
I

CO

* P e

uccessful interprocessor communication, a key factor in the design
of any multiprocessing system, requires high bandwidth and relia-
bility with minimal cost and softwarehardware overheads. Here, S we present such a communication scheme. It features simplicity,

speed, modularity, and configurability to multiprocessing systems such as
linear arrays, triangular arrays, meshes, systolic trees, and hypercubes.

Communication between any two processors in this scheme takes place
through a common memory, independently accessible by both processors
involved. The interprocessor interconnection scheme in a multiprocessor
system directly affects system throughput and has a bearing on the modu-
larity, reliability, and overall system performance. Yalamanchili and Ag-
garwal discussed the importance of the processor interconnection scheme
when they characterized the capabilities of a multiprocessing system.'

Various interconnection schemes have been suggested for message pass-
ing between processor Tuazon et a1.2 suggested a scheme that
makes use of first-in, first-out, or FIFO, buffers and several communication
channels. Their scheme involves data-shifting mechanisms and software for
polling signals. In this scheme the transfer of a message between two pro-
cessor nodes involves 1) transferring a message to the FIFO buffers in the
source node, 2) converting a message from words to nibbles, 3) transmitting
a message from source node to destination node, 4) reconverting the
message from nibbles to words in the destination node, and 5) receiving
message data from the FIFO buffer in the destination node after checking
data-valid flags.

In the Hayes et al. ~ c h e m e , ~ processor nodes communicate with one
another by means of asynchronous direct memory access operations. The
message moves through serial channels. Transmission involves 1) DMA
transfer from the main memory to a buffer on the processor node, 2)
conversion of the message into serial format, 3) transmission on a serial
communication channel, 4) reconversion of the message into parallel
format, and 5) another DMA transfer from a buffer to the main memory on
the destination node.

10 IEEEMICRO 0272-1732/89/1000-0010$01.00 8 1989 IEEE

The Intel iPSC,4 a hypercube supercomputer, con-
sists of eight communication channels per node. Intel
built the Ethernet protocol-based iPSC using a special
local communication coprocessor (82586). The iPSC
scheme transfers data at the rate of 10 Mbits per second.
Carrier Sense Multiple Access with Collision Detec-
tion (CSMA/CD), a statistical medium access control
system, implements the sharing of common channels.

Our scheme for interprocessor interconnection using
dual-ported RAMs and network controllers follows. In
this scheme, communication between the processor
nodes involves writing into and reading from a com-
mon memory area. The communicating processors do
not have to contend for a common bus as in the case of
shared-memory systems, since they have independent
access to the common memory units shared between
them. Only the memory access time of the processors
limits the communication speed. Processor-to-pro-
cessor communication does not use intermediate buff-
ers, input/output ports, or DMAs. We consider the
example of a three-dimensional cube to illustrate the
advantages of this scheme. Further, we discuss the
implementation of the interprocessor communication
scheme on a 64-node cube configuration.

Processor-to-processor
communication

Dual-ported RAMs now available in VLSI form
operate at static RAM speeds (50 to 150 nanoseconds)
and have two independent left and right ports. Figure 1
illustrates a message transfer between two neighboring

processors using dual-ported RAMs. This DPR area is
common to both processor elements (PEI and PE2). In
other words a portion of the memory space of PE1
“overlaps” a portion of the memory space of PE2. We
shall refer to this shared DPR area as the common
memory.

Either processor can access the dual-ported RAM
independently, since this memory area lies in the
memory space of each processor. However, PEl and
PE2 access this area with different addresses. On-chip
arbitration logic within the dual-ported RAM handles
address contention to ensure maximum speed. In case
of contention one of the ports must wait until the other
port’s access is complete; a BUSY signal on the dual-
ported RAM indicates contention.

As shown in Figure I , the common memory between
PE 1 and PE2 is logically divided into upper and lower
halves. PE1 writes into the upper half and reads from
the lower half. Similarly, PE2 writes into the lower half
and reads from the upper half. In this way we minimize
the probability of access contention. To transmit a
message packet to PE2, PEl writes the message packet
in the common memory it shares with PE2. Communi-
cation between neighboring processors does not in-
volve intermediate devices. A message written by the
transmitting processor in its own memory is accessible
to the receiving processor.

Communication between noncontiguous nodes
(those not directly connected with each other) can be
carried out with the help of an intermediate processor.’
Figure 2 illustrates the methodology for communica-
tion between noncontiguous processors. A network
controller (NC) becomes the intermediate link for
message transfer between noncontiguous nodes. (We

Processor
element 1

PE1)

Processor
element 2

c-2)

Figure 1. Two processors sharing a dual-ported RAM.

-5F PEl

DPR

PE3

7
Network
controller

T

i t

Figure 2. Communication pathways among noncon-
tiguous processors.

October 1989 11

Interprocessor communication

NC
n

Figure 3. A 3D cube (a) and a 3D cube with a network
controller (b).

show the usefulness of the network controller in hyper-
cube configurations in Figure 3 and discuss it later.)

In Figure 2 , two noncontiguous processors PE1 and
PE3 share separate dual-ported RAMs with the network
controller. This controller provides an alternative path
for the transfer of messages between two noncontigu-
ous nodes. As indicated in Figure 2 , PE1 can transfer
messages to PE3 along two alternative paths: one path

via PE2, which involves two memory transfers through
PE2, and another path through the network controller.
In the first method, PE2 participates in the message
transfer between PE1 and PE3.

In a multiprocessing system dedicated PEs perform
subtasks of a main task. The throughput of the multi-
processing system would be significantly reduced if the
PEs were used for communication purposes. We in-
clude the network controller seen in Figure 2 to trans-
fer messages between noncontiguous nodes. To trans-
mit a message packet from PEl to PE3, PEL writes the
message packet into the common memory shared with
the network controller; this controller performs a block
transfer to shift the message packet to the common
memory shared with PE3.

With this kind of design, the PEs in a multiprocessing
system need not participate in the communication be-
tween noncontiguous nodes as the network controller
exclusively performs communication tasks. Obviously,
processor-to-processor transfer is most effective in the
case of contiguous nodes. Message transfers between
noncontiguous nodes must use the path through the
network controller. Thus the two paths for message
transfers complement each other.

Implementation on a 3D cube
-

To understand the implementation aspects of our
scheme, we suggest a three-dimensional cube, since
such a topology has attracted wide interest among
researchers in recent years. An n-dimensional hyper-
cube5 is a multiprocessor characterized by the presence
of N = 2" processors interconnected as an n-dimen-
sional binary cube. Each node of the cube consists of a
central processing unit and local main memory. Each
PE of the cube directly communicates to n other PEs of
the cube; the communication paths correspond to the
edges of the cube. The length of the path between any
two nodes is simply the number of edges of the path.
The minimum distance between any two nodes in an n-
cube equals the Hamming distance between them.

Implementing the interconnection network on a 3D
cube occurs as follows. The nodes of the cube are
numbered as indicated in Figure 3a and b. Each node
consists of a PE, which includes the numeric data
coprocessor. Each PE shares common memory units
with other PEs located at a Hamming distance of one.
In addition, the PEs share common memory units with
the network controller, as illustrated in Figure 4a.
Figure 4b shows the memory map of a typical node
processor.

As can be seen in Figure 4c, the processing node
contains an 8088 processor with an 8087 numeric data
coprocessor, address decoding logic, a wait-state gen-
erator, system ROM, local RAM, and dual-ported
RAMs. The address decoding logic selects among the
system ROM, local RAM, and the dual-ported RAMs

12 IEEE MICRO

I

a)

Upper memory
System ROM OFFFFFH 1

(b)

Common memory
shared with PE1 1

Common memory
shared with PE2

shared with PE4

Common memory
shared with NC I

OOOOOOH
Lower memory

RAM 1

/ Address Data Address Data Address Data

CS SI nals Address Data Address Data Address Data
I to DSRs I

v
to neighboring DPRs (c)

+5v

flip-flop

of
8284

c BUSY

CLK CLR

Figure 4. Common memory units at a typical node called PEO (a); a memory map of PEO (b); node processor hard-
ware (c); and a single-wait-state generator (d).

October 1989 13

In t e rp ro c e ss o r c o m m u n ica t io n

CC Central controller

Network
controller

the extended hypercube

Upper memory
OFFFFFH

Common memory
shared with CC I

Common memory
shared with NC4

shared with NC2

Common memory
shared with NC1

shared with PE7
I

shared with PEO
I

OOOOOOH
Lower memory

RAM 1
Figure 5. Common memory units at a network controller (a) and a memory map of the network controller (b).

shared between the neighboring processors and the
network controller. The wait-state generator takes care
of address contention as follows. On detection of a
BUSY signal from the dual-ported RAM, the wait-state
generator disables the ready-line input RDY 1 of the
8284 clock generator for one clock state. See Figure 4d.

The network controller is dedicated to the task of
overall interprocessor communication management.
The controller shares common memory units with each
of the eight nodes in the cube, as illustrated in Figure 5a
and b, and its hardware configuration is similar to that
of the nodes. As indicated in Figure 6 , the network con-
troller contains parallel and serial ports for communi-
cation with the host system and other input and output
devices. In addition, the network controller initializes
the cube and distributes tasks.

Common memory units exist between all pairs of
neighboring nodes and between the network controller
and each node. As mentioned earlier, neighboring
nodes communicate by directly writing into the com-
mon memory located between the two nodes. For
communication between nodes located at a Hamming
distance greater than one, the network controller per-
forms a memory block transfer from the common
memory shared with the transmitting node to the com-
mon memory shared with the receiving node. A mes-
sage packet between two noncontiguous nodes can also
be routed through one of the parallel paths between the

two nodes depending on the availability of the pro-
c e s s o r ~ . ~ The parallel paths between two noncontigu-
ous nodes may consist of one or more nodes that
contribute to the message transfer by block transferring
the message packet from the memory space of the
transmitting node to the memory space of the receiving
node.

Message transfer protocol
The message packet shown in Figure 7a consists of

the semaphore/address byte, packet-size byte, and the
actual message. The semaphore/address byte (Figure
7b) has three subdivisions. The most significant bit
indicates valid data, the next bit indicates processor-
busy status, accompanied by three bits for addressing
processors in an extended hypercube, and the last three
bits indicate the address of the node. The next byte
gives the total length of the message in bytes, followed
by the message itself. The source node checks the
semaphore bits for data validity and writes the message
packet either in its common memory shared with the
destination processor (if the Hamming distance be-
tween them is one), or in its common memory shared
with the network controller (if the Hamming distance
between the source and destination nodes is greater
than one).

14 IEEE MICRO

l l - - - - l l Disk drive

Data
valid
bit

Terminal

Inputloutput
devices

B$y S S S N N N

Figure 6. Block diagram of the multiprocessor system
with peripherals.

I Semaphore/address byte I I Message packet
size (bytes)

Message

V-bit 8-bit .V
Address of EH node Address of node

(b)

Figure 7. A message packet (a) and a semaphore/ad-
dress byte (b).

As indicated earlier in Figure 3b, PE3 and PE7 (with
a Hamming distance of one between them) share a
common memory through which they can communi-
cate. The source processor checks the data valid V-bit.
If the V-bit is 0, the source processor writes the mes-
sage in the common memory space and sets the V-bit to
1 to indicate the presence of fresh data. The destination
processor checks the V-bits in the common memory
units shared with its neighbors. If any of the V-bits are
valid, the processor copies into the local memory the
message from the common memory following a valid
V-bit, and resets the V-bit to 0.

The message transfer between two noncontiguous
nodes involves a path through the memory space of the
network controller. For example, consider the commu-

Procedure Initialization for network controller
for PEO to PE7

begin

end;
V-bit := 0; B-bit := 0;

Procedure Network Controller Block Transfer
repeat

for PEO to PE7
begin

if ((S-V-bit) = 1) AND ((D-V-bit) = 0) then
block transfer data;
S-V-bit := 0; D-V-bit := 1;

end;
forever.

Procedure Send /* for PE */

if hamming distance >1 then
begin

block transfer data to network controller;
network controller-V-bit := I ;

block transfer data to destination;
D-V-bit := 1;

else

end;

Procedure Receive /* for PE */
begin

if S-V-bit = 1
then

block transfer data;
S-V-bit := 0;

end;

/* B-bit is busy bit
S-V-bit is source data validity bit
D-V-bit is destination data validity bit
Network controller V-bit is network controller data
validity bit */

Figure 8. The procedure for a message transfer.

nication procedure between PE3 and PE4, which are at
a Hamming distance of three from each other. The
source processor PE4 determines the Hamming dis-
tance between itself and the destination processor PE3.
Since the Hamming distance is greater than one, PE4
writes the message into the common memory space
shared with the network controller if the corresponding
V-bit is reset to 0. The network controller checks the V-
bits of the control bytes in the common memory units
shared between PE4 and PE3. Say the V-bit of PE4 is 1
(indicating fresh data) and the V-bit of PE3 is 0 (indi-
cating previous data accepted). In this case, the network
controller transfers a memory block to shift the data
stored in the common memory space shared with PE4 to
the common memory space shared with PE3. The pro-
cedure for message transfer appears in Figure 8.

October 1989 15

-
In t e rp ro c e ss o r c o m m u n ica t io n

Scheme extended to 64 nodes
The 64-node extended hypercube, or EH, consists of

eight 3D cubes5 and a central controller node, as illus-
trated in Figure 9. (We introduce the EH term to reflect
that each node of the hypercube is a cube by itself.)
Each 3D cube consists of eight individual nodes and the
network controller, and we refer to this group as the
EH-node (node of the EH). EH-nodes appear at the
vertices of the EH. Each of the eight EH-nodes has
topological and architectural features similar to that of
the 3D cube discussed earlier.

As indicated by the dotted lines in Figure 9, the eight
network controllers at the eight EH-nodes form a 3D
cube, the EH. The network controller of each EH-node
shares common memory units with its neighboring
network controllers in the EH. In addition, a central
network controller shares common memory units with
all the eight network controllers at the vertices of the
EH. There is no interconnection network between the
individual nodes of different EH-nodes.

(00ooo0,

Figure 9. An extended hypercube.

16 IEEE MICRO

The interprocessor communication scheme between
individual nodes of the EH-node is similar to that
explained earlier, as is the communication scheme
between any two network controllers in the EH conskt-
ing of the network controllers and central controller.

A message between two individual nodes in different
EH-nodes transmits via the memory space of the net-
work controllers residing in the EH-nodes of the source
and destination nodes. A message transfer between two
individual nodes having a Hamming distance of six
between them (and residing in two different EH-nodes
that are themselves at a Hamming distance of three
from each other) completes with just three memory
transfer operations. No individual node processor
(other than the source and destination node processors)
participates in the memory transfer operation. Memory
transfers can best be explained by considering two such
nodes shown in Figure 9, PEO and PE63, as source and
destination nodes respectively. Messages transfer as
follows:

1) PEO writes the message packet in its common
memory shared with NCO,

2) NCO transfers the message packet to the common
memory shared with the central controller,

3) the central controller performs another memory
block transfer to shift the message packet to the com-
mon memory shared with NC7, and

4) NC7 performs a final memory transfer to place the
message packet in the memory space of the destination
node.

The SSS bits in the semaphore/address byte as shown
in Figure 7b indicate the address of the EH-node. The
network controllers in each EH-node keep track of the
busy status of the individual PEs, and the central con-
troller keeps track of the busy status of the network
controllers.

Advantages of the scheme
The dual-ported RAM scheme presents a cost-effec-

tive method for data transfer between processor nodes
in a multiprocessing system. Tuazon et al. discussed a
scheme that yields a data transfer rate of 1.5 Mbits/
second. Hayes et al. discussed another scheme using
DMAs and serial channels with a transfer rate of 1
Mbyte/s. During DMA transfers, though, the processor
must remain idle until the DMA transfers complete.
Software overhead may further reduce the effective
data transfer rate. The CSMA/CD scheme employed by
the iPSC cube offers a data transfer rate of 10 Mbits/s,
but has overhead related to the special communication
coprocessor and its related initialization and control
software.

In our scheme, any pair of processors of a hypercube
can establish two-way communication. A processor
can receive messages from three of its neighbors and

Table 1.
Data transfer rates for different processors.

8088 10 REP MOVS
8086 10 REP MOVS
80286* 10 REP MOVS
80386* 16 REP MOVS
68000 12.5 MOVE.l (a1

Clock Key Overheads Typical transfer rates
Processor (MHz) instruction (incl. states) (Mbytes/s)

0.58
1.17
5.00
6.00
1.78

*In real-address mode

33
33
19
21

+,(a2)+ 50

Table 2.
Instructions for data transfer.

____~ ~

Clock states
Instruction required

MOV AX, DATA-SEG 4
MOV DS, AX 2
MOV AX, EXTRA-SEG 4
MOV ES, AX 2
MOV CX, LENGTH-OF-PACKET 4

MOV SI, SOURCE-POINTER 4
MOV DI, DESTN-POINTER 4
REP MOVS 9 + 17(n)

Total no. of clock states 33 + 17(n)

n is the number of byte transfers.

the network controller and send a message to one of its
three neighbors or the network controller simultane-
ously. In other words, at a given time four communica-
tion paths of a PE can be active. One of these four can
be a two-way communication path. In an 8-node cube
with 20 memory units, nine paths can be active at any
given time. For example, in Figure 3b PE5 can receive
messages from three of its neighbors (PEl , PE4, PE7)
and the network controller. PE5 can send a message to
one of its neighbors, while other PEs (PEO, PE2, PE3,
PE6) can have four active communication paths among
them.

We implemented the dual-ported RAM scheme with
Intel 8088s as node processors because of the availabil-
ity of hardware/software development tools and the
hardware’s low cost. The high-speed communication

technique has advantages in a multiprocessing system.
The technique can be adopted for communication in
multiprocessing systems based on advanced micropro-
cessors like Intel’s iAPX 80286 and 80386 and Motor-
ola’s 68000,68020, and 68030. Table 1 lists expected
zero-wait-state data transfer rates when using typical
instructions. This transfer rate is dependent on the bus
bandwidth and the type of instructions available. With
an 8088 processor operating at 10 MHz, we obtained a
zero-wait-state transfcr rate of 0.588 Mbytes/s (4.7
Mbits/s) in both directions (duplex). This transfer rate
from one PE to another is computed as shown in Table
2. The REP MOVS string operation essentially achieves
a block move of data from one part of memory to
another.

The software overhead for initializing the various
registers involves 33 clock states. The transfer rate
actually depends on the REP MOVS instruction, which
takes 17 clock states per transfer of a byte in the case of
the 8088. This, when computed for a processor operat-
ing at 10 MHz, yields 0.588 Mbytes/s or 4.7 Mbitds.
The speed improves significantly if processors with
wider data bus widths and higher clock frequencies are
used.

Our fully duplexed, asynchronous, and zero-buff-
ered communication scheme handles messages that are
less than the maximum allowable packet size. Pro-
cessor nodes operating at different speeds and different
word lengths could be combined in the same multi-
processor system. The highly optimized dual-port tech-
nique allows the same memory to be used as working
storage and for communication between nodes, avoid-
ing the need for any special data communication con-
troller. Message transfer is transparent to the user
programs running on the nodes because no special
communication channel must be set up and no need
exists to keep track of packet sequence. We further
reduce software overhead in that we do not need ac-
knowledgment packets for memory-to-memory trans-
fer. Advanced processors with higher addressing capa-

October 1989 17

In te rp ro ce sso r co mm u n ica t io n

bility can support communication channels with larger
sizes of dual-ported common memory and hence im-
prove the throughput.

In an n-cube configuration each individual node
connects to n neighboring nodes5 A message transfer
operation between any two nodes with a Hamming
distance of n involves (n - 1) processor elements and
transmission on n links. We discussed the implementa-
tion aspects of our scheme on an eight-node (23) cube
and the extension of the scheme to a 64-node cube (26
cube) configuration. With the help of the dual-port
technique and the use of the network controllers, a
message can transfer between any two nodes in a 2’
cube with a maximum of two memory transfers, even if
the Hamming distance between the nodes is three. In
the 64-node architecture, we achieve a message trans-
fer between any two communicating nodes with a
maximum of three memory transfer operations. A
message can also be transmitted from a source node to
a destination node through one of the several parallel

pa ths consisting of the PEs, network controllers, and
the central controller, depending on their availability.

he dual-ported RAM approach for message trans-
fer between nodes. in a multiprocessor system T offers cost and speed advantages. The extended

hypercube is an example of a low-cost, compact multi-
processor system with minimal software and hardware
overheads. With an 8088 processor operating at 10
MHz, we have achieved a data transfer rate of 0.588
Mbytes per second (4.7 Mbits per second). %

Acknowledgments
We wish to thank R. Govindarajan for valuable dis-

cussions concerning our work. The suggestions pro-
vided by the reviewers and the editor have helped us
improve the article’s organization.

References
1. S. Yalamanchili and J.K. Aggarwal, “A Characterization

and Analysis of Parallel Processor Interconnection
Networks,” IEEE Trans. Computers, Vol. C-36, No. 6,
June 1987, pp. 680-691.

2. J . Tuazon, J . Peterson, M. Prifet, and D. Liberman,
“Caltech/JPL Mark I1 Hypercube Concurrent Processor,”
Proc. Int’l Conf. Parallel Processing, IEEE C S Press
(microfiche), Los Alamitos, Calif., Aug. 1985, pp. 666-
678.

3. J.P. Hayes et al. “A Microprocessor-based Hypercube
Supercomputer,” IEEE Micro, Vol. 6, No. 5, Oct. 1986,
pp. 6-17.

4. E.1. Organick, “Algorithms, Concurrent Processor, and
Computer Science Education,” ACM SlGse Bulletin,
ACM, New York, Vol. 17, No. 1 , Mar. 1985.

5 . Y. Saad and M.H. Schultz, “Topological Properties of
Hypercubes,” Research Report, Dept. of Computer Sci-
ence, Yale University, New Haven, Conn., June 1985.

Additional reading
Hayes, J.P., et al., “Hypercube Computer Research at the
University of Michigan,” Proc. Second Conf. Hypercube
Multiprocessors, Univ. of Michigan, Ann Arbor, Sept.-Oct.
1986.
iAPX 286 User’s Manual, Intel Corp., Santa Clara, Calif.,
1984.
iAPX 80386 Hardware Reference Manual, Intel Corp., 1987.
iAPX 86/88 User’s Manual, Intel Corp., 1983.
Osborne, A., and G. Kane, Osborne 16-Bit Microprocessor
Handbook, McGraw-Hill, Berkeley, Calif., 198 I .

Peterson, I.C., et al., “Mark 111 Hypercube-Ensemble Con-
current Computer,” Proc. Int’l Conf. Parallel Processing,
IEEE CS Press (microfiche), 1985, pp. 71-73.
Seitz, C.L., “The Cosmic Cube,” Comm. ACM, Vol. 28, No.
I , Jan. 1985, pp. 22-33.

N. Jagadish is a scientific assistant in the Department of
Computer Science and Automation at the Indian Institute of
Sciencc in Bangalore. Previously, he was involved in build-
ing a part of the processor-based controls for motion of a 90-
inch optical telescope at the Indian Institute of Astrophysics,
also in Bangalore. His areas of interest include local area net-
works, performance evaluation, and multiprocessor systems.

Jagadish received the BE degree in electronics and commu-
nication from the Mysore University in Mysore, India. Cur-
rently, he is working toward the MSc (engineering) degree in
computer science at the Indian Institute of Science.

18 IEEE MICRO

J. Mohan Kumar is a scientific officer in the Microprocessor
Applications Laboratory at the Indian Institute of Science and
has been a lecturer at Bangalore University. His research
interests include multiprocessor systems, neural networks,
and parallel computing.

Mohan received the BE degree in electrical engineering
from Bangalore University and the MTech degree from In-
dian Institute of Science, where he is working toward his PhD
degree in computer science.

L.M. Patnaik, a professor of the Department of Computer
Science and Automation, also chairs the Microprocessor Ap-
plications Laboratory at the Indian Institute of Science. His
teaching, research. and development interests have been in
the areas of parallel and distributed computing, computer
architecture, computer graphics, computer-aided design of
VLSl systems, and expert systems.

Patnaik obtained his PhD in the area of real-time software
for industrial automation. He also holds the DSc degree for
his research work in computer systems and architectures. He
has published over 1 50 publications in refereed international
journals and conference proceedings and coauthored a book
on functional programming. He is a senior member of the
IEEE and the Computer Society of India, a founder member
of the executive committee of the Association for Advance-
ment of Fault-Tolerant and Autonomous Systems, and a fel-
low of the Indian Academy of Sciences, National Academy of
Sciences, and the Institution of Electronics and Telecommu-
nications Engineers in India.

Questions concerning this article can be directed to L.M.
Patnaik, Indian Institute of Science, Department of Computer
Science and Automation, Bangalore 560 012, India.

Reader Interest Survey

Indicate your interest in this article by circling the
appropriate number on the Reader Service Card.

Low 150 Medium 151 High 152

IEEE M i c r o ' s December 1989 issue features
articles on

Neural networks in Europe

Special feature:
Micro Standards returns

Editor Carl Warren
discusses the latest developments in the IEEE

standards committees on
buses, microcomputers, microprocessors, and

more.

Wondering where
to get back issues?

'EEEMICFQ
Members: You pay only $7.50 per copy
for 1984 to 1987 issues and $10 per copy

for 1988 issues.

Send prepaid orders to Customer Service,
IEEE Computer Society

PO Box 3014
Los Alamitos, CA 90720-1264

October 1989 19

