlinear block, (b) schematics of the current conveyor, jointly with the analog memory and thmodsmo
feedback circuitry, and (c) nonlinear resistor and initialization circuitry.

The sizes of the transistors in Fig. 4 have been choskm different weight values. As already mentioned, the INL
based on the formulation of the short-distance (spatial whitebetter than 0.4% and the THD is 0.2% within the required
noise) component of the mismatch [19] to obtain 1% accurasignal range. Statistical characterization, based on ten sémples
using the formulae in Table |. The core transisté¥g L are located on different chip-units, yielded a standard deviation of
of 5 um/12 um, while the transistors in the buffer are of
5 pm/3 pm. Fig. 5(a) shows the dc response of the synapseéThe foundry delivered only ten samples of the chip.
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the output current offset below 1% relative to the maximum
output current; and an average INL below 0.4% relative to full
signal range—illustrated in Fig. 5(b).

C. Integrator, Nonlinearity, Analog Memory,
and Common-Mode Feedback

Fig. 6(a) shows the schematics of the cell integrator and
the nonlinear block, wher&y* and Xy~ are the aggregated
currents from the synapse driving the cell, ah@ is a
reference voltage. The integrator is realized with two current-
conveyors and two grounded capacitors. The conveyor has
a fully differential architecture to conform to the differential
nature of the synapse signals and to reduce common-mode
parasitics. To save silicon area, the integrating capacitors are
in fact realized through the gate capacitance of the synapses
connected to the integrator output. To this purpose, we take
advantage of the fact that the signal transistors in the synapse
operate inside the ohmic region in strong inversion, where the
gate capacitance is fairly linear.

Fig. 6(b) shows the schematics of the current conveyor,
jointly with the analog memory and the common-mode feed-
back circuitry. The current conveyor includes a local regulation
feedback to reduce the input impedance and, thus, the curren
division errors which arise when these nodes are driven by
the multiple low-impedance synapses. The analog memo-

ries are realized through the capacitor-connected transistors‘g
shown at the top right and left of the figure. For clarity, the 5

schematic does not contain details of the analog switches;
those driving the memories are realized through complemen-
tary transistors, while all the others are realized through single
transistors. Fig. 6(c) shows the schematics of the nonlinear
resistor (realized with two diode-connected transistors), and
the initialization circuitry, which is responsible for setting the
initial condition and the common-mode signal of the cell.
Fig. 7(a) shows the large signal V—I characteristic observédm
at the low-impedance input node of the current conveyors.
Statistical characterization over ten samples showed a standard
deviation for the input offset-voltage of 3 mV. The effect of
this offset is cancelled by the storage and subtraction process
employed to compute theontrol contribution, as explained
earlier. Fig. 7(b) contains the |-V characteristic of the voltage-
limiter employed for integrators saturation. Saturated voltage
levels exhibit a standard deviation of 2% of the full signal
range, resulting in the dominant accuracy limitation. This
is attributed to the minimum-length transistors employed in
the nonlinear element, and could be easily improved in fu-
ture prototypes at the cost of a negligible increase in area
consumption. .
As a final point in this section, it seems appropriate to
describe the operation of the cell, step by step.
« First: set the state variable (node$ andz™) of every
cell to the value corresponding to the cell input This
is done by the circuitry of Fig. 6(c), in which switches
sign and sign control the sign of the initial condition
under the driving of the image memories. Simultaneously,
the control weight voltages §.q; in (1)] are applied to

Input Voltage (V)

Current(A)

Fig. 7.
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(a) Measurements from the current conveyor and (b) measurements
the nonlinear block.

is disabled and the valugb.4u4 is stored in the (current-
mode) analog memory. A sign inversion occurs in this
process, which is internally solved using opposite-sign
control weights at every cell.

Second:set the state variable of every cell to the value
corresponding to the initial conditions.(0), using again

the circuitry of Fig. 6(c). Simultaneously, thHeedback
weight voltages ¢.; in (1)] are applied to the synapse.
This process ends when is disabled. At this point, the
cell loop is not yet closed, and noded and »~ of

Fig. 6(b) are both grounded.

Third: signal L, is enabled, closing the loop of the
cells, and starting the analog processing transient. After a
typical 2 us of evolution time, the processing is complete;
the outputs are then stored into an image memory and the
system is ready to start a new operation cycle.

IV. WEIGHT TUNING STAGES

As mentioned earlier, ten weight-tuning stages located in

the synapse. During this process, signdls andic are the periphery of the chip are employed to generate the analog

enabled and,, is disabled. At the end of this process,,

weight signals from their digitally coded values. Each of them
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Fig. 8. Schematics of the digitally controlled synapse.

is a fully differential version of Fig. 3. The feedback loop
comprises an analog synapse, an integrator, and a linear digi-
tally controlled synapse (MDAC). The integrator is identical to
those used inside the cells and described above. On the other
hand, the analog synapse in the tuning stage is formed as a
parallel connection of six instances of Fig. 4, this is, the analog«
synapse employed within the cells. The subsequent averaglng
of the random errors at each of these instances results in g
reduction of the output current standard deviation by a factors
of v/6, and hence features better matching.

Fig. 8 shows the schematics of the digitally controlled
synapse, consisting of an MDAC realized through a binary-
weighted array of current sources and a single-ended-to-
differential converter with sign control. Note that the two less
significant bits have been realized through a series connection
of unitary transistors (with common gate), to save area. The
unitary transistor is of 4.4:im/5 ym, and the switches haverig. 9. INL measurements from analog synapse driven by ten weight tuning
minimum size. Statistical measurements of 16 samples $#9es.

MDAC showed a maximum INL of about 0.3 LSB.

As can be seen from (4), the weight-tuning stages behavetheir fixed-function CNN image processing chips [6]. Pixel
as a nonlinear digital-to-analog converter, predistorting thnsors consist of two vertical BJT’s arranged in Darlington
nonlinear relationship between the analog weight signal asdnfiguration, as shown in Fig. 10(a). The photo-generated
the programmed weight of the analog synapse. Fig. 9 showsrent at the base-collector junction (n-well/p-substrate) of
measurements taken from ten different samples of the tunimgnsistor Q, is amplified by a factor(3r + 1)2 by Q
stage. In particular, it shows the integral nonlinearity [in leagind ., yielding output current levels of about 0.8A
significan bits (LSB'’s)] of the output current of an analoginder an environmental laboratory lighting of 0.9 W/m
synapse driven by the tuning stages (and with a fixed inpbhe acquired gray-scale image is shifted by subtraction of
signalz..r) versus the digitally coded weight value. The worstthe spatial average, thus ensuring proper contrast adjustment
transition adaptation time of the tuning stage was belows1 over a wide range of illumination conditions. The averaging
with a capacitive load of 35 pF, which is the estimated on-chigircuitry, shown in Fig. 10(b), is included in every cell and
load of the tuning stage. globally interconnected through a common node SUM. A
CMOS inverter transforms the shifted output current to digital
levels, yielding a binary version of the image which can then

Image acquisition relies on photo-generated currents k& stored at internal memories. Fig. 10(c) illustrates a system
floating-base vertical CMOS-bipolar junction transistorkevel simulation of the performance of the threshold regulation
(BJT's) placed at every pixel. An automatic adaptive schene@cuitry. The area of the imaging circuitry (senseegulation)
is used to ensure appropriate contrast levels by shiftiig of about 110:m?, which amounts up to about 7% of the
the observed scene to obtain a zero-mean distribution all area.
pixel values. Optional external circuitry can be employed
to adjust the mean of the distribution when needed, for VI LocAL Logic CIRCUITRY
instance for highly regular images with dominant background. About 25% of the cell area is dedicated to local logic
This optical interface circuitry is actually identical to thatircuitry, including the programmable Boolean operator, image
previously described by the authors in [18], and used alreanhemories, and some signal multiplexing and control. Their

20 40 80 80 100 120
wp

V. OPTICAL INTERFACE CIRCUITRY
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Fig. 10. (a) Optical sensor (schematics and cross section), (b) threshold adjustment circuitry, and (c) illustrating the performance of tde thresho
adjustment circuitry.
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Fig. 11. Local logic memory: merged functionality of LLM and LAM.

realization is based on switches and conventional digital EIO(j) o—o I

circuitry. The 4-b image memory, based on charge storage, i

employs metal-1 shields over sensitive areas to avoid the oc ! L.
adverse effect of light on reverse diode currents, which could OF .

result in a significant reduction of storage time. Fig. 11 shows \{

the LLM. It consists of four digital dynamic memory cells oL S

of one transistor and one capacitor (this is really a transistor (b)

with the drain and source shorted). The binary nature of thg. 12. (a) LLU and (b) local communication and control unit (LCCU).
output of analog CNN operations allows the use of the LLM

to store the results of both analog and logic operations. In this . .
sense, the LLM combines the functionality of the LLM an fd DO are simultaneously enabled, the input and output

the local analog memory (LAM) of a general CNN universacl)f the inverter are shorted, and the parasitic capacitors are
machine [10]. The storage time of the digital memory is iRrecharged _to the quiescent ploint. of the inverter,_while all
the range of 200 ms. However, a refreshing procedure can%éoi?’) are disabled. Second)! is disabled and the inverter

employed to maintain the information as long as desired, ggirected toward’C’. At this time one of the signald/(g.) is
explained below. enabled and the corresponding data is inverted and written to

Any of the four bits can be addressed at any time usite capacitor ifi’C’. Finally, the inverter is flipped agairX/
global signalsiMo,, M, M», and M. An inverter and four enabled and>O disabled) to refresh the data in the memory
switches implement the sense amplifier. During writing, sign&¢ll. The capacitor if’C' can be used as a temporal memory
DI is enabled and signaDO is disabled. In this situation for intermemory data-transferences.
the digital data inZ’C is inverted and written in a particular Fig. 12(a) illustrates the implementation of the LLU, which
capacitor, depending on which signl .3 is activated. The is a two-input digital operator with fully programmable truth
read and refresh process follows three steps. First, signals table, transmitted through global signalsy, 751, 710, and
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Fig. 13. (a) Chip microphotograph and summary of electrical performance and (b) microphotograph and layout of a cell showing the distribution
of different parts.

T11. The two input signals of the LLU are always taken fronthe induced substrate noise. To reduce this, all the digital
the contents of memories 1 and 2 through signaly D0, circuitry is latent while the analog operation takes place.
D1, and D1, (see Fig. 11).

Fig. 12(b) shows the LCCU. It is an analog multiplexer VIl. SYSTEM-LEVEL PERFORMANCE
which selects the origin or destination of the signal to be stored_. .
. . 2 . Fig. 13 h hot h of th tot d
in (alternately retrieved from) one of the digital memories 'g. 13(a) shows a microphotograph of the prototype an

: a summary of its specifications. Technology is a double-
Ppsmble sources are the photo-sen@F_X, the external I(O metal, single-poly, n-well, 0.gzm CMOS available through
signal ETO(y) corresponding to a particular cell columi

_ X the EUROCHIP consortium. The total area of the prototype is
the cell outputOC' (obtained from the state variable by3g mp?  the time constant of the analog network is about
a simple comparator realized by a differential amplifieryy 4 us, and the operation speed of the digital circuitry is
and the output of the logic uni©L. Possible destinations 10 \Hz. Fig. 13(b) shows the microphotograph and the layout
are the analog network initialization circuitry (through nodgt one cell. The ten synapses occupy 45% of its area, 8% is
TC) or the external I/O signalEIO(j). In addition, by occupied by the integrator and the nonlinear element, 15% is
selecting two signal paths simultaneously, the multiplexglevoted to the analog memories, 25% to the digital and control
permits the downloading of the cell outpuRQW (i)&C) circuitry, and 7% to the optical interface. Two additional
on a row-by-row schedule, as well as reading the outpsinaller chips with analog and digital parts were fabricated
of the photo-sensorsROW (i)&F) or the local logic unit for testing and characterization purposes. The area occupied
(ROW ($)&L). by the cell array is 53% of the total chip area. The tuning

Although the logical circuitry plays an important role in thestages and the coefficient memories use about 4% of the chip
system operation, it may degrade the analog function througtea, 35% is for routing, and 8% for the pads.
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Fig. 14. One example of system-level experimental result: motion detection and estimation.

The electrical operation of key circuit blocks has beefiow E), both using analog CNN processing. The motion is
illustrated in the main text. In what follows we will illustratedetected by logic comparison of the reference image with the
its system-level performance. The prototype has been globadlyot obtained after erosion of the next one. If both fit, it means
tested and its functionality verified by the designers at thibat the motion is in the expected direction and range, and the
IMSE-CNM Laboratories, where the electrical characterizatidatter image is restored using a final CNN instruction.
was undertaken, and it was also shown that the chip realize#\s can be seen from the above description, this applica-
low-level operations such as low-pass image filtering, cornéon makes extensive use of all the capabilities of the chip,
and border extraction, hole filling, etc., according to spediacluding the electrical programmability of CNN coefficients,
fications [22]. The test setup used for these measuremettts internal image memories, the programmable local Boolean
is similar to that described in connection to previous fixedperator, the internal instructions (CNN templates) memory,
function chips reported by the designers [6]. In parallel tand the optical interface.
this, authors from the Hungarian Academy of Sciences have
undertaken the system-level characterization and have tested
the features of task sequencing and algorithmic control usiBg Texture Classification
stored instructions. A CNN chip prototyping system has been|, this experiment different Brodatz textures [24] are opti-
built for this purpose, and a number of programs have beggjy projected on the chip. The textures, which are kept in
developed for different applications [23], two of which argmqaoth motion, are repeatedly sampled at different positions,
illustrated below. with a resolution of about 0.2 mm/pixel [25]. This config-
uration ensures random sampling at changing illumination
and noise. We use a genetic real-time learning algorithm to
determine the optimal templates of the network [26]-[28].

The task here is to detect the motion of an object in a specifiowever, instead of using a simulator, the chip itself is
range of direction and speed. Processing is based on tised for the detection/learning process. In the learning phase,
comparison of two images acquired at different time instanfise texture-pictures/texture types are considered for learning
and relies on a sequential, bifurcated data-path algorithmemorized images). For the real-time test, several thousands
as shown in Fig. 14, where real images acquired by tloé images are used scanned by the on-chip sensors.
chip through its optical interface are employed. The top row The ratio of black pixels (ROB) is about 0.49 for the
shows a sequence of five input images. Each new inpoput images, their small variation is independent of the
image is processed in sequential steps by applying differéexture-class. Fig. 15 shows four examples of the original,
CNN templates or logic operations from the instructionthe scanned-thresholded input, and the output images. The
memory. The first step consists of a CNN diffusion-typéexture set consists of samples taken from [24], in particular
filtering (row B). The second step is the CNN mathematic&rench canvas (21), two Straw cloths (52) and (53) and Straw
morphology function of erosion (row C). The role of thesenatting (55). As a result, the ROB at the output is significantly
steps are to eliminate the noise and to get a spot approximatifferent for the four texture classes. The measured ROB
in the center of the traced objects. A reference image is theistributions for the different textures are plotted in Fig. 16.
generated from this spot by shifting it in accordance to tHeach curve is measured over about 4000 test samples. We
nominal speed vector and enlarging according to tolerancan find that histograms of the different texture classes can

A. Motion Analysis
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Fig. 15. (a) Sample images scanned by the on-chip photosensors, (b) adaptively thresholded binary input after scanning, and (c) binary output image a
CNN transformation with different ROB for the different textures using a singhe 3 template.

a5 , . . . In these texture detection experiments only one template is
4 used. More precise recognition can be achieved from a multi-
30¢ ] template process exploiting the template and image storing
251 ] capabilities of the chip. In the new version of our training
Ly program, there are no stored images for the training. The whole
20r i . learning process is done in real-time using the chip itself. The
5l M * training period is only some minutes for 3-5 textures.
o
o ':;(f ! VIIl. SUMMARY
5¢ tv k1 1 We have briefly described the design of a fully pro-
0 s’,"; ,‘ ) ) ) grammable vision chip with a wide range of potential
0 20 40 60 80 100 applications. The processing function is based on the cellular

Fig. 16. Classification statistics of the chip measurements, testing the RGBUral network paradigm, while the photo-transduction relies
values for four different texture-classes. Histograms (measured probabilgn vertical BJT's available on standard CMOS technologies
density) generated by moving the textures over the scanning window of fd includes an automatic contrast-enhancement circuitry.
chip sampling at 4000 different locations for each texture, and measuring the, . . . . . . . .
ROB of the output. dditional features like internal image memories, algorithmic

control, and programmable logic operators provide a high

. . yersatility for simple and medium complexity artificial-vision

be separated well from the others. Here the histogram is tY1e atity P . pie: ty'

arppllcatlons. Although the internal operation is fundamentally

measured probability density function of the ROB values f%nalog, the interface of the prototype is completely digital,

a given texture result. Measuring the contrast by the avera %king it directly controllable by conventional computing

difference of the neighboring histogram peaks of the diﬁereH vices. The prototype has been manufactured in a standard
texture classes, this contrast is better than 5% for fourtextur@(% m CMOS technology and successfully tested

: - : - Yz
while the in-class consistency (the curve width around a pea )I'he basic trend in the design of the analog cell circuitry

is good. Considering these probability densities, the Bayesi%n— L . . .
- . as been the maximization of the density, while guaranteeing a
error for the recognition of the four textures is about 4-5% v g 9

In a robustness experiment. the textures were defocu'srg$sonable degree of accuracy in the analog operations. The in-
and rotated in randorﬂ ositio,ns The result of our textuy0 ved area-accuracy tradeoff [19] has been addressed through
: . P : . s?[uctural and parametric optimization [5]. The achieved cell

detector is nearly independent of the texture-rotation and she(? - . :
L . " . ensity is of 27.5 cells/mf—larger than achieved in other
tilt in a wide range. In addition, we found that different : . L

. r{?rammable CNN implementations with similar analog ac-
chips calculated the same result. We tested other texture-s8 : ;
L ) curacy levels and fewer on-chip functions [13].
with similar results. In the above experiments the Bayes mis-
classification error is about 4-5% for the four textures, 2—4%
for three textures, and 0-4% for two textures. In another
experiment, we trained the chip to detect different positiongl] M. M. Gupta and G. K. Knopf “Neuro-vision systems: A tutorial,” in
of textures containing nearly straight sections. The template Neuro-Vision Systems: Principles and Applicationslew York: IEEE
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