Presented at Hot Interconnects II, Aug. 1994, Palo Alto, CA, abridged version in IEEE Micro, Feb 1995.

Low-Latency Communication over ATM Networks
using Active Messages

Thorsten von Eicken, Veena Avula, Anindya Basu, and Vineet Buch

Department of Computer Science
Cornell University
Ithaca, NY 14850

Abstract

Recent developments in communication architectures for parallel machines have made significant progress
and reduced the communication overheads and latencies by over an order of magnitude as compared to earlier
proposals. This paper examines whether these techniques can carry over to clusters of workstations connected
by an ATM network even though clusters use standard operating system software, are equipped with network
interfaces optimized for stream communication, do not allow direct protected user-level access to the network,
and use networks without reliable transmission or flow control.

In a first part, this paper describes the differences in communication characteristics between clusters of work-
stations built from standard hardware and software components and state-of-the-art multiprocessors. The lack
of flow control and of operating system coordination affects the communication layer design significantly and
requires larger buffers at each end than on multiprocessors. A second part evaluates a prototype implementa-
tion of the low-latency Active Messages communication model on a Sun workstation cluster interconnected by
an ATM network. Measurements show application-to-application latencies of about 20 microseconds for small
messages which is roughly comparable to the Active Messages implementation on the Thinking Machines

CM-5 multiprocessor.

1 Introduction

The shift from slow broadcast-based local area networks
to high bandwidth switched network architectures is
making the use of clusters of workstations! as platforms
for parallel processing more and more attractive. While
a number of software packages [5,6] already support

1. The term cluster is used here to refer to collections of work-
station-class machines interconnected by a low-latency
high-bandwidth network.

This paper and the described software are available at URL
http://www.cs.cornell.edu/Info/Projects/ ATM/

Authors’ email: {tve,veena,basu,buch} @cs.cornell.edu

This work is supported by an equipment gift from AT&T

Copyright ©1994 Institute of Electrical and Electronics Engi-
neers. This is an extended version of an article from IEEE
Micro Magazine; volume 15, issue 1, pp. 46-64; Feb ’95.

This material is posted under http://www.cs.cornell.edu/Info/
Projects/ATM/ with permission of the IEEE. Such permis-
sion of the IEEE does not in any way imply IEEE endorse-
ment of any of Cornell University’s products or services.
Internal or personal use of this material is permitted. How-
ever, permission to reprint/republish this material for adver-
tising or promotional purposes or for creating new
collective works for resale or redistribution must be
obtained from the IEEE by sending a blank email message
to info.pub.permission @ieee.org.

By choosing to view this document, you agree to all provisions
of the copyright laws protecting it.

hoti-tr.doc — 3/7/95

parallel processing on today’s workstations and net-
works, the communication performance is over two
orders of magnitude inferior to state-of-the art multipro-
cessors”. As a result, only embarassingly parallel appli-
cations (i.e., parallel applications that essentially never
communicate) can make use of such environments. Net-
working technologies such as ATM[1] offer the opportu-
nity to close the gap: for example, ATM cells are
roughly the same size as messages on multiprocessors, it
takes only a few microseconds to send or receive a cell,
ATM switches can be configured to provide bisection
bandwidths comparable to parallel machine networks,
and routing latencies are on the order of microseconds.’
However, to date this communication potential has not
been available at the application level.

From a purely technical point of view, the gap between
clusters of workstations and multiprocessors is certainly
closing and the distinction between the two types of sys-
tems is becoming blurred. Differences remain: in partic-
ular, the design and construction of multiprocessors
allows better integration of all the components because

2. This paper focuses exclusively on scalable multiprocessor
architectures and specifically excludes bus-based shared-
memory multiprocessors.

3. Current ATM switches have latencies about an order of
magnitude higher than comparable multiprocessor net-
works, however, this difference does not seem to be inher-
ent in ATM networks, at least not for local area switches.



they can be designed to fit together. In addition, the
sharing of physical components such as power supplies,
cooling and cabinets has the potential to reduce cost and
to allow denser packaging. While the debate over the
significance of these technological differences is still
open, it is becoming clear that the two approaches will
yield qualitatively similar hardware systems. Indeed, it
is possible to take a cluster of workstations and load sys-
tem software making it look almost identical to a multi-
processor. This means that a continuous spectrum of
platforms spanning the entire range from workstations
on an Ethernet to state-of-the-art multiprocessors can
become available, and that any distinction between mul-
tiprocessors and clusters will be more and more arbi-
trary from a technical point of view.

From a pragmatic point of view, however, significant
differences are likely to remain. The most important
attraction in using a cluster of workstations instead of a
multiprocessor lies in the off-the-shelf availability of all
its major hardware and software components. This
means that all the components are readily available, they
are familiar, and their cost is lower because of econo-
mies of scale leveraged across the entire workstation
user community. Thus, even if from a technical point of
view there is a continuous spectrum between clusters
and multiprocessors, the use of off-the-shelf compo-
nents in clusters will maintain differences.

In fact, the use of standard components in clusters raises
the question whether these can be reasonably used for
parallel processing. Recent advances in multiprocessor
communication performance are principally due to a
tighter integration of programming models, compilers,
operating system functions, and hardware primitives. It
is not clear whether these advances can be carried over
to clusters or whether the use of standard components is
squarely at odds with achieving the level of integration
required to enable modern parallel programming mod-
els. Specifically, new communication architectures such
as distributed shared memory, explicit remote memory
access, and Active Messages reduced the costs from
hundreds to thousands of microseconds to just a few
dozen precisely through the integration of all system
components. These new communication architectures
are designed such that network interfaces can imple-
ment common primitives directly in hardware, they
allow the operating system to be moved out of the criti-
cal communication path without compromising protec-
tion, and they are well suited for high-level language
implementation.

This paper examines whether the techniques developed
to improve communication performance in multiproces-
sors, in particular, Active Messages, can be carried over
to clusters of workstations with standard networks and
mostly standard system software. This paper assumes
the current state of the art technology in which clusters

hoti-tr.doc — 3/7/95

using ATM networks differ from multiprocessors in
three major aspects 1,

* clusters use standard operating system software
which implies less coordination among individual
nodes, in particular with respect to process schedul-
ing and address translation,

* ATM networks do not provide the reliable delivery
and flow control that are taken for granted in multi-
processor networks, and

* network interfaces for workstations optimize
stream communication (e.g., TCP/IP) and are less
well integrated into the overall architecture (e.g.,
connect to the I/O bus instead of the memory bus).

In comparing communication on clusters and multipro-
cessors this paper makes two major contributions:

* first, it analyzes, in Section 2, the implications that
the differences between clusters and multiproces-
sors have on the design of communication layers
similar to those used in multiprocessors, and

* second, it describes, in Section 3, the design of an
Active Messages prototype implementation on a
collection of Sun workstations interconnected by an
ATM network which yields application-to-applica-
tion latencies on the order of 20ys.

The use of Active Messages in workstation clusters is
briefly contrasted to other approaches in Section 4 and
Section 5 concludes the paper.

2 Technical Issues

Collections of workstations have been used in many dif-
ferent forms to run large applications. In order to estab-
lish a basis for comparison to multiprocessors, this
paper limits itself to consider only collections of work-
stations (called clusters) which consist of a homoge-
neous set of machines, dedicated to run parallel
applications, located in close proximity (such as in the
same machine room), and interconnected by an ATM
network. Such a cluster can be employed in a large vari-
ety of settings. The cluster could simply provide high-
performance compute service for a user community to
run large parallel applications.

A more typical setting would be as computational
resource in a distributed application. One such example,
the Stormcast weather monitoring system in Norway,
runs on a very large collection of machines spread
across a large portion of the country, but uses a cluster
of a few dozen workstations in a machine room (without
high speed network in this case) to run compute-inten-
sive weather prediction models and to emit storm warn-

1. A discussion of differences in fault isolation characteristics
is beyond the scope of this paper.



ings. The availability of low-latency communication
among these workstations would enable the use of par-
allel programming languages and of more powerful par-
allel algorithms, both of which require a closer coupling
among processors than is possible today.

Concentrating on the compute cluster offers the largest
potential for improvement because the latency over the
long-haul links is dominated by speed-of-light and net-
work congestion issues and because the wide area com-
munication is comparatively better served by today’s
distributed computing software. Note that this paper
does not argue that running concurrent applications in a
heterogeneous environment, across large distances, and
on workstations that happen to be sitting idle is not an
interesting design point (it in fact has been used success-
fully), but that the set of communication issues occur-
ring in such a context cannot be compared to those in a
multiprocessor.

Given that the applications for clusters considered here
exhibit characteristics similar to those on multiproces-
sors, the programming models used would be compara-
ble, if not identical, to those popular for parallel
computing. This includes various forms of message
passing (e.g., send/receive, PVM), of shared memory
(e.g., cache coherent shared memory, remote reads and
writes, explicit global memory), and of parallel object
oriented languages (e.g., numerous C++ extensions).

On parallel machines several proposed communication
architectures have achieved the low overheads, low
latencies, and high bandwidths that are required for high
performance implementations of the above program-
ming models. In particular, cache coherent shared mem-
ory, remote reads and writes, and Active Messages offer
round-trip communication within a few hundred instruc-
tion times, so that frequent communication on a fine
granularity (such as on an object by object or cache line
basis) remains compatible with high performance. In
these settings, the overhead of communication, that is,
the time spent by the processor initiating communica-
tion, is essentially the cost of pushing message data into
the network interface at the sending end and pulling it
out at the receiving end. Virtually no cycles are spent in
any protocol handling as all reliability and flow control
are handled in hardware. The operating system need not
be involved in every communication operation because
the network interface hardware can enforce protection
boundaries across the network.

The above communication architectures cannot be
moved in a straightforward manner from multiproces-
sors to clusters of workstations with ATM networks
because of three major differences between the two:
ATM networks offer neither reliable delivery nor flow
control, ATM network interfaces provide no support for
protected user-level access to the network, and the

hoti-tr.doc — 3/7/95

workstation operating systems do not coordinate pro-
cess scheduling or address translation globally. Coping
with these differences poses major technical challenges
and may eventually require the integration of some mul-
tiprocessor-specific features into the clusters. The fol-
lowing three subsections present the nature of these
differences in more detail and discuss the resulting
issues.

2.1 Reliability and flow control in the network

In multiprocessor networks, flow control is imple-
mented in hardware on a link-by-link basis. Whenever
the input buffer of a router fills up, the output of the up-
stream router is disabled to prevent buffer overflow. The
flow control thus has the effect of blocking messages in
the network and eventually, as the back-pressure propa-
gates, the sending nodes are prevented from injecting
further messages. This mechanism guarantees that mes-
sages are never dropped due to buffer space limitations
within the network or at the receiving end. In addition,
the electrical characteristics of the network are designed
to ensure very low error rates, such that the use of a sim-
ple error detection and correction mechanism (imple-
mented in hardware) can offer the same reliability
within the network as is typical of the processing nodes
themselves.

In contrast, an ATM network does not provide any form
of flow control and does not offer reliable delivery.
Instead, higher protocol layers must detect cell loss or
corruption and cause their retransmission. While this
partitioning of responsibilities may be acceptable in the
case of stream-based communication (e.g., TCP/IP,
video, audio) it is questionable in a parallel computing
setting.

The flow control and the error detection and correction
in multiprocessor networks serve to cover four causes of
message loss: buffer overflow in the receiving software,
buffer overflow in the receiving network interface,
buffer overflow within the network, and message cor-
ruption due to hardware errors. In an ATM network,
simple window based end-to-end flow control schemes
and a per-message CRC (as used in AAL-5) can cover
the first and last cases! of cell loss. In addition, prevent-
ing buffer overflow in the receiving network interface
can be achieved by ensuring that the rate at which cells
can be moved from the interface into main memory is at
least as large as the maximal cell arrival rate. Preventing
buffer overflow within the network, however, is not
realistically possible using end-to-end flow control. This
is particularly a problem in a parallel computing setting
in which all nodes tend to communicate with all other
nodes in both highly regular and irregular patterns at

1. Although some transmission media may cause burst errors
which cannot be corrected by most CRC codes.



unpredictable intervals. The degree of contention within
the network therefore cannot be measured or predicted
with any accuracy by either the sender or the receiver
and communication patterns which result in high con-
tention will result in high cell loss rates causing exten-
sive retransmissions.

Traditional flow control schemes used in stream-based
communication avoid fruitless retransmission storms by
dynamically reducing the transmission rate on connec-
tions which experience high cell loss rates. This works
in these settings because, following the law of large
numbers, contention in a wide area network does not
tend to vary instantaneously and therefore the degree of
contention observed in the recent past is a good predic-
tor for contention in the near future.

As an illustration of the difficulties in a parallel comput-
ing setting, consider the implementation of a parallel
sort. The most efficient parallel sort algorithms [3] are
based on an alternation of local sorts on the nodes and
permutation phases in which all nodes exchange data
with all other nodes. These permutation phases serve to
move the elements to be sorted “towards” their correct
position, The communication patterns observed are
highly dynamic and their characteristics depend to a
large degree on the input data. If at any point the
attempted data rate into a given node exceeds the link
rate, then the output buffers at up-stream switches will
start filling up. Because the communication patterns
change very rapidly (essentially with every cell), it is
futile to attempt to predict contention, and given the all-
to-all communication pattern, the probability of internal
contention among seemingly unrelated connections is
high.

Beyond the problems caused by contention and the
resulting retransmissions, the lack of reliable delivery
guarantee in ATM networks imposes a certain overhead
on the communication primitives. Specifically, the
sender must keep a copy of each cell sent until a corre-
sponding acknowledgment is received, in case the cell
must be retransmitted. This means that messages cannot
be transferred directly between processor registers and
the network interface (as is possible on the CM-5 [12]),
rather, a memory copy must be made as well.

2.2 User-level access to the network interface

Recently, multiprocessor communication architectures
have achieved a significant reduction of the communica-
tion overhead by eliminating the operating system from
the critical path. In order not to compromise security,
the network interface must offer some form of protec-
tion mechanism. In shared memory models, the memory
management unit is extended to map remote memory
into the local virtual user address space such that the
operating system can enforce security by managing the

hoti-tr.doc — 3/7/95

address translation tables. Message-based network inter-
faces contain a node address translation table which
maps the user’s virtual node numbers onto the physical
node address space. Again, the operating system
enforces security by controlling the address translation,
thereby preventing a process from sending a message to
an arbitrary node. The current generation of message
based network interfaces only control the destination
node address and therefore require that all processes of a
parallel program run at the same time. The next genera-
tion adds the sending process id to each message allow-
ing the receiving network interface to discriminate
between messages destined for the currently running
process, that can retrieve these message directly, and
messages for dormant processes, which must be queued
(typically by the operating system) for later retrieval.

In contrast, the network interfaces available for worksta-
tions do not yet incorporate any form of protection
mechanism. Instead, the operating system must be
involved in the sending and reception of every message.
The connection based nature of ATM networks would
principally allow the design of a protection mechanism
to limit the virtual circuits a user process has access to
(the operating system would still control virtual circuit
set-up). But because the architecture of the networking
layers in current operating systems does not seem to be
set-up to allow user-level network interface access, it
appears unlikely that network interfaces with these fea-
tures will become commonplace soon. The challenge in
any high-performance communication layer for clusters
is, thus, to minimize the path through the kernel by judi-
ciously coordinating the user-kernel interactions.

2.3 Coordination of system software across all com-
municating nodes

In almost all communication architectures the message
reception logic is the critical performance bottleneck. In
order to be able to handle incoming messages at full net-
work bandwidth, the processing required for each arriv-
ing message must be minimized carefully. The trick
used in multiprocessor systems to ensure rapid message
handling is to constrain the sender to only send mes-
sages which are easy to handle.

In shared memory systems this is done by coordinating
the address translation tables among all processing
nodes such that the originating node can translate the
virtual memory address of a remote access and directly
place the corresponding physical memory address into
the message. The set of communication primitives is
small and fixed (e.g., read and write) and by forcing the
sender to perform the complicated part of a remote
memory access (namely the protection checks and the
address translation) the handling of a request is rela-
tively simple to implementl. If the virtual address were
sent, the receiving node could discover that the



requested virtual memory location had been paged out
to disk with the result that the handling of the message
would become rather involved.

In Active Messages on multiprocessors the scheduling
of processes is assumed to be coordinated among all
nodes such that communicating processes execute
simultaneously on their respective nodes. This guaran-
tees that messages can be handled immediately on
arrival by the destination process itself. In order to
accomplish this, the sender of an Active Message speci-
fies a user-level handler at the destination whose role it
is to extract the message from the network and integrate
it into the ongoing computation. The handler can also
implement a simple remote service and send a reply
Active Message back. However, in order to prevent
deadlock the communication patterns are limited to
requests and replies, e.g., a handler of a reply message is
not allowed to send any further messages. An imple-
mentation of Active Messages typically reserves the first
word of each message for the handler address, and the
handler at the receiving end is dispatched immediately
on message arrival to dispose of the message. The fact
that the message layer can call upon the handlers to deal
with messages in FIFO order simplifies the buffering
considerably over that required by more traditional mes-
sage passing models such as PVM, MPI, or NX. These
models allow processes to consume messages in arbi-
trary order and at arbitrary times forcing the communi-
cation architecture to implement very general buffer and
message matching mechanisms at high cost.

In clusters the fact that the operating systems of the indi-
vidual nodes are not nearly as coordinated contradicts
the assumption that messages can always be consumed
quickly upon arrival. In the case of Active Messages the
destination process might have been suspended and can-
not run the handler, and in a shared memory model the
memory location requested might not be mapped.
Although exact coordination is not possible without
major changes to the operating system core, an imple-
mentation of either communication model is likely to be
able to perform some coordination among nodes on its
own and to influence the local operating system accord-
ingly. This may allow the communication layer to
assume that in the common case everything works out
fine, but it must be able to handle the difficult cases as
well.

2.4 Summary

Even though superficially a cluster of workstations
appears the be technically comparable to a multiproces-

1. Cache coherent shared memory stretch this characterization
given that the cache in the receiving node essentially per-
forms another address translation which may miss and
require additional communication with other nodes to com-
plete the request.

hoti-tr.doc — 3/7/95

sor, the reality is that key characteristics are different
and cause significant implementation difficulties: the
very comparable raw hardware link bandwidths, bisec-
tion bandwidths, and routing latencies conceal the lack
in clusters of flow control, reliability, user-level network
access, and operating system coordination.

These shortcomings will inevitably result in lower com-
munication performance; their quantitative effect on
performance is evaluated in the next section which pre-
sents a prototype implementation of Active Messages on
a cluster of Sun workstations. However, the lack of
flow-control in ATM networks poses a fundamental
problem: can catastrophic performance degradation
occur due to significant cell loss in particular communi-
cation patterns?

3 SSAM: a SPARCstation Active Messages
Prototype

The SSAM prototype implements the critical parts of an
Active Messages communication architecture on a clus-
ter of SPARCstations connected by an ATM network.
The primary goal is to evaluate whether it is possible to
provide a parallel programming environment on the
cluster that is comparable to those found on multipro-
cessors. The prototype is primarily concerned with pro-
viding performance at par with parallel machines, while
addressing the handicaps of ATM networks that have
been identified in the previous section. In particular:

* the prototype provides reliable communication to
evaluate the cost of performing the necessary flow-
control and error checking in software,

* it minimizes the kernel intervention to determine
the cost of providing protection in software, and

* the buffering is designed to tolerate arbitrary con-
text switching on the nodes.

At this time only a limited experimental set-up
(described below) is available such that the prototype
cannot provide information neither on how cell losses
due to contention within the network affect perfor-
mance, nor on how the scheduling of processes can be
coordinated to improve the overall performance of par-
allel applications.

3.1 Active Messages Communication Architecture

The Active Messages communication architecture [4]
offers simple, general purpose communication primi-
tives as a thin veneer over the raw hardware. It is
intended to serve as a substrate for building libraries that
provide higher-level communication abstractions and
for generating communication code directly from a par-
allel-language compiler. Unlike most communication
layers, it is not intended for direct use by application



programmers and really provides lower-level services
from which communication libraries and run-time sys-
tems can be built.

The basic communication primitive is a message with
an associated small amount of computation (in the form
of a handler) at the receiving end. Typically the first
word of an Active Message points to the handler for that
message. On message arrival, the computation on the
node is interrupted and the handler is executed. The role
of the handler is to get the message out of the network,
by integrating it into the ongoing computation and/or by
sending a reply message back. The buffering and sched-
uling provided by Active Messages are extremely primi-
tive and thereby fast: the only buffering is that involved
in actual transport and the only scheduling is that
required to activate the handler. This is sufficient to sup-
port many higher-level abstractions and more general
buffering and scheduling can be easily constructed in
layers above Active Messages when needed. This mini-
malist approach avoids paying a performance penalty
for unneeded functionality.

In order to prevent deadlock and livelock, Active Mes-
sage restricts communication patterns to requests and
replies, i.e., the handler of a request message is only
allowed to send a reply message and a reply handler is
not allowed to send further replies.

3.1.1 SSAM functionality

The current implementation is geared towards the send-
ing of small messages which fit into the payload of a
single ATM cell. Eight of the 48 available bytes of pay-
load in an ATM cell are used by SSAM to hold flow-
control information (16 bits), the handler address (32
bits), and an AAL3/4 compatible checksum (16 bits).
The remaining 40 bytes hold the Active Message data.

The C header file for the interface to SSAM is shown in
Figure 1. To send a request Active Message, the user
places the message data into a per-connection buffer
provided by SSAM and calls SSAM_10 with a connec-
tion identifier and the remote handler address.
SSAM_10 adds the flow-control information and traps
to the kernel to have the message injected into the net-
work. It also polls the receiver and processes incoming
messages. At the receiving end, the network is polled by
SSAM_10 or SSAM_poll (the latter only polls the net-
work) and all messages accumulated in the receive
FIFO are moved into a buffer. SSAM then calls the
appropriate handler for each message, passing as argu-
ments the originating connection identifier, the address
of the buffer holding the message, and the address of a
buffer for a reply message. The handler processes the
message and may send a reply message back by placing
the data in the buffer provided and returning the address
of the reply handler (or NULL if no reply is to be sent).

hoti-tr.doc — 3/7/95

The current prototype does not use interrupts, instead,
the network is polled every time a message is sent. This
means that as long as a process is sending messages it
will also handle incoming ones. An explicit polling
function is provided for program parts which do not
communicate. Using interrupts is planned but not imple-
mented yet.

3.1.2 Example: implementing a remote read with SSAM

The sample implementation of a split-phase remote dou-
ble-word read is shown in Figure 2. The readDouble
function increments a counter of outstanding reads, for-
mats a request Active Message with the address to be
read as well as information for the reply, and sends the
message. The readDouble_h handler fetches the
remote location and sends a reply back to the read-
Double_rh reply handler which stores the data into
memory and decrements the counter. The originating
processor waits for the completion of the read by busy-
waiting on the counter at the end of readDouble. A
split-phase read could be constructed easily by exposing
the counter to the caller, who could proceed with com-
putation after initiating the read and only wait on the
counter when the data is required.

3.2 Experimental set-up

The experimental set-up used to evaluate the perfor-
mance of the prototype SSAM implementation consists
of a 60Mhz SPARCstation-20 and a 25Mhz SPARCsta-
tion-1+ running SunOS 4.1. The two machines are con-
nected via Fore Systems SBA-100 ATM interfaces using
a 140Mb/s TAXI fiber. The interfaces are located on the
Sbus (a 32-bit I/O bus running at 20 or 25Mhz) and pro-

/% ssam.h - SPARCstation ATM Active Messages */
/* Initialize Active Messages */

extern int SSAM_init (void);

/* Active Message handlers */

typedef void (*SSAM_reply_handler)
(int connection, void *in_buf);

typedef SSAM_reply_handler
(*SSAM_reqg_handler) (int connection,
void *in_buf, void *reply_buf);

/* Buffers to send messages */
#define SSAM_MAXCONN (32)
extern void *SSAM_regbuf [SSAM_MAXCONN] ;

extern void SSAM_10 (int connection,
SSAM_reqg_handler handler);

/* Poll the network explicitly */

extern void SSAM poll (void);

Figure 1: C interface for SPARCstation Active Messages



/* Remote read of 32 bytes */
static volatile int read_cnt = 0;

typedef struct {
double
double

} read32_msg;

*src, *dest;
datal4];

/* Read 32 bytes from remote node */

void read32 (int conn, double *src,

double *dest)

{ read32_msg *out = SSAM_req_buf[conn];
out—->src = src; out—->dest = dest;
read_cnt++;

SSAM_10 (conn, read32_h);
while (read_cnt) SSAM poll();

}

/* Read request handler */

static SSAM_reply_handler
read32_h (int conn, read32_msg *in,
read32_msg *out)

{ double *src = in->src;
out—->dest = in->dest;
if(((long)src&7) == 0) {

out—>datal0] src[0];
out—->datal[l] = src[l];
out->datal[2] = srcl[2];
out->datal[3] = src[3];

} else {

/* non double-word aligned code omitted */
}
return read32_rh;

}
/* Read reply handler */

static void
read32_rh(int conn, read32_msg *in)
{ double *dest = in->dest;

if(((long)dest&7) == 0) {
dest[0] = in->datal[0];
dest[1l] = in->datal[l];
dest[2] = in->datal[2];
dest[3] = in->datal[3];
} else {

/* non double-word aligned code omitted */

}

read_cnt——;

}

Figure 2: Sample remote read implementation using SSAM

vide a 36-cell deep output FIFO as well as a 292-cell
input FIFO. To send a cell the processor stores 56 bytes
into the memory-mapped output FIFO and to receive a
cell it reads 56 bytes from the input FIFO. A register in
the interface indicates the number of cells available in
the input FIFO.

hoti-tr.doc — 3/7/95

Note that the network interface used is much simpler
and closer to multiprocessor NIs than most second-gen-
eration ATM interfaces available today. The only func-
tion performed in hardware, beyond simply moving
cells onto/off the fiber, is checksum generation and
checking for the ATM header and an AAL3/4 compati-
ble payload. In particular, no DMA or segmentation and
reassembly of multi-cell packets is provided.

3.3 SSAM implementation

The implementation of the SPARCstation ATM Active
Messages layer consists of two parts: a device driver
which is dynamically loaded into the kernel and a user-
level library to be linked with applications using SSAM.
The driver implements standard functionality to open
and close the ATM device and it provides two paths to
send and receive cells. The fast path described here con-
sists of three trap instructions which lead directly to
code for sending and receiving individual ATM cells.
The traps are relatively generic and all functionality spe-
cific to Active Messages is in the user-level library
which also performs the flow-control and buffer man-
agement. A conventional read/write system call inter-
face is provided for comparison purposes and allows to
send and receive cells using a “pure” device driver
approach.

The traps to send and receive cells consist of carefully
crafted assembly language routines. Each routine is
small (28 and 43 instructions for the send and receive
traps, respectively) and uses available registers care-
fully. The register usage is simplified by the Sparc archi-
tecture’s use of a circular register file, which provides a
clean 8-register window for the trap. By interfacing
from the program to the traps via a function call, argu-
ments can be passed and another 8 registers become
available to the trap.

The following paragraphs describe the critical parts of
the SSAM implementation in more detail.

3.3.1 Flow-control

A simple sliding window flow control scheme is used to
prevent overrun of the receive buffers and to detect cell
losses. The window size is dimensioned to allow close
to full bandwidth communication among pairs of pro-
Cessors.

In order to implement the flow control for a window of
size w, each process pre-allocates memory to hold 4w
cells per every other process with which it communi-
cates. The algorithm to send a request message polls the
receiver until a free window slot is available and then
injects the cell into the network, saving it in one of the
buffers as well in case it has to be retransmitted. Upon
receipt of a request message, the message layer moves
the cell into a buffer and, as soon as the corresponding



process is running, calls the Active Message handler. If
the handler issues a reply, it is sent and a copy is held in
a buffer. If the handler does not generate a reply, an
explicit acknowledgment is sent. Upon receipt of the
reply or acknowledgment, the buffer holding the origi-
nal request message can be reused. Note how the dis-
tinction between requests and replies made in Active
Messages allows acknowledgments to be piggy-backed
onto replies.

The recovery scheme used in case of lost or duplicate
cells is standard, except that the reception of duplicate
request messages may indicate lost replies which have
to be retransmitted. It is important to realize that this
flow control mechanism does not really attempt to mini-
mize message losses due to congestion within the net-
work: the lack of flow-control in ATM networks
effectively precludes any simple congestion avoidance
scheme. Until larger test-beds become available and the
ATM community agrees on how routers should handle
buffer overflows it seems futile to invest in more sophis-
ticated flow-control mechanisms. Nevertheless, the
bursty nature of parallel computing communication pat-
terns are likely to require some solution before the per-
formance characteristics of an ATM network become as
robust as those of as multiprocessor networks.

3.3.2 User-kernel interface and buffer management

The streamlining of the user-kernel interface is the most
important factor contributing to the performance of
SSAM. In the prototype, the kernel preallocates all buff-
ers for a process when the device is opened. The pages
are then pinned to prevent page-outs and are mapped
(using mmap) into the processes’ address space. After
every message send, the user-level library chooses a
buffer for the next message and places a pointer in an
exported variable. The application program moves the
message data into that buffer and passes the connection
id and the handler address to SSAM which finishes for-
matting the cell (adding the flow control and handler)
and traps to the kernel. The trap passes the message off-
set within the buffer area and the connection id in regis-
ters to the kernel. Protection is ensured with simple
masks to limit the connection id and offset ranges. A
lookup maps the current process and connection ids to a
virtual circuit. The kernel finally moves the cell into the
output FIFO.

At the receiving end, the read-ATM kernel trap delivers
a batch of incoming cells into a pre-determined shared
memory buffer. The number of cells received is returned
in a register. For each cell the kernel performs four
tasks: it loads the first half of the cell into registers, uses
the VCI to index into a table to obtain the address of the
appropriate processes’ input buffer, moves the full cell
into that buffer, and checks the integrity of the cell using
three flag bits set by the NI in the last byte. Upon return

hoti-tr.doc — 3/7/95

from the trap, the SSAM library loops through all
received cells checking the flow-control information,
calling the appropriate handlers for request and reply
messages, and sending explicit acknowledgments when
needed.

3.4 SSAM performance

The following paragraphs describe performance mea-
surements of SSAM made with a number of synthetic
benchmarks. The following terminology is used: over-
head consists of the processor cycles spent preparing to
send or receive a message, latency is the time from
which a message send routine is called to the time the
message is handled at the remote end, and bandwidth is
the rate at which user data is transferred. The perfor-
mance goal for SSAM is the fiber rate of 140Mbit/s
which transmits a cell every 3.14us (53+2 bytes) for an
ATM payload bandwidth of 15.2MB/s!.

3.4.1 ATM traps

A detailed cost breakdown for the operations occurring
in each of the traps to send and receive cells is shown in
Table 1. The two timing columns refer to measurements
taken on the SPARCstation 1+ and on the
SPARCstation 20, respectively. The times have been
obtained by measuring repeated executions of each trap
with gett imeofday which uses a microsecond-accu-
rate clock and takes 9.5us on the SS-20. The time break-
down for each trap was measured by commenting
appropriate instructions out and is somewhat approxi-
mate due to the pipeline overlap occurring between suc-
cessive instructions.

The write trap cost is broken down into 5 parts: the cost
of the trap and return, the protection checks, overhead
for fetching addresses, loading the cell into registers,
and pushing the cell into the network interface. The SS-
20 numbers show clearly that the fiber can be saturated
by sending a cell at a time from user level. It also indi-
cates that the majority of the cost (75%) lies in the
access to the network interface across the Sbus. The cost
of the trap itself is surprisingly low, even though it is the
second largest item. In fact, it could be reduced slightly
as the current implementation adds a level of indirection
in the trap dispatch to simplify the dynamic loading of
the device driver.

The read trap is itemized similarly: the cost to trap and
return, fetching the device register with the count of
available cells, additional overhead for setting-up
addresses, loading the cell from the network interface,

1. All bandwidths are measured in megabytes per second.

2. The kernel write-protects the trap vectors after boot-up. The
SSAM prototype uses a permanently loaded trap which per-
forms an indirect jump via a kernel variable to allow simple
dynamic driver loading.



demultiplexing among processes, and storing the cell
away. The total cost shows a trap which receives a sin-
gle cell, as well as the per-cell cost for a trap which
receives 16 cells. Here again the access to the device
dominates due to the fact that each double-word load
incurs the full latency of an Sbus access. The total time
of 4.61us on the SS-20 falls short of the fiber’s cell time
and will limit the achievable bandwidth to at most 68%
of the fiber.

The write-read trap first sends a cell and then receives a
chunk of cells. This amortizes the cost of the trap across
both functions and overlaps checking the cell count
slightly with sending. The last item in the table shows
the cost of a null system call for comparison purposes (a
write to file descriptor -1 was used). It is clear that a sys-
tem call approach would yield performance far inferior
to the traps and would achieve only a fraction of the
fiber bandwidth.

3.4.2 ATM read/write system calls

In addition to the direct traps, the device driver allows
cells to be sent and received using traditional read and
write system calls on the device file descriptor. At this

Operation SS-20 SS-1+
write trap
trap-+rett 0.44us 2.03us
check pid and connec- 0.05us 0.49us
tion id
addt’l kernel ovhd 0.05us 0.50us
load cell to push 0.13us 3.87us
push cell to NI 2.05us 3.17us
total 2.72us | 10.11us
read trap
trap+rett 0.44us 2.03us
check cell count 0.81us 1.08us
addt’l kernel ovhd 0.18us 0.80us
per cell pull from NI 4.27us 3.68us
per cell demux 0.09us 0.23us
per cell store away 0.17us 3.50us
total for 1 cell 5.87us | 11.32us
per cell total for 16 cells 4.61us 8.08us
write_read trap
total, O cells read 3.7us 11.2pus
total, 1 cell read 8.2us 21.4us
null system call 6.9us 40us

Table 1: Cost breakdown for traps to send and receive cells.

hoti-tr.doc — 3/7/95

Operation SS-20 SS-1+

write system call

syscall overhead 22.6us 100us

check fd, do uiomove 3.4us 16us

push cell into NI 2.2us 8us

write total 28.2us 124us
read system call

syscall overhead 22.1us 99us

pull cell from NI 5.0us 13us

check fd and recv ready, 7.0us 25us

do uiomove

read total for 1 cell 34.1us 137us

read total for O cells 28.8us 113us

Table 2: Cost of sending and receiving cells using read and
write system calls.

time this conventional path is provided for comparison
purposes only and the read and write entry points into
the device driver are limited to sending and receiving
single cells. Multi-cell reads and writes could be sup-
ported easily. The read and write entry points perform
the following operations:

* check for the appropriateness of the file descriptor,

* transfer data between user space and an internal
buffer using uiomove, and

e transfer data between the internal buffer and the
FIFOs of the network interface.

The internal buffer is used because the data cannot be
transferred directly between user space and the device
using uiomove due to the fact that the device FIFOs
are only word addressable. The use of an internal buffer
also allows double-word accesses to the device FIFOs,
which improves the access times considerably.

Table 2 shows the costs for the various parts of the read
and write system calls. The “syscall overhead” entries
reflect the time taken for a read (respectively write) sys-
tem call with an empty read (write) device driver rou-
tine. This measures the kernel overhead associated with
these system calls. The “check fd, do uiomove” entry
reflects the time spent in checking the validity of the file
descriptor and performing the uiomove. In the case of
a read, it also includes the time to check the device reg-
ister holding the number of cells available in the input
FIFO. The “push/pull cell” entries reflect the time spent
to transfer the contents of one cell between the internal
buffer and the device FIFOs. The “write” and
“read 1 cell” totals reflect the cost of the full system call,
while the “read O cells” entry is the time taken for an
unsuccessful poll which includes the system call over-



head, the file descriptor checks, and the reading of the
receive-ready register.

The timings show clearly that the overhead of the read/
write system call interface is prohibitive for small mes-
sages. For larger messages, however, it may well be a
viable choice and it is more portable than the traps.

3.4.3 SSAM

Measurements of the Active Messages layer built on the
cell send and receive traps are shown in Table 3. In all
cases one word of the Active Message payload carries
data and the handlers simply return. The send request
uses a write-read-trap and adds a little over 1us of over-
head (on the SS-20) for cell formatting and flow-control.
The handling times are all roughly the cost of a read-
trap (reading 16 cells per trap) plus again a little
over 1us for the flow control and handler dispatch. If a
reply is sent that adds the time of a write-trap.

The measurements show that supporting only single-cell
Active Messages is not optimal. Longer messages are
required to achieve peak bulk transfer rates: the one-
cell-at-a-time prototype can yield up to 5.6MB/s. A sim-
pler interface for shorter messages (e.g., with only 16
bytes of payload) might well be useful as well to accel-
erate the small requests and acknowledgments that are
often found in higher-level protocols. Unfortunately,
given that the trap cost is dominated by the network
interface access time and that the SBA-100 requires
all 56 bytes of a cell to be transferred by the processor, it
is unlikely that a significant benefit can be realized.

3.4.4 Split-C

While a full implementation of Split-C [2] is still in
progress, timings of the remote memory access primi-
tives show that the round-trip time for a remote read
of 32 double-word aligned bytes takes 32us on the SS-
20 and a one-way remote store takes 22s for the same
payload.1 Remote accesses with smaller payloads are
not noticeably cheaper. A bulk write implemented with
the current SSAM layer transfers 5.5Mbytes/s, but

Operation SS-20 SS-1+
send request 5.0us 15us
handle request, no reply sent 5.6us 15us
handle request and send reply 7.7us 25us
handle ack 5.0us 11us
handle reply 5.2us 12us

Table 3: Cost breakdown for SPARCstation Active Messages.

1. Note that in a more realistic setting a Fore ASX-100 switch
will add roughly 10us of latency to the write time and 20us
to the round-trip read time [7].

hoti-tr.doc — 3/7/95

experiments show that, using long messages, this could
be improved to 9Mbytes/s by using the full ATM pay-
load and simplifying the handling slightly.

3.5 Unresolved issues

The current SSAM prototype has no influence on the
kernel’s process scheduling. Given the current buffering
scheme the SSAM layer operation is not influenced by
which process is running. The performance of applica-
tions, however, is likely to be highly influenced by the
scheduling. How to best influence the scheduler in a
semi-portable fashion requires further investigation. The
most promising approach appears to be to use real-time
thread scheduling priorities, such as are available in
Solaris 2.

The amount of memory allocated by the SSAM proto-
type is somewhat excessive and, in fact, for simplicity,
the current prototype uses twice as many buffers as
strictly necessary. For example, assuming that a flow-
control window of 32 cells is used, the kernel allocates
and pins 8Kbytes of memory per process per connec-
tion. On a 64-node cluster with 10 parallel applications
running, this represents SMb of memory per processor.

The number of preallocated buffers could be reduced
without affecting peak bulk transfer rates by adjusting
the flow control window size dynamically. The idea is
that the first cell of a long message contain a flag which
requests a larger window size from the receiver; a few
extra buffers would be allocated for this purpose. The
receiver grants the larger window to one sender at a time
using the first acknowledgment cell of the bulk transfer.
The larger window size remains in effect until the end of
the long message. This scheme has two benefits: the
request for a larger window is overlapped with the first
few cells of the long message, and the receiver can pre-
vent too many senders from transferring large data
blocks simultaneously, which would be sub-optimal for
the cache. However, fundamentally, it appears that
memory (or, alternatively, low performance) is the price
to pay for having neither flow-control in the network nor
coordinated process scheduling.

A more subtle problem having to do with the ATM pay-
load alignment used by the SBA-100 interface will sur-
face in the future: the 53 bytes of an ATM cell are
padded by the SBA-100 to 56 bytes and the 48-byte
payload starts with the 6th byte, i.e., it is only half-word
aligned. The effect is that bulk transfer payload formats
designed with the SBA-100 in mind (and supporting
double-word moves of data between memory and the
SBA-100) will clash with other network interfaces
which double-word align the ATM payload.

10



3.6 Summary

The prototype Active Messages implementation on a
SPARCstation ATM cluster provides a preliminary dem-
onstration that this communication architecture devel-
oped for multiprocessors can be adapted to the
peculiarities of the workstation cluster. The performance
achieved is roughly comparable to that of a multiproces-
sor such as the CM-5 (where the one-way latency is
roughly 6s), but it is clear that without a network inter-
face closer to the processor the performance gap cannot
be closed.

The time taken by the flow-control and protection in
software is surprisingly low (at least in comparison with
the network interface access times). The cost, in effect,
has been shifted to large pre-allocated and pinned buff-
ers. While the prototype’s memory usage is somewhat
excessive, other schemes with comparable performance
will also require large buffers.

Overall, SSAM’s speed comes from a careful integra-
tion of all layers, from the language level to the kernel
traps. The key issues are avoiding copies by having the
application place the data directly where the kernel
picks it up to move it into the device and by passing
only easy to check information to the kernel (in particu-
lar not pass an arbitrary virtual address).

4 Comparison to other approaches

The ATM network communication layer most directly
comparable to SSAM is the remote memory access
model proposed by Thekkath et. al. [10,11]. The imple-
mentation is very similar to SSAM in that it uses traps
for reserved opcodes in the MIPS instruction set to
implement remote read and write instructions.!

The major difference between the two models is that the
remote memory operations separate data and control
transfer while Active Messages unifies them. With
remote memory accesses data can be transferred to user
memory by the kernel without the corresponding pro-
cess having to run. But the model used does not allow
remote reads and writes to the full address space of a
process. Rather, each communicating process must allo-
cate special communication memory segments which
are pinned by the operating system just as the buffers
used by SSAM are. The communication segments are
more flexible than SSAM’s buffers in that they can
directly hold data structures (limited by the fact that the
segments are pinned).

The advantage of SSAM over the remote memory
accesses is the coupling of data and control: each mes-
sage causes a small amount of user code to be executed,

1. One could easily describe the traps employed by SSAM as
additional emulated communication instructions.

hoti-tr.doc — 3/7/95

Operation SSAM Remote
mem access
read latency 32us 45us
write latency 22us 30us
addt’1 control none 260us
transfer ovhd
block write 5.5MB/s 4.4MB/s

Table 4: Comparison of SSAM to Remote Memory Accesses
between 2 DECstation 5000s over ATM [11].

which allows data to be scattered into complex data
structures and the scheduling of computation to be
directly influenced by the arrival of data. In the remote
memory access model a limited control transfer is
offered through per-segment notification flags in order
to to cause a file descriptor to become ready.

Finally, SSAM provides a reliable transport mechanism
while the remote memory access primitives are unreli-
able and do not provide flow-control.

Table 4 compares the performance of the two
approaches: Thekkath’s implementation uses two DEC-
station 5000 interconnected by a Turbochannel version
of the same Fore-100 ATM interface used for SSAM
and performs a little worse than SSAM for data transfer
and significantly worse for control transfer. The remote
reads and writes are directly comparable in that they
transfer the same payload per cell.

The performance of more traditional communication
layers over an ATM network has been evaluated by Lin
et. al. [7] and shows over two orders of magnitude
higher communication latencies than SSAM offers.
Table 5 summarizes the best round-trip latencies and
one-way bandwidths attained on Sun4/690’s and
SPARCstation 2’s connected by Fore SBA-100 inter-
faces without switch. The millisecond scale reflects the
costs of the traditional networking architecture used by
these layers, although it is not clear why Fore’s AAL/S
API is slower than the read/write system call interface
described in §3.4.2. Note that a TCP/IP implementation
with a well-optimized fast-path should yield sub-milli-
second latencies.

Communication layer Round-trip Peak
latency | bandwidth
Fore AAL/S API 1.7ms 4MB/s
BSD TCP/IP Sockets 3.9ms 2MB/s
PVM over TCP/IP 5.4ms | 1.5MB/s
Sun RPC 39ms | 1.6MB/s

Table 5: Performance of traditional communication layers on
Sun4/690s and SPARCstation 2s over ATM [7].

11



5 Conclusions

The emergence of high-bandwidth low-latency net-
works is making the use of clusters of workstations
attractive for parallel computing style applications.
From a technical point of view a continuous spectrum of
systems can be conceived, ranging from collections of
Ethernet-based workstations to tightly integrated cus-
tom multiprocessors. However, this paper argues that
clusters will be characterized by the use of off-the-shelf
components, which will handicap them with respect to
multiprocessors in which hardware and software are
customized to allow a tighter integration of the network
into the overall architecture.

The use of standard components, and in particular, of
ATM networking technology, results in three major dis-
advantages of clusters with respect to multiprocessors:
(i) ATM networks do not offer reliable delivery or flow
control, (ii) the current network interfaces are not well
integrated into the workstation architecture, and (iii) the
operating systems on the nodes of a cluster do not coor-
dinate process scheduling or address translations.

The prototype implementation of the Active Messages
communication model described in this paper achieves
two orders of magnitude better performance than tradi-
tional networking layers. Table 6 shows that the result-
ing communication latencies and bandwidths are in the
same ball-park as on state-of-the-art multiprocessors.
Key to the success are the use of large memory buffers
and the careful design of a lean user-kernel interface.
The major obstacle towards closing the remaining per-
formance gap is the slow access to the network interface
across the I/O bus, and reducing the buffer memory
usage requires coordination of process scheduling
across nodes. While taking care of flow control in soft-
ware does not dominate performance in this study, the
behavior of ATM networks under parallel computing
communication loads remains an open question.

Machine Peak | Round-trip
bandwidth | latency
SP-1 + MPL/p [9] 8.3MB/s 56us
Paragon + NX [8] 73MB/s 44us
CM-5 + Active Mesg [4]| 10MB/s 12us
SS-20 cluster + SSAM 5.6MB/s 32us

Table 6: Comparison of SSAM’s performance with that of
recent parallel machines.

hoti-tr.doc — 3/7/95

6 Bibliography

(1]

(2]

(3]

(4]

(]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

CCITT. Recommendation 1.150: B-ISDN ATM functional
characteristics. (Revised version), Geneva: ITU 1992.

D. E. Culler, A. Dusseau, S. C. Goldstein, A. Krishna-
murthy, S. Lumetta, T. von Eicken, and K. Yelick. Intro-
duction to Split-C. In Proc. of Supercomputing ' 93

D. E. Culler, A. Dusseau, R. Martin, K. E. Schauser. Fast
Parallel Sorting: from LogP to Split-C. In Proc. of
WPPP' 93, July 93.

T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E.
Schauser. Active Messages: A Mechanism for Integrated
Communication and Computation. In Proc. of the 19th
ISCA, pages 256-266, May 1992.

A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R.
Manchek, and V. Sunderam. PVM 3.0 User’s Guide and
Reference Manual. Oak Ridge National Laboratory,
Technical Report ORNL/TM-12187, February 1993.

K. Li and P. Hudak. Memory Coherence in Shared Vir-
tual Memory Systems. ACM Transactions on Computer
Systems, 7(4):321-359, November 1989.

M. Lin, J. Hsieh, D. H. C. Du, J. P. Thomas, and J. A.
MacDonald. Distributed Network Computing over Local
ATM Networks. IEEE Journal on Selected Areas in Com-
munications, Special Issue on ATM LANSs, to appear,
1995.

P. Pierce and G. Regnier. The Paragon Implementation
of the NX Message Passing Interface. In Proc. of SHPCC
‘94, May 1994.

C. B. Stunkel, D. G. Shea, D. G. Grice, P. H. Hochschild,
and M. Tsao. The SPI1 High-Performance Switch. In
Proc. of SHPCC ‘94, May 1994.

C. A. Thekkath, H. M. Levy, and E. D. Lazowska. Effi-
cient Support for Multicomputing on ATM Networks.
University of Washington, Technical Report 93-04-03,
April 1993.

C. A. Thekkath, H. M. Levy, and E. D. Lazowska. Sepa-
rating Data and Control Transfer in Distributed Operat-
ing Systems. In Proc. of the 6th Int’] Conf. on ASPLOS,
To appear, October 1994.

Thinking Machines Corporation, Cambridge, Massachu-
setts. Connection Machine CM-5, Technical Summary,
November 1992.

12



