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uccessful interprocessor communication, a key factor in the design 
of any multiprocessing system, requires high bandwidth and relia- 
bility with minimal cost and softwarehardware overheads. Here, S we present such a communication scheme. It features simplicity, 

speed, modularity, and configurability to multiprocessing systems such as 
linear arrays, triangular arrays, meshes, systolic trees, and hypercubes. 

Communication between any two processors in this scheme takes place 
through a common memory, independently accessible by both processors 
involved. The interprocessor interconnection scheme in a multiprocessor 
system directly affects system throughput and has a bearing on the modu- 
larity, reliability, and overall system performance. Yalamanchili and Ag- 
garwal discussed the importance of the processor interconnection scheme 
when they characterized the capabilities of a multiprocessing system.' 

Various interconnection schemes have been suggested for message pass- 
ing between processor Tuazon et a1.2 suggested a scheme that 
makes use of first-in, first-out, or FIFO, buffers and several communication 
channels. Their scheme involves data-shifting mechanisms and software for 
polling signals. In this scheme the transfer of a message between two pro- 
cessor nodes involves 1) transferring a message to the FIFO buffers in the 
source node, 2) converting a message from words to nibbles, 3) transmitting 
a message from source node to destination node, 4) reconverting the 
message from nibbles to words in the destination node, and 5 )  receiving 
message data from the FIFO buffer in the destination node after checking 
data-valid flags. 

In the Hayes et al. ~ c h e m e , ~  processor nodes communicate with one 
another by means of asynchronous direct memory access operations. The 
message moves through serial channels. Transmission involves 1) DMA 
transfer from the main memory to a buffer on the processor node, 2) 
conversion of the message into serial format, 3) transmission on a serial 
communication channel, 4) reconversion of the message into parallel 
format, and 5) another DMA transfer from a buffer to the main memory on 
the destination node. 
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The Intel iPSC,4 a hypercube supercomputer, con- 
sists of eight communication channels per node. Intel 
built the Ethernet protocol-based iPSC using a special 
local communication coprocessor (82586). The iPSC 
scheme transfers data at the rate of 10 Mbits per second. 
Carrier Sense Multiple Access with Collision Detec- 
tion (CSMA/CD), a statistical medium access control 
system, implements the sharing of common channels. 

Our scheme for interprocessor interconnection using 
dual-ported RAMs and network controllers follows. In 
this scheme, communication between the processor 
nodes involves writing into and reading from a com- 
mon memory area. The communicating processors do 
not have to contend for a common bus as in the case of 
shared-memory systems, since they have independent 
access to the common memory units shared between 
them. Only the memory access time of the processors 
limits the communication speed. Processor-to-pro- 
cessor communication does not use intermediate buff- 
ers, input/output ports, or DMAs. We consider the 
example of a three-dimensional cube to illustrate the 
advantages of this scheme. Further, we discuss the 
implementation of the interprocessor communication 
scheme on a 64-node cube configuration. 

Processor-to-processor 
communication 

Dual-ported RAMs now available in VLSI form 
operate at static RAM speeds (50 to 150 nanoseconds) 
and have two independent left and right ports. Figure 1 
illustrates a message transfer between two neighboring 

processors using dual-ported RAMs. This DPR area is 
common to both processor elements (PEI and PE2). In  
other words a portion of the memory space of PE1 
“overlaps” a portion of the memory space of PE2. We 
shall refer to this shared DPR area as the common 
memory. 

Either processor can access the dual-ported RAM 
independently, since this memory area lies in the 
memory space of each processor. However, PEl  and 
PE2 access this area with different addresses. On-chip 
arbitration logic within the dual-ported RAM handles 
address contention to ensure maximum speed. In case 
of contention one of the ports must wait until the other 
port’s access is complete; a BUSY signal on the dual- 
ported RAM indicates contention. 

As shown in Figure I ,  the common memory between 
PE 1 and PE2 is logically divided into upper and lower 
halves. PE1 writes into the upper half and reads from 
the lower half. Similarly, PE2 writes into the lower half 
and reads from the upper half. In this way we minimize 
the probability of access contention. To transmit a 
message packet to PE2, PEl  writes the message packet 
in the common memory it  shares with PE2. Communi- 
cation between neighboring processors does not in- 
volve intermediate devices. A message written by the 
transmitting processor in its own memory is accessible 
to the receiving processor. 

Communication between noncontiguous nodes 
(those not directly connected with each other) can be 
carried out with the help of an intermediate processor.’ 
Figure 2 illustrates the methodology for communica- 
tion between noncontiguous processors. A network 
controller (NC) becomes the intermediate link for 
message transfer between noncontiguous nodes. (We 
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Figure 1. Two processors sharing a dual-ported RAM. 
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Figure 2. Communication pathways among noncon- 
tiguous processors. 
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Figure 3. A 3D cube (a) and a 3D cube with a network 
controller (b). 

show the usefulness of the network controller in hyper- 
cube configurations in Figure 3 and discuss it later.) 

In Figure 2 ,  two noncontiguous processors PE1 and 
PE3 share separate dual-ported RAMs with the network 
controller. This controller provides an alternative path 
for the transfer of messages between two noncontigu- 
ous nodes. As indicated in Figure 2 ,  PE1 can transfer 
messages to PE3 along two alternative paths: one path 

via PE2, which involves two memory transfers through 
PE2, and another path through the network controller. 
In the first method, PE2 participates in the message 
transfer between PE1 and PE3. 

In a multiprocessing system dedicated PEs perform 
subtasks of a main task. The throughput of the multi- 
processing system would be significantly reduced if the 
PEs were used for communication purposes. We in- 
clude the network controller seen in Figure 2 to trans- 
fer messages between noncontiguous nodes. To trans- 
mit a message packet from PEl  to PE3, PEL writes the 
message packet into the common memory shared with 
the network controller; this controller performs a block 
transfer to shift the message packet to the common 
memory shared with PE3. 

With this kind of design, the PEs in a multiprocessing 
system need not participate in the communication be- 
tween noncontiguous nodes as the network controller 
exclusively performs communication tasks. Obviously, 
processor-to-processor transfer is most effective in the 
case of contiguous nodes. Message transfers between 
noncontiguous nodes must use the path through the 
network controller. Thus the two paths for message 
transfers complement each other. 

Implementation on a 3D cube 
- 

To understand the implementation aspects of our 
scheme, we suggest a three-dimensional cube, since 
such a topology has attracted wide interest among 
researchers in recent years. An n-dimensional hyper- 
cube5 is a multiprocessor characterized by the presence 
of N = 2" processors interconnected as an n-dimen- 
sional binary cube. Each node of the cube consists of a 
central processing unit and local main memory. Each 
PE of the cube directly communicates to n other PEs of 
the cube; the communication paths correspond to the 
edges of the cube. The length of the path between any 
two nodes is simply the number of edges of the path. 
The minimum distance between any two nodes in an n- 
cube equals the Hamming distance between them. 

Implementing the interconnection network on a 3D 
cube occurs as follows. The nodes of the cube are 
numbered as indicated in Figure 3a and b. Each node 
consists of a PE, which includes the numeric data 
coprocessor. Each PE shares common memory units 
with other PEs located at a Hamming distance of one. 
In addition, the PEs share common memory units with 
the network controller, as illustrated in Figure 4a. 
Figure 4b shows the memory map of a typical node 
processor. 

As can be seen in Figure 4c, the processing node 
contains an 8088 processor with an 8087 numeric data 
coprocessor, address decoding logic, a wait-state gen- 
erator, system ROM, local RAM, and dual-ported 
RAMs. The address decoding logic selects among the 
system ROM, local RAM, and the dual-ported RAMs 
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Figure 4. Common memory units at a typical node called PEO (a); a memory map of PEO (b); node processor hard- 
ware (c); and a single-wait-state generator (d). 
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Lower memory 

RAM 1 
Figure 5. Common memory units at a network controller (a) and a memory map of the network controller (b). 

shared between the neighboring processors and the 
network controller. The wait-state generator takes care 
of address contention as follows. On detection of a 
BUSY signal from the dual-ported RAM, the wait-state 
generator disables the ready-line input RDY 1 of the 
8284 clock generator for one clock state. See Figure 4d. 

The network controller is dedicated to the task of 
overall interprocessor communication management. 
The controller shares common memory units with each 
of the eight nodes in the cube, as illustrated in Figure 5a 
and b, and its hardware configuration is similar to that 
of the nodes. As indicated in Figure 6 ,  the network con- 
troller contains parallel and serial ports for communi- 
cation with the host system and other input and output 
devices. In addition, the network controller initializes 
the cube and distributes tasks. 

Common memory units exist between all pairs of 
neighboring nodes and between the network controller 
and each node. As mentioned earlier, neighboring 
nodes communicate by directly writing into the com- 
mon memory located between the two nodes. For 
communication between nodes located at a Hamming 
distance greater than one, the network controller per- 
forms a memory block transfer from the common 
memory shared with the transmitting node to the com- 
mon memory shared with the receiving node. A mes- 
sage packet between two noncontiguous nodes can also 
be routed through one of the parallel paths between the 

two nodes depending on the availability of the pro- 
c e s s o r ~ . ~  The parallel paths between two noncontigu- 
ous nodes may consist of one or more nodes that 
contribute to the message transfer by block transferring 
the message packet from the memory space of the 
transmitting node to the memory space of the receiving 
node. 

Message transfer protocol 
The message packet shown in Figure 7a consists of 

the semaphore/address byte, packet-size byte, and the 
actual message. The semaphore/address byte (Figure 
7b) has three subdivisions. The most significant bit 
indicates valid data, the next bit indicates processor- 
busy status, accompanied by three bits for addressing 
processors in an extended hypercube, and the last three 
bits indicate the address of the node. The next byte 
gives the total length of the message in bytes, followed 
by the message itself. The source node checks the 
semaphore bits for data validity and writes the message 
packet either in its common memory shared with the 
destination processor (if the Hamming distance be- 
tween them is one), or in its common memory shared 
with the network controller (if the Hamming distance 
between the source and destination nodes is greater 
than one). 
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Figure 6. Block diagram of the multiprocessor system 
with peripherals. 
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Figure 7. A message packet (a) and a semaphore/ad- 
dress byte (b). 

As indicated earlier in Figure 3b, PE3 and PE7 (with 
a Hamming distance of one between them) share a 
common memory through which they can communi- 
cate. The source processor checks the data valid V-bit. 
If the V-bit is 0, the source processor writes the mes- 
sage in the common memory space and sets the V-bit to 
1 to indicate the presence of fresh data. The destination 
processor checks the V-bits in the common memory 
units shared with its neighbors. If any of the V-bits are 
valid, the processor copies into the local memory the 
message from the common memory following a valid 
V-bit, and resets the V-bit to 0. 

The message transfer between two noncontiguous 
nodes involves a path through the memory space of the 
network controller. For example, consider the commu- 

Procedure Initialization for network controller 
for PEO to PE7 

begin 

end; 
V-bit := 0; B-bit := 0; 

Procedure Network Controller Block Transfer 
repeat 

for PEO to PE7 
begin 

if ((S-V-bit) = 1) AND ((D-V-bit) = 0) then 
block transfer data; 
S-V-bit := 0; D-V-bit := 1; 

end; 
forever. 

Procedure Send /* for PE */ 

if hamming distance >1 then 
begin 

block transfer data to network controller; 
network controller-V-bit := I ;  

block transfer data to destination; 
D-V-bit := 1; 

else 

end; 

Procedure Receive /* for PE */ 
begin 

if S-V-bit = 1 
then 

block transfer data; 
S-V-bit := 0; 

end; 

/* B-bit is busy bit 
S-V-bit is source data validity bit 
D-V-bit is destination data validity bit 
Network controller V-bit is network controller data 
validity bit */ 

Figure 8. The procedure for a message transfer. 

nication procedure between PE3 and PE4, which are at 
a Hamming distance of three from each other. The 
source processor PE4 determines the Hamming dis- 
tance between itself and the destination processor PE3. 
Since the Hamming distance is greater than one, PE4 
writes the message into the common memory space 
shared with the network controller if the corresponding 
V-bit is reset to 0. The network controller checks the V- 
bits of the control bytes in the common memory units 
shared between PE4 and PE3. Say the V-bit of PE4 is 1 
(indicating fresh data) and the V-bit of PE3 is 0 (indi- 
cating previous data accepted). In this case, the network 
controller transfers a memory block to shift the data 
stored in the common memory space shared with PE4 to 
the common memory space shared with PE3. The pro- 
cedure for message transfer appears in Figure 8. 
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Scheme extended to 64 nodes 
The 64-node extended hypercube, or EH, consists of 

eight 3D cubes5 and a central controller node, as illus- 
trated in Figure 9. (We introduce the EH term to reflect 
that each node of the hypercube is a cube by itself.) 
Each 3D cube consists of eight individual nodes and the 
network controller, and we refer to this group as the 
EH-node (node of the EH). EH-nodes appear at the 
vertices of the EH. Each of the eight EH-nodes has 
topological and architectural features similar to that of 
the 3D cube discussed earlier. 

As indicated by the dotted lines in Figure 9, the eight 
network controllers at the eight EH-nodes form a 3D 
cube, the EH. The network controller of each EH-node 
shares common memory units with its neighboring 
network controllers in the EH. In addition, a central 
network controller shares common memory units with 
all the eight network controllers at the vertices of the 
EH. There is no interconnection network between the 
individual nodes of different EH-nodes. 

(00ooo0, 

Figure 9. An extended hypercube. 
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The interprocessor communication scheme between 
individual nodes of the EH-node is similar to that 
explained earlier, as is the communication scheme 
between any two network controllers in the EH conskt- 
ing of the network controllers and central controller. 

A message between two individual nodes in different 
EH-nodes transmits via the memory space of the net- 
work controllers residing in the EH-nodes of the source 
and destination nodes. A message transfer between two 
individual nodes having a Hamming distance of six 
between them (and residing in two different EH-nodes 
that are themselves at a Hamming distance of three 
from each other) completes with just three memory 
transfer operations. No individual node processor 
(other than the source and destination node processors) 
participates in the memory transfer operation. Memory 
transfers can best be explained by considering two such 
nodes shown in Figure 9, PEO and PE63, as source and 
destination nodes respectively. Messages transfer as 
follows: 

1) PEO writes the message packet in its common 
memory shared with NCO, 

2) NCO transfers the message packet to the common 
memory shared with the central controller, 

3) the central controller performs another memory 
block transfer to shift the message packet to the com- 
mon memory shared with NC7, and 

4) NC7 performs a final memory transfer to place the 
message packet in the memory space of the destination 
node. 

The SSS bits in the semaphore/address byte as shown 
in Figure 7b indicate the address of the EH-node. The 
network controllers in each EH-node keep track of the 
busy status of the individual PEs, and the central con- 
troller keeps track of the busy status of the network 
controllers. 

Advantages of the scheme 
The dual-ported RAM scheme presents a cost-effec- 

tive method for data transfer between processor nodes 
in a multiprocessing system. Tuazon et al. discussed a 
scheme that yields a data transfer rate of 1.5 Mbits/ 
second. Hayes et al. discussed another scheme using 
DMAs and serial channels with a transfer rate of 1 
Mbyte/s. During DMA transfers, though, the processor 
must remain idle until the DMA transfers complete. 
Software overhead may further reduce the effective 
data transfer rate. The CSMA/CD scheme employed by 
the iPSC cube offers a data transfer rate of 10 Mbits/s, 
but has overhead related to the special communication 
coprocessor and its related initialization and control 
software. 

In our scheme, any pair of processors of a hypercube 
can establish two-way communication. A processor 
can receive messages from three of its neighbors and 



Table 1. 
Data transfer rates for different processors. 

8088 10 REP MOVS 
8086 10 REP MOVS 
80286* 10 REP MOVS 
80386* 16 REP MOVS 
68000 12.5 MOVE.l (a1 

Clock Key Overheads Typical transfer rates 
Processor (MHz) instruction (incl. states) (Mbytes/s) 

0.58 
1.17 
5.00 
6.00 
1.78 

*In real-address mode 

33  
33 
19 
21 

+,(a2)+ 50 

Table 2. 
Instructions for data transfer. 

____~ ~ 

Clock states 
Instruction required 

MOV AX, DATA-SEG 4 
MOV DS, AX 2 
MOV AX, EXTRA-SEG 4 
MOV ES, AX 2 
MOV CX, LENGTH-OF-PACKET 4 

MOV SI, SOURCE-POINTER 4 
MOV DI, DESTN-POINTER 4 
REP MOVS 9 + 17(n) 

Total no. of clock states 33 + 17(n) 

n is the number of byte transfers. 

the network controller and send a message to one of its 
three neighbors or the network controller simultane- 
ously. In other words, at a given time four communica- 
tion paths of a PE can be active. One of these four can 
be a two-way communication path. In an 8-node cube 
with 20 memory units, nine paths can be active at any 
given time. For example, in Figure 3b PE5 can receive 
messages from three of its neighbors (PEl ,  PE4, PE7) 
and the network controller. PE5 can send a message to 
one of its neighbors, while other PEs (PEO, PE2, PE3, 
PE6) can have four active communication paths among 
them. 

We implemented the dual-ported RAM scheme with 
Intel 8088s as node processors because of the availabil- 
ity of hardware/software development tools and the 
hardware’s low cost. The high-speed communication 

technique has advantages in a multiprocessing system. 
The technique can be adopted for communication in 
multiprocessing systems based on advanced micropro- 
cessors like Intel’s iAPX 80286 and 80386 and Motor- 
ola’s 68000,68020, and 68030. Table 1 lists expected 
zero-wait-state data transfer rates when using typical 
instructions. This transfer rate is dependent on the bus 
bandwidth and the type of instructions available. With 
an 8088 processor operating at 10 MHz, we obtained a 
zero-wait-state transfcr rate of 0.588 Mbytes/s (4.7 
Mbits/s) in both directions (duplex). This transfer rate 
from one PE to another is computed as shown in Table 
2. The REP MOVS string operation essentially achieves 
a block move of data from one part of memory to 
another. 

The software overhead for initializing the various 
registers involves 33 clock states. The transfer rate 
actually depends on the REP MOVS instruction, which 
takes 17 clock states per transfer of a byte in the case of 
the 8088. This, when computed for a processor operat- 
ing at 10 MHz, yields 0.588 Mbytes/s or 4.7 Mbitds. 
The speed improves significantly if processors with 
wider data bus widths and higher clock frequencies are 
used. 

Our fully duplexed, asynchronous, and zero-buff- 
ered communication scheme handles messages that are 
less than the maximum allowable packet size. Pro- 
cessor nodes operating at different speeds and different 
word lengths could be combined in the same multi- 
processor system. The highly optimized dual-port tech- 
nique allows the same memory to be used as working 
storage and for communication between nodes, avoid- 
ing the need for any special data communication con- 
troller. Message transfer is transparent to the user 
programs running on the nodes because no special 
communication channel must be set up and no need 
exists to keep track of packet sequence. We further 
reduce software overhead in that we do not need ac- 
knowledgment packets for memory-to-memory trans- 
fer. Advanced processors with higher addressing capa- 
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bility can support communication channels with larger 
sizes of dual-ported common memory and hence im- 
prove the throughput. 

In an n-cube configuration each individual node 
connects to n neighboring nodes5 A message transfer 
operation between any two nodes with a Hamming 
distance of n involves (n - 1) processor elements and 
transmission on n links. We discussed the implementa- 
tion aspects of our scheme on an eight-node ( 23 )  cube 
and the extension of the scheme to a 64-node cube (26 
cube) configuration. With the help of the dual-port 
technique and the use of the network controllers, a 
message can transfer between any two nodes in a 2’ 
cube with a maximum of two memory transfers, even if 
the Hamming distance between the nodes is three. In 
the 64-node architecture, we achieve a message trans- 
fer between any two communicating nodes with a 
maximum of three memory transfer operations. A 
message can also be transmitted from a source node to 
a destination node through one of the several parallel 

pa ths  consisting of the PEs, network controllers, and 
the central controller, depending on their availability. 

he dual-ported RAM approach for message trans- 
fer between nodes. in a multiprocessor system T offers cost and speed advantages. The extended 

hypercube is an example of a low-cost, compact multi- 
processor system with minimal software and hardware 
overheads. With an 8088 processor operating at 10 
MHz, we have achieved a data transfer rate of 0.588 
Mbytes per second (4.7 Mbits per second). % 
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