
TNet: A Reliable System Area Network 

A major departure from traditional VO systems, TNet is a new system area network designed 
to s"pp0rt current and future needs for reliable, efficient communications among processors 
and peripherals. It is an extensible hardware-software layer that allows very large 
configurations by logically and physically isolating processor buses from VO buses. TNet 
features wormhole routing, packet-switched transfers, and point-to-point links. 

he rapid pace of CPU performance 
enhancements has far exceeded per- 
formance advances in 110 architec- 
ture. As a result, systems cannot take 

full advantage of available processing power. To 
close the gap, new system designs must transi- 
tion from being processor centric to I/O centric. 
The TNet (Trusted Ketwork) architecture results 
from taking a fresh look at the requirements for 
supporting scalable I/O systems in future gen- 
erations of  C P U .  

TNet is not a direct replacement for any exist- 
ing type of local area network or I/O bus. It is a 
new interconnection layer, a system area net- 
work (SAN), which provides common hardware 
and software services to processor and I/O 
nodes. By connecting all devices through this 
common I/O layer, the devices inherit TNet fea- 
tures that allow on-line service of peripherals; 
isolation and containment of faults; a common 
I/O programming model; and common I/O con- 
figuration and error management. TNet links 
extend within a system cabinet through back- 
plane connections, or between cabinets through 
external cables. This flexibility allows systems 
with hundreds of processors and thousands of 
I/O devices. 

The TNet SAK also provides inter-CPU com- 
munications for distributed memory niulticom- 
puting. The links are logically similar to LAN 
connections, but the low latency in both hard- 

Robert W. Horst 

Tandem Computers 
lncorporated 

ware and software means that multiple-CPU 
tems behave much more like massively parallel 
processing systems than LAN-connected clusters. 
TNet interprocessor communication (11'0 capa- 
bility can be used for single-system-image par- 
allel processors, such as the Tandem Nonstop 
systems,' as well as other loosely coupled 
processor clusters. 

Designers typically structure existing multiple 
processor clusters around a group o f  worksta- 
tions connected through a high-speed LAN, ;is 
shown in Figure 1 (next page). This design's main 
problem is that hardware and software latencies 
may be so large that the system devotes a high 
percentage of CPU cycles to servicing the LAYu. 

To send a message between processors, hard- 
ware must arbitrate for two buses on each sys- 
tem and may have to copy data several times at 
each end. Software requires several context 
switches and interrupts to set up and perform 
the transfer. Latency for a single message can 
grow to many milliseconds. 

The TNet cluster (Figure 2) directly addresses 
latency problems. TNet provides routing and 
addressing to allow any CPU t o  communicate 
with any other CPU or I/O controller in the net- 
work. TNet nodes can read and write portions o f  
each other's memories without requiring software 
execution at the remote node. The cluster uses 
TNet addresses as virtual I/O addresses for auto- 
matic scatter-gather capability when accessing 
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Figure 1. CPU cluster connected with a typical high-speed LAN. 
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Figure 2. CPU cluster connected w i t h  the  TNet system area network.  

By connecting all 110 devices and 
CPUs through the same intercon- 
nection layer, hardware can support 
direct connections between CPUs, 
from any CPU to any I.iO device, or 
between I/O devices. This capabili- 
ty supports either shared-disk or 
shared-nothing database systems.' In 
a shared-nothing database, such as 
Tandem Nonstop SQI,. the net- 
worked disk connections are bene- 
ficial in allowing load balancing by 
reassigning disk ownership without 
requiring disk connection recabling. 

Direct periplieral-tc)-peripheral 
communication gives TNet-based 
systems unique capabilities in multi- 
media applications. A CPU may set 
up  a large transfer between comtnu- 
nications and disk controllers. but the 
data can flow directly between the 
controllers without passing through 
main memory. This improves the 
performance of the transfer. con- 
serves memory bandwidth, and 
reduces CPU cycles. 

TNet supports dual paths to every 
node through a pair of independent 
X and Y subnetworks, making the 
network fully fault tolerant. In nor- 
mal operation, TNet spreads traffic 
across the two networks, hut either 
one can take over the load after a fail- 
ure. TNet-based systema never pass 
packets between networks, prevent- 
ing errors or congestion on one net- 
work from affecting the other. 

Designing TNet 
The architecture o f  Figure 2 

requires the network implenienta- 
tion to have certain characteristics: 
scalability, high performance, low 
cost, and reliability. It was natural to 
look for an existing standard bus or 
network to fit this architecture, but 
we found nothing that met all the 
requirements. This forced 11s into the 

consecutive virtual addresses, which are scattered in physi- 
cal memory. Translating TNet addresses to physical address- 
es also protects main memory from errant I/O devices. The 
CPU must set permission bits in the TNet address translation 
table permitting access to a portion of memory. 

difficult job of designing a completely new network. 
Scalability is a criticdl requirement for commercial systems 

to provide smooth growth for customers as their computing 
requirements grow. The need for growth dictatcd a network 
instead of a bus, because a network can provide additional 
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system bandwidth for each added node. Point-to-point links 
are also beneficial in containing and isolating hardware and 
software faults, and networks do not have the severe length 
restrictions of shared buses. 

High performance is always an important consideration 
in designing system interconnections. Performance analysis 
must consider the link bandwidth, communications latency, 
and software overhead. Software overhead often dominates 
performance, and hardware must facilitate short software 
path lengths wherever p ~ s s i b l e . ~  In commercial systems, 
short messages and I/O transfers are common, and the archi- 
tecture must not penalize short message latency even if a 
long transfer is currently in progress. Designing for short 
latency imposes requirements such as short packet sizes and 
efficient interrupt handling. 

The new interconnection network must be simple and of 
low cost to be incorporated into all CPU and I/O compo- 
nents of the system. The interface logic must be simple 
enough to allow several network interfaces on a single appli- 
cation-specific integrated circuit. This leaves enough room for 
the other logic the ASIC must perform. Also, interface costs 
must not preclude the attachment of low-cost peripherals. 

An interconnection network for systems with hundreds of 
nodes or more must have built-in reliability. Errors must be 
detected as they happen, and the network must continue 
operation in spite of failures. The existing literature on fault- 
tolerant interconnection networks often fails to consider 
faults encountered in real implementations, such as clocking 
and power faults. In addition, many subtle fault modes in 
the addressing and control logic cannot be modeled by sim- 
ply considering link failures. For instance, the network must 
prevent faults from causing misaddressed packets and 
deadlocks. 

A network also must handle the stale packet problem. 
When an error occurs, packets in transit may be stuck some- 
where in the network. If there is no way to remove these 
stale packets, they can show up later and disrupt operation 
after the system recovers from the original problem. 

During our investigation, we considered many existing 
and proposed standard networks. Fibre channel' has very 
good performance on long sequential transfers, but its laten- 
cy on short packet-switched (class 2) transfers could not meet 
our requirements. Asynchronous Transfer Mode (ATMI5 was 
far too costly, given the large number of network attach- 
ments required in a system area network. The scalable coher- 
ent interface (SCII6 had a design center for handling cache 
coherence traffic, and as a result its cost and complexity 
exceeded our acceptable limits. Designed as an I/O bus 
replacement, the P1394 serial link's' performance and scal- 
ability do not meet high-end system requirements. 

Although none of these networks were viable for the sys- 
tem area network itself, SAN-connected controllers may- 
support them to satisfy open-interconnection requirements. 

Commanddata %r 
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Figure 3. TNet byte-serial data links. 

I Table 1. Command and data symbol encoding. 

I CD8 CD7 CD6 Function 

0 0 0  
0 0  1 
0 1 0 
1 0 0  
0 1 1 
1 0 1 
1 1 0 
1 1 1 

Command 
Error 
Error 
Error 

Data <7:6> = 00 
Data <7:6> = 01 
Data <7:6> = 10 
Data <7:6> = 11 

TNet implementation 
In the end, the only reasonable choice was to design a 

new network to satisfy the unique requirements of the SAN. 
The requirements dictated a wormhole-routed, packet- 
switched, and point-to-point network designed with special 
attention to reducing latency and assuring reliability. 

Physical layer. Figure 3 illustrates the physical connec- 
tions of each TNet link. The links have independent trans- 
mit and receive channels, each with a nine-bit command/ 
data (CD) field plus a clock. The CD field provides 256 data 
symbols plus up to 20 command symbols. The links use coni- 
mand symbols for link-level flow control as well as for ini- 
tialization and error signaling. Encoding commands and data 
into the same lines reduces pin count and improves control 
logic fault detection. 

Table 1 shows the 8B/9B code for symbol encoding. The 
code uses three bits to distinguish between a command and 
four groups of data symbols. The four data symbol groups, 
plus the remaining six bits, encode the 256 data symbols. A 
different code in the upper three CD hits selects the com- 
mand symbols. 

A 3-of-6 code (in which all valid symbols have exactly 
three Is and three Os) over the remaining six CI) hits repre- 
sents the commands. This code detects all unidirectional 
errors as well as any odd number of errors in the lower six 
CD bits. The three error codes separate the data symbols 
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from the command symbols by a minimum Hamming dis- 
tance of two. This prevents any single fault from turning a 
command symbol into a data symbol, or vice versa. 

m e t  links use source clocking, with the clock sent through 
similar delay paths as the data. This makes it easier to scale 
the system to higher frequencies, and avoids the perfor- 
mance losses of asynchronous networks that slow down as 
handshake signals become longer. 

Figure 4 shows the TNet port implementation. Intercabinet 
links use differential emitter-coupled logic drivers to drive 
up to 20 meters of cable. Single-ended CMOS buffers drive 
local backplane TNet connections. Each TNet interface uses 
a pair of FIFO buffers for clock synchronization and flow 
control. The synchronizing FIFO buffer takes in CD symbols 
from the source clock and sends them out synchronously to 
the receiver's clock. 

TNet port logic uses the elastic FIFO buffer to queue data 
symbols and support link-level flow control. Congestion in 
the network may limit the retrieval rate of data symbols from 
the elastic FIFO buffer. When the FIFO buffer begins to fill, 
it sends out a signal instructing flow control logic to return 
a Busy command symbol to the sender. When the sender 
receives the Busy symbol, it stops sending data symbols and 
instead sends Fill symbols (that are discarded by the receiv- 

Packet 
data 

88/98 Transmit \ 

er) until it receives a Ready symbol. 
When a long cable connects the sender and receiver, there 

can be a significant time lag between the time the receiver 
FIFO buffer begins to fill, and the time the sender actually 
stops sending data symbols. This time lag dictates the mini- 
mum size of the elastic FIFO buffer. In the first implementa- 
tion, a 20-meter cable transferring at 50 Mbytes/second 
requires less than 32 bytes of elastic FIFO buffer, including 
internal pipeline delays. The elastic FIFO buffers have at least 
64 bytes of storage to satisfy this requirement, as well as to 
provide extra storage for improved link usage. 

Future adapters may extend TNet distances through seri- 
al fiber optics. This conversion is relatively straightforward 
because all control functions, including flow control and 
interrupts. communicate through the same CD symbols. 

Packets and transactions. Figure 5 shows the TNet pack- 
et formats. Packets consist of an %byte header, optional 32- 
bit address, variable-size data payload. and a cyclic 
redundancy check. The header specifies destination and 
source node identification, data length, and which operation 
to perform. Operations include Read Request, Read 
Response, Write Request, Write Response, and Unacknowl- 
edged Write. A single packet's maximum payload is 64-bytes 
to reduce worst-case latencies. Restricting the packet length 
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Figure 4. TNet port implementation and flow control. 

40 IEEE Micro 



also improves fairness in link usage. and reduces storage 
requirements. 

The TNet address is a 32-bit window into the destination's 
address space. The interface to the destination CPU or I/O 
device provides mapping and validation hardware translat- 
ing this virtual TNet address to the appropriate physical mem- 
ory address. Typically, I/O devices use one-to-one mapping, 
but because TNet node identifications differ for each I/O 
bus, each I/O node has its own independent 32-bit address 
space. CPUs have an address validation and translation table 
(AV") to map the virtual TKet address space to the proces- 
sor's physical address space. 

Performing both read and write functions allows a node 
to either push or pull data across the network. The pull capa- 
bility, which is missing from most LANs, reduces the num- 
ber o f  handshakes required for buffer management. When 
reading data from a remote node, the pull capability elimi- 
nates the context switch and software execution otherwise 
required at the remote node. The support of both read and 
write functions also allows I/O device traffic to be forward- 
ed to host memory; hardware thus handles the TNet trans- 
fers transparently. 

Packet routing. Figure 6 shows a block diagram of a TKet 
router ASIC. The first generation uses 6x6-port routers and 
makes routing decisions using a programmable routing table. 
The table selects an output port based only on the destind- 
tion identification of the incoming packet. Routers have FIFO 
buffers on the inputs, logic for arbitration and flow control, 
a routing table implemented in RAM, and a crossbar switch. 
The service processor can modify routing tables t o  configure 
or  reconfigure the network. 

TNet uses wormhole routing to reduce latency to 300 ns 
o r  less. As the first bytes of a packet arrive at a router, it uses 
a portion of the destination identification to address the rout- 
ing table. The table specifies the output port number of the 
packet's destination. If that port is busy. or if the input port 
loses arbitration, additional bytes of the packet continue t o  
accumulate in the elastic FIFO buffer. Link-level flow control 
prevents packet loss despite momentary congestion in the 
network. 

In addition to link-level flow control, end-to-end flow con- 
trol prevents nodes from injecting more packets into the net- 
work than can be handled efficiently. This is accomplished 
by requiring a positive acknowledgment for every packet 
sent. (The Unacknowledged Write is an exception. However, 
it is only used for maintenance subsystem functions and in 
special situations where higher level protocols support recov- 
ery o f  dropped packets.) Some nodes support multiple out- 
standing requests allowing multiple packets in trarlsit to a 
destination before acknowledging the first one. In all cases, 
nodes must guarantee enough buffer space to accept the 
maximum outstanding packets from all possible sources. 
End-to-end flow control prevents saturating the network to 
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Figure 5 .  TNet read and write transactions. 
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the point where added requests co~ild actually tJc.cre;i.se nrt- 
work throughput (similar t o  virtual memory tlirasliing). CI'L 
nodes use main memory to buffer incoming packets, effec- 
tively giving unlimited buffer storage. IiO no& interfaces 
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Figure 7. TNet processor interface. 

have a small number of hardware packet buffers; a control- 
ling CPU manages their use. 

Deadlock avoidance. In wormhole-routed networks, 
congestion can force a packet to wait until the router sends 
the packets ahead of it. If the network is configured with 
loops in the connection graph, congestion may block several 
packets, with each packet waiting for ;I link currently used 
by another blocked packet. A reliable network must either 
avoid this type of deadlock, or detect and break deadlocks 
when they occur. 

TNets avoid deadlocks by disallowing configurations with 
circular dependencies and requiring end nodes to accept 
incoming packets even if their outbound links are busy. 
Many topologies. such as tree networks, need no modifica- 
tion because they are inherently cycle free. Selectively dis- 
abling certain paths in the router will support topologies with 

We have not included virtual channelsH3 as a way to avoid 
deadlocks because the small benefit in configuration flexi- 

cycles. 

bility did not justify the added complexity and additional 
buffer space required. Disabling selected paths does not 
unduly burden the anticipated topologies for TNet networks, 
and yields design area substantially smaller than a virtual 
channels design. 

Processor interface. Figure 7 shows a diagram of the 
TNet processor interface (TPI) ASIC. This ASIC provides con- 
nections between the CPU and memory. and between the 
TNet ports and memory. The TPI also performs CPU initial- 
ization and controls interrupt queuing and deliver)i. 

The TNet system implementation allocates a portion of 
main memory for use by the processor interface to reduce the 
amount of required on-chip memory. Main memory contains 
packet buffers, the large AVT table, and interrupt queues. 

When an inbound redd or write request packet arrives at 
the processor interface, the interface must validate and trans- 
late the virtual TNet address by looking it up in the AVT table. 
Each AVT entry includes the physical address translation, 
permission bits indicating whether the CPU permits read or 
write access, and the identification of the TNet node allowed 
to use this entry. A small hardware cache for AVT entries 
eliminates memory AVT table access for many inbound pack- 
ets. Some programmers at first objected to setting up AVT 
entries for every transfer. However, they soon grew to appre- 
ciate the automatic scatter-gather capability that this struc- 
ture provides. In many cases, this capability can eliminate 
an entire data copy and the associated latency. 

IiO devices generate interrupts by sending standard write 
packets to CPU addresses that the AVT table translates into 
interrupt requests. When an interrupt packet arrives, a spe- 
cial AVT entry directs the packet to one of four priority inter- 
rupt queues in main memory. 

The interrupt packet includes the node number of the 
device requesting the interrupt, and may contain other inter- 
rupt status information. This interrupt payload eliminates the 
need for several more round-trip transfers between the CPU 
and I/O controller to acquire status. 

To support efficient message passing, the processor inter- 
face ASIC has a block transfer engine (BTE) that the proces- 
sor can program to send short or long messages through a 
sequence of chained TNet packet transfers. Programmers 
can prebuild BTE descriptors in main memory and initiate 
them by writing to a hardware register in the interface. 

The TNet implementation does not currently support 
memory-mapped I/O because we thought it was the wrong 
model for coping with increasing I/O latency. As CPU speeds 
increase, both due to faster cycle times and more instruction 
issues per cycle, each noncached load can easily waste tens 
to hundreds of instruction cycles even when accessing a 
“local” 1 / 0  bus that may in reality be many microseconds 
away. The processor interface instead assumes a DMA model 
where the processor can accomplish useful work while wait- 
ing for transfers to complete. Even for short transfers, the 
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added overhead required to program the BTE is small con-  
pared to the time when the processor \vould otherwise stall. 

Bus interface. Figure 8 shows a block diagram of the 
TNet bus interface (TH) ASIC. The TU1 translates transfers on 
the standard bus into TXet read or write transactions that 
travel through TNet links t o  main memory. 

Different versions of the bus interface logic support inclus- 
try standard buses such as \'ME and the peripheral compo- 
nent interconnect (PCI). o r  microprocessor buses such as 
that o f  the Motorola 68040 chip. 

Each TBI chip supports an independent 110 bus. Each sys- 
tem may have inany TBIs to support several identical or dif- 
ferent 1,'O buses. Each srandard bus typically has from one 
t o  four rittai-hed peripheral controllers. TNet links eliminate 
the length and loading restrictions that would occur if all 
devices connected to the same bus. The individual buses 
also have much better fault isolation and containment. 

Another benefit of this structure is that most standard buses 
are not split-transaction buses; therefore, once a device 
requests a memory read, it can initiate no other transactions 
until the read data returns. By implementing multiple 110 
buses (each controlled by a TBI), many reads can simulta- 
neously wait for data t o  be returned. 

I/O programming exploits the DMA CdpabihtieS of new 
peripheral 1/0 chips. The programming model assumes that 
the speed of the 1 / 0  device itself controls and paces most 
input and output processing. For inbound data (such as read- 
ing from disk), the I/O controller generates m e t  write trans- 
actions t o  place the data directly in the requesting CPll's 
memory. In the outbound direction, the I/O controller 
requests data using a TNet Read request. The CPU node then 
responds with the data as part of a Read-Response packet. 
In Ixch directions, processor-interface hardware handles the 
transfers between the TNet and main memory without 
involving the CPU. All devices can simultaneously have DMA 
translers in progress without burdening the CPL with sup- 
porting a multithreaded DMA controller. 

Topologies. Users can configure TNet routers in many 
topologies including hypercubes, meshes, and trees. System 
clusters will generally use different topologies in different 
places. For instance, it may be advancdgeous to use a tree 
for I;O connectivity, but connect the I.'O trees and CPUs 
together in a hypercube. 

The requirements of  a network used t o  construct large 
clusters o f  processors and peripherals may change over time. 
During a system's lifetime, users may add many devices and 
add or remove links to help balance network use. We intend- 
ed t o  design a network that was not restricted to a fixed 
topology. but could grow and atlapt as needed. Our design's 
flexible, six-port router ASIC allows use of many different 
networks to satisfy system requirements. 

Error detection, isolation, and recovery. One of the 
primary distinguishing characteristics of the TNet design is its 

$. TNet link 

TNet interface 

*32-bit bus (VME, Motorola 68040, PCL, ...) 

Figure 8. TNet bus interface. 

focus on reliability. N o  110 system ran work reliably if errors 
go undetected o r  if the system cannot isolate the cause of 
the errors. Point-to-point TNet links make fault isolation 
much easier than in a sharecl-bus I/O system. 

Error checkers detect single-bit errors on command or data 
hits either through the packet CRC o r  through command 
symbol encoding. These codes also detect multiple-bit burst 
errors. The CRC covers all header bytes, providing protection 
t o  address as well as data errors. The CRC gives enrl-to-end 
protection of packets, because the routers do not modify or 
regenerate :I packet's CRC as it passes through. 

Checking tlie CRC code at each router crossing enhanct.~ 
fault isolation. The TNet interface appends a command syni- 
bol to every packet. Normally the appended symbol is "this 
packet good," indicating that CRC was good when it left the 
1,revious routing level. If :I TNet interface detects faulty CRC 
anywhere along the path, it changes the symbol t o  .'this pack- 
et bad." The maintenance subsystem uses this information to 
isolate exactly which link o r  router stage introduced the error, 
even if the error was transient and nonrepeatable. 

The AVT table also plays an important role in assuring that 
laulty I/O controllers do not corrupt memory. AVT entries 
are programmed to grant access rights for a range of  meni- 
ory pages or for as little as a single byte. This fault contain- 
ment isolates problems to a single controller instead of the 
entire I/O system. This is especially important in I/O, because 
the system vendor has little control over the hardware and 
software quality of third-party peripheral suppliers. 

Fault recovery is the responsibility of higher level soft- 
ware. Software retries 110 errors, and may retry them through 
an alternate path if available. Systems designed with multi- 
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Figure 9. Typical system architecture using TNet. 

ple subnetworks provide complete fault tolerance in the I/O 
system. TNet I 1 0  adapter cards optionally connect t o  two 
independent networks allowing continued operation despite 
the loss of one entire network. 

Bounded worst-case latencies. A tnajor design goal was 
to provide worst-case latencies below a reasonable value (a 
few milliseconds). This is important for fault-tolerant systems 
because it allows designers to set low values for timeout coun- 
ters and thus reduce fault recovery tinie. Any network with 
un1)oundecl latencies will occasionally hit an error and cause 
some form of hardware o r  software retry. As such a netw-ork 
hecwmes congested. the chance for those retries increases, 
and then the retries themselves increase network traffic even 
more. This can cause a runaway situation that is extremely dif- 
ficult t o  model or prove bounded. 

We designed TNet explicitly to avoid 
delays that have no provable upper 
bounds. TNet cloes not use asynchronous 
handshake signals, as distinguishing 
between faulty links and slow hand- 
shakes can be difficult. It also does not 
use adaptive routing i,ecause many of  
those algorithms can loop indefinitely 
looking for possible paths. In addition, 
we designed routers with duplicated and 
compared state machines to prevent 
erratic o r  erroneous operation. 

System architecture 
Figure 9 shows a typical system archi- 

tecture that can be implemented using a 
TNet SAN. Ilual-ported processor inter- 
faces connect to redundant Xand Ysub- 
networks. Spare TNet links can connect 
many CPLJs. The system provides 110 
controller (IOC) slots for storage. com- 
munications, or TNet router expansion. 

I/O expansion is provided by an 
unbalanced tree connecting local TNet 
I/O controller slots and TNet cable con- 
nections t o  remote peripheral cabinets. 
Dual-port connections t o  the I/O slots 
assure connectivity during failures o r  
reconfigurations o f  one network. Storage 
interfaces provide dual paths to tlie disks 
and allow disk mirroring across inde- 
pendent Small Computer System 
Interface (SCSI) buses. 

THE TNET SYSTEM AKEA4 NETWOKK is ;I major del’ar- 
ture from traditional I/O systems. yet supports standard 110 
buses and high-level programming models. It is noteworthy 
not only for its wide range of features but also for features 
that were consciously left out for simplicity ancl low cost. 

Simplicity allows low-cost ASICs with multiple TNet ports 
for configuration flexibility and fault tolerance. We designed 
the network without niemorymapped I/O. virtunl channels. 
liardw-are retry, or adaptive routing t o  lower costs m:ithout 
sacrificing our primary gods. 

TNet represents a new layer of h:irdware architecture. This 
layer solves tlie prohlems of  I/O extensibility and allows a 
uniform programming niodel optimized for intelligent 
peripheral controllers. The network supports message pass- 
ing within CPI: clusters, as w-ell as CPr-I/O and even 110- 
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110 transfers. The emphasis o n  fault detection, isolation, and 
repair allows TNet t o  provide a solid foundation for build- 
ing reliable systems. 

TNet is currently the tyasis for several future systems devel- 
opment projects. We are continuing t o  evolve the architec- 
ture and programming model for use in different 
applications. The flexible network topology gives us many 
options in building parallel systems, and we have begun 
research projects t o  study the best ways to optimize large 
TNet configurations. We expect to build many future gener- 
ations o f  TNet-based systems. C 
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