
-

-

t

d

ntin-
rs have
d net-
the line
ill not

e band-
band-

build-

witch
mon-
0Gb/s

Such a
uter.

ssi-
l ele-
e port on
ueue

ford
The Tiny Tera:1 A Packet Switch Core

Nick McKeown, Martin Izzard*,
Adisak Mekkittikul, William Ellersick, Mark Horowitz

Departments of Electrical Engineering and Computer Science
Stanford University, Stanford, CA 94305-4070

*Communications Laboratory
DSP R&D Center, Corporate Research & Development

Texas Instruments, Incorporated, PO Box 655474, MS446, Dallas, TX 75265

Abstract — In this paper, we present theTiny Tera: a small packet switch with an
aggregate bandwidth of 320Gb/s. TheTiny Tera is a CMOS-based input-queued,
fixed-size packet switch suitable for a wide range of applications such as a high
performance ATM switch, the core of an Internet router or as a fast multiprocessor
interconnect. Using off-the-shelf technology, we plan to demonstrate that a very high
bandwidth switch can be built without the need for esoteric optical switching
technology. By employing novel scheduling algorithms for both unicast and multicas
traffic, the switch will have a maximum throughput close to 100%. Using novel high-
speed chip-to-chip serial link technology, we plan to reduce the physical size an
complexity of the switch, as well as the system pin-count.

1 Introduction
The case for high-performance networking is overwhelming; the traffic on the Internet co

ues to grow at over 30% per month with no apparent end in sight. As a result, recent yea
witnessed an increasing interest in high-speed networks supporting IP or ATM. High spee
works need high performance routers and switches. Recently, there has been a blurring of
between switches and routers in attempts to combine the benefits of both, but this alone w
satisfy the increased bandwidth requirements. We believe it is necessary to ensure that th
width bottleneck in network elements is fundamental, rooted in memory or interconnect
width limitations.

In an attempt to provide industry with a novel switching element, we are developing and
ing theTiny Tera: a small, high-bandwidth, single-stage switch. TheTiny Tera has 32 ports, each
operating at 10Gb/s (approximately the OC-192 rate), switching fixed-size packets. The s
distinguishes four classes of traffic, and includes efficient support for multicast. We aim to de
strate that it is possible to build a compact switch with an aggregate bandwidth of some 32
using currently available CMOS technology, with a central hub no larger than a soda can.
switch could serve as a core for applications as diverse as an ATM Switch or an Internet Ro

TheTiny Tera is an input-buffered switch allowing it to be the highest bandwidth switch po
ble given a particular CMOS and Memory technology. The switch consists of three logica
ments: Ports, a central Crossbar switch, and a central Scheduler. Packets are queued at th
entry to the switch and optionally prior to exit. The scheduler has a map of all the ports’ q
occupancy and decides the crossbar configuration every packet-time.

1. This work is supported by Texas Instruments, Inc. and the Center for Telecommunications at Stan
University.
1

width
eued at
 for the
packets

h uni-
irtual
. Moti-
ithm
uling
 algo-

s, vari-
We are
nes
l pair.
-

elf-
s, each
ding to
stina-
ossbar

 cross-
eduling
 cross-
ffered in

llow it
e root,

 mecha-
mple-
t and

 of the

ks oper-
Input-queueing, parallelism, and tight integration provide the keys to such a high-band
switch. Input-queueing reduces the memory bandwidth requirements; when packets are qu
the input, the buffer memories need run no faster than the line rate, so there is no need
speedup that is required in output-queued switches. The long-standing view has been that
in an input-queued switch suffer poor performance due tohead of line (HOL) blocking [2], but we
have developed novel scheduling algorithms to reduce the effects of HOL blocking for bot
cast and multicast traffic. For unicast traffic, we use a well-known buffering scheme called V
Output Queueing (VOQ) [1] in which each input maintains a separate queue for each output
vated by DEC’s PIM algorithm [3], we use a novel, fast, fair, and efficient scheduling algor
called iSLIP, that achieves a throughput close to 100% [7] [8], yet is able to make a sched
decision in less than 40ns in current technologies. For multicast traffic, we are developing
rithms based on fanout splitting and residue concentration ideas[4].

In order to realize a compact switch with such high aggregate bandwidth, theTiny Tera inter-
connect must be optimized to support its massive bandwidth yet allow the use of connector
able length physical paths, and ICs with reasonable pin-counts and power-consumption.
developing a Serial Link circuit block to provide this IC-to-IC physical link. The VLSI engi
will see the link as a byte interface, yet the interconnect will be a single low-swing differentia
The block contains: MUX; DMUX; Clock Multiplication PLL; Clock Recovery PLL; Line Driv
ers; Line Receivers.

2 Switch Architecture
As shown in Figure 1, theTiny Teraswitch consists of three main parts: a parallel sliced s

routing crossbar switch, a centralized scheduler for configuring the crossbar, and 32 port
operating at 10Gb/s. When a packet arrives at a port, it is buffered in an input queue accor
its destination, priority class, and whether it has a single destination (unicast) or multiple de
tions (multicast). The packet awaits a decision by the scheduler allowing it to traverse the cr
switch fabric. At the beginning of each fixed-length packet time (which we will call aslot), the
scheduler examines the contents of all input queues, decides upon the configuration of the
bar, and chooses a set of conflict-free connections between inputs and outputs. The sch
decision is passed back to the ports which communicate the configuration information to the
bar slices, and then transmit packets into the crossbar. Packets leaving the crossbar are bu
the output queues where they await transmission to the external line.

2.1 Scheduler and Crossbar Switch Hub
The scheduler is situated in the central hub (Figure 1b) and is connected to all ports to a

to easily gather queue status updates and issue configuration data. It is the switch pipelin
because it sources configurations (grant-tokens) that trigger the release of back pressure
nisms throughout the switch. This allows for a flexible pipeline architecture. The scheduler i
ments algorithms that provide efficient use of the crossbar bandwidth for both unicas
multicast.

The sliced crossbar switch makes up the rest of the central hub (Figure 1b). Each slice
Tiny Tera is a printed circuit board containing a 1-bit crossbar chip.

The crossbars and the scheduler are connected to each port using high-speed serial lin
ating at multiple Gb/s. The links are described in more detail in Section 4.

The advantages of this central sliced crossbar switch hub are:

• The crossbar slice is extremely simple. No traces need to cross.

32 32×
2

um
 small;

par-
 vary-

. The
ss-

rse path
ut-
• The trace lengths connecting each port to the crossbar are all of similar and minim
length. This reduces skew and crosstalk. It also means that each slice can be very
in theTiny Tera, each slice will be approximately 6cm in diameter.

• Extremely high aggregate bandwidths are achievable by switching multiple bits in
allel; as a result, the switch can be scaled for different throughput requirements by
ing the number of slices.

The switch supports multicast efficiently by connecting a single input to multiple outputs
Tiny Tera usesreverse path self-routing: each slot, each port transmits a routing tag into the cro
bar ahead of any transmitted packet; the routing tag is a 5-bit value that determines the reve
(it indicates which port will sendto this port). If forward-path self-routing was used, a 32-bit ro
ing tag would be needed to indicate the set of destinations.

b) The central hub is comprised of a
number of identical crossbar slices and
the scheduler.

c) Each slice contains a single crossbar chip.

a) The Switch consists of a central hub into which each port card connects
radially. Each port may be connected to multiple external lines via a Line
Interface multiplexer.

Figure 1 Architecture and detail of theTiny Tera switch (4 port example).

B
uf

f e
r

B
uf

f e
r

~6cm

~15cm

Crossbar stack

Port

Scheduler

Centralized scheduler

Crossbar slices
High-Speed
Serial Link
3

witch-
s. The
th for
 VCI

packet

everal

ory the
w chunk

ckets.
Proces-
m mem-

 control
al inter-

t they
nt, as
quire-

witch
ATM
2.2 Port
TheTiny Tera port is designed to be scalable in data rate and in packet size. The basic s

ing unit is 64-bits — all packets must be the same length which can be any multiple of 64 bit
two main challenges in designing a 10Gb/s port interface are: (1) providing memory bandwid
input and output queues; (2) performing per-packet processing functions, for example, ATM
or IP address lookup.

Figure 2 shows how the port architecture is separated into an application-independent
datapath (Data Slice), and an application-specific port processor (Port Processor).

Packets arrive from the external interface over a set of serial links, each operating at s
Gb/s. 64-bits of the packet is cached by each of the Data Slices. We call this 64-bit unit achunk.
Each Data Slice forwards the chunk to the Port Processor which decides where in mem
chunk should be stored. The Port Processor sends back a memory address, and a ne
header. The chunk is updated and written into 64-bit wide SRAM. There aren Data Slices and so
the packet is effectively written into an x 64-bit wide SRAM.

The Port Processor communicates with the scheduler, informing it of newly arrived pa
When the scheduler tells the Port Processor to read from a particular input-queue, the Port
sor issues a read request to the Data Slices, indicating which packet is to be dequeued fro
ory. The packet is then forwarded over the serial links to the crossbar.

Packets leaving the crossbar are once again buffered by the Data Slices and, under the
of the Port Processor, are stored in output-queues before leaving the system over the extern
face. This facility will allow experimentation with switch speedup requirements.

The advantage of maintaining both input and output queues in the same SRAM is tha
may be dynamically partitioned, resulting in more efficient usage. This is particularly importa
the switch is to support variable internal speedup, leading to a variable ratio of memory re

SRAM

Data
Slice 1

64-bit x 10ns bus

SRAM

Data
Slice 2

SRAM

Data
Slice n

Application-specific Port-Processor

C
rossbar Interface

E
xt

er
na

l I
nt

er
fa

ce

Scheduler Interface

Port Card

Figure 2 Architecture of port card. The Data Slice components are application-independent, and s
64-bit chunks. The Port-Processor is application-dependent and processes, for example,
cell headers or IP addresses.

Gb/s serial link

Gb/s serial link

Gb/s serial links
4

o read-
his is

d buff-
e built

n one
 in Fig-

imple-
kup,
rd. A
ssem-

queue-

cheme,
not be
 more

ory

o so
s. For a

 we
umber

ll

] that
hich
e.g. if
ments at input and output. Sharing the SRAM between input and output queues requires tw
and two write operations per packet time; or approximately 10ns per memory operation. T
achievable in commercial memory devices.

The Data Slice is designed to be application-independent. Each Data Slice switches an
ers chunks that are any multiple of 64-bits. The Data Slice is designed so that ports can b
with different data rates by using a different number of slices; each slice will buffer more tha
chunk per packet; in fact, a packet can be thought of as a 2-dimensional structure, as shown
ure 3. A packet consists of multiple chunks processed by multiple Data Slices.

The Port Processor is designed to be application-dependent. For example, in our first
mentation, the Port Processor will process 53-byte ATM cells, performing virtual-circuit loo
and implement the ATM Forum Available Bit Rate (best-effort) Traffic Management standa
different Port Processor could, for example, implement IP-routing with segmentation and rea
bly of packets across the switch core.

3 Queueing and Scheduling
The port uses separate structures for buffering unicast and multicast packets; the input-

ing structure is shown in Figure 4.

For unicast packets, the port maintains a separate FIFO queue for each output. This s
known as Virtual Output Queueing (VOQ), eliminates HOL blocking because a packet can
held up in a queue behind a packet that is destined for a different output. Although slightly

complex (an switch now maintains input FIFOs), VOQ requires no additional mem
bandwidth; at most one packet can arrive and depart from each input per packet-time.

Unfortunately, it is impracticable to eliminate HOL blocking for multicast packets — to d
would require each input to maintain a separate queue for each possible set of destination

32-port switch this would mean maintaining different queues! In fact,
have found that there is little benefit obtained from maintaining multiple queues unless the n

of queues approaches . Instead, theTiny Teraport maintains only a single FIFO queue for a
multicast packets.

3.1 Scheduling Unicast Packets
When VOQ is used for unicast packets, the switch requires a scheduling algorithm [5][7

examines the contents of theN2 input-queues at the beginning of each packet time, deciding w
ones will be served. A good scheduling algorithm should be fast, simple, fair, and efficient. (

Chunk 1,1Chunk L,1

Chunk L,N Chunk 1,N

Figure 3 A packet can be viewed as a 2-D structure of 64-bit chunks.

To Data Slice 1

To Data Slice N

N N× N
2

232 33–() 4 billion>

232
5

orithm

rithm
) and
s are
 time

 yet
round-
ention,

t leads

 only
 in the
 larger
the input-lines operate at 10Gb/s, and each packet is a 53-byte ATM cell, the scheduling alg
must make its decision in less than 42ns).

In previous work, we have shown that the maximum size bipartite graph matching algo
and the maximum weight bipartite graph matching algorithms (the longest queue first (LQF
the oldest cell first (OCF)) can achieve 100% throughput [8]. Unfortunately, these algorithm
known to be impractical for implementation in fast and simple hardware, requiring a running

of complexity [10].

However, we have developed practical, heuristic scheduling algorithms:iSLIP, iLQF, and
iOCF [7]. iSLIP is an iterative algorithm that provides high efficiency for best-effort traffic and
is simple to implement in hardware. The algorithm achieves fairness using independent
robin arbiters at each input and output. Simple round-robin arbiters experience output cont

which limits throughput to just . With a simple modification,iSLIP overcomes

this problem by causing the arbiters to slip with respect to each other — a match in one slo
to a larger and faster match in the next slot.

The algorithm behaves as follows. All inputs and outputs are initially unmatched and
those inputs and outputs not matched at the end of one iteration are eligible for matching
next. Connections made in one iteration are never removed by a later iteration, even if a

Unicast Queues

To output 1

To output 32

Multicast Queues

4 priorities

Packets from
External Interface

Packets to
Crossbar

Figure 4 Input-queueing structure at each port.

O N
3
logN()

1 1
e
---– 

  63%≈
6

put and

as a

e that
ment.

 to

pears
 The
nted

bin
ince

.

-

sized match would result. The three steps of each iteration operate in parallel on each out
input and are as follows:

Step 1. Request. Each unmatched input sends a request to every output for which it h
queued packet.

Step 2. Grant. If an unmatched output receives any requests, it chooses the on
appears next in a fixed, round-robin schedule starting from the highest priority ele
The output notifies each input whether or not its request was granted. The pointer
the highest priority element of the round-robin schedule is incremented (moduloN) to
one location beyond the granted input if and only if the grant is accepted in Step 3 of the
first iteration.

Step 3. Accept. If an unmatched input receives a grant, it accepts the one that ap
next in a fixed, round-robin schedule starting from the highest priority element.
pointer to the highest priority element of the round-robin schedule is increme

1

2
2

a) Step 1:Request. Each input makes a request to each output for which it has a packet.

Step 2:Grant. Each output selects the next requesting input at or after the pointer in the round-ro
schedule. Arbiters are shown here for outputs 2 and 4. Inputs 1 and 3 both requested output 2. S

 output 2 grants to input 1. Note that pointers , and are not updated until Step 3g2 1= g1 g2 g4

Input 1
L(1,1) = 1
L(1,2) = 4

Input 3
L(3,2) = 2
L(3,4) = 1

Input 4
L(4,4) = 3

c) When the arbitration has completed, a match
ing of size two has been found. Note that this is
less than the maximum sized matching of three.

b) Step 3:Accept. Each input selects at most one
output. The arbiter for input 1 is shown. Since

 input 1 accepts output 1.a1 is updated to

point to output 2. The pointers atmatched outputs
and are updated. Note that the pointer at the

“unsuccessful” output, is not updated.

a1 1=

g1 g4

g2

3

4

1

2
4

3

4

1

2
1

3

4

g2

g4

a1

Figure 5 Example ofone iteration of the iSLIP algorithm.

gi

ai
7

ueing

e not
ority

mon

s

n-

g
ots,
(moduloN) to one location beyond the accepted outputonly if this input was matched in
the first iteration.

Figure 5 illustrates the three-step arbitration ofiSLIP for one iteration.

The iSLIP algorithm has the following properties:

Property 1. For independent arrivals uniformly distributed over all outputs,iSLIP
achieves 100% throughput with just a single iteration, with more iterations, the que
delay is reduced. See Figure 6.

Property 2. No connection is starved; because of the requirement that pointers ar
updated after the first iteration, an output will continue to grant to the highest pri
requesting input until it is successful.

Property 3. For iSLIP with one iteration, and under heavy load, queues with a com
output all have the same throughput.

Property 4. The algorithm will converge in at mostN iterations. Simulation suggest
that on average, the algorithm converges in fewer than log2N iterations.

Property 5. The deterministic nature of iSLIP reduces the burstiness of traffic as it tra
sits the switch.

20 30 40 50 60 70 80 90 100
0.1

1

10

100

1e+03

Offered Load (%)

Av
g

C
el

l L
at

en
cy

 (C
el

ls
)

FIFO

1−SLIP

2−SLIP

4−SLIP

Output

Figure 6 Performance ofiSLIP for 1,2 and 4 iterations compared with FIFO and output queueing for
independent arrivals with destinations uniformly distributed over all outputs. Results obtained usin
simulation for a 16x16 switch. The graph shows the average delay per packet, measured in sl
between arriving at the input buffers and departing from the switch.
8

est it
arlier

nd that
ntral-
esign-
n in

e
onsists

coder.
tched
 value

tions.

all of the
e sec-

um-
 output

her
com-
ndom
. For-
uler to

ackets;
s called
Note that the algorithm will not necessarily converge to a maximum sized match. At b
will find a maximal match: the largest size match without removing connections made in e
iterations. For a more detailed consideration of the performance ofiSLIP, refer to [7].

Packet delay can be reduced by increasing the number of iterations; via simulation we fi
four iterations are sufficient for a 32x32 switch. Perhaps most importantly, we find that a ce
ized scheduler for a 32x32 switch can be implemented on a single chip, and exploratory d
work suggests thatiSLIP, implemented in current CMOS technology, can perform one iteratio
less than 10ns.

A straightforward implementation ofiSLIP is shown in Figure 7a; for a 32-port switch th
hardware size is dominated by 64 round-robin arbiters. Each arbiter, shown in Figure 7b, c

of a programmable priority encoder, a register holding a highest-priority pointer, and a de
The value of each priority pointer is incremented (updated to one location beyond its ma
input or output) only when the matching occurs in step three of the arbitration, otherwise the
remains unchanged.

3.2 Scheduling Multicast Traffic
The crossbar performs multicast by simultaneously delivering packets to multiple destina

There are two service disciplines that can be used. The first isno fanout-splitting in which all of
the copies of a packet must be sent at the same time. If the packet does not win access to
outputs that it desires, it is not copied to any of them, and must try again in the next slot. Th
ond discipline isfanout-splitting in which packets may be delivered to output ports over any n
ber of slots. Only those copies that are unsuccessful in one slot continue to contend for
ports in the next slot.

The Tiny Tera employs fanout-splitting because it is work-conserving, enabling a hig
throughput, yet requiring little increase in implementation complexity. For example, Figure 8
pares the average packet latency (via simulation) with and without fanout-splitting with a ra
scheduling policy. It is clear that without fanout splitting, performance is seriously degraded
tunately fanout-splitting is simple to support; we need only one extra signal from the sched
inform each input port when a HOL packet has finished service.

In addition to using fanout-splitting, our scheduling algorithms employresidue concentration
[9]. To explain residue concentration, we separate packets into input packets and output p
an input packet is a packet in an input queue, which generates multiple copies; each copy i

1
2
3
4
5

N

+

gi

log(N)

Priority
Encoder

b) Round-robingrant arbiter foriSLIP algo-
rithm. The priority encoder has a pro-
grammed highest-priority,gi. Theaccept

arbiter at the input is identical.

1
2
3
4
5

N

DecoderGrant
Arbiters

Accept
Arbiters

S
ta

te
 o

f I
np

ut
 Q

ue
ue

s
(N

2
bi

ts
)

Decision

1

2

N

1

2

N

Register

a) Interconnection of 2N arbiters to implement
iSLIP for an NxN switch.

Figure 7 Implementation ofiSLIP.
9

ackets,
ual out-
up
 where
ivalent

 resi-
se of a
hm is
ies in a
 HOL
 of the
r an

able.
a large
o-

 Based

raffic
an output packet. In implementing fanout-splitting, the scheduler discharges some output p
possibly leaving behind some residual (unexpanded) output packets in the queue. The resid
put packets are called theresidue. Any work-conserving policy will leave the same residue; it is
to the policy to determine how to distribute the residue over the input ports; the decision on
to place the residue uniquely defines the scheduling policy. Determining the residue is equ
to determining the transmission schedule.

Elsewhere [9], it is argued analytically and via simulation that a policy concentrating the
due on as few inputs as possible will lead to the highest throughput. In particular, for the ca
2xN switch, it is proved in [9] that, subject to a natural fairness constraint, the optimal algorit
one that always concentrates the residue on the minimum number of inputs and breaks t
round-robin fashion. Concentrating residue on the smallest number of inputs allows more
input packets to be completely served, thus bringing more new packets forward to the head
line. We believe that a residue-concentrating algorithm will also maximize throughput [4] fo

 switch.

Unfortunately, the optimal residue-concentrating algorithm is too complex to be practic
Moreover, a residue-concentrating algorithm can lead to starvation for packets that have
number of destinations. TheTiny Tera will therefore employ one of two practical scheduling alg
rithms that we are developing. The first is called TATRA which uses the fact that the
scheduling problem can be mapped onto a Tetris-like game. The second is called Weight
Algorithm (WBA) which is designed to use similar hardware to theiSLIP unicast scheduling algo-
rithm. Both algorithms attempt to be fair, yet achieve a high throughput [9].

Figure 8 Random Schedule: Average packet latency vs. offered load, with uncorrelated input t
without destinations uniformly distributed over all outputs, and average fanout of four.

0.1

1

10

100

1000

10000

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24

A
ve

ra
ge

 C
el

l L
at

en
cy

Offered Load

Fanout-splitting
No Fanout-splitting

M N×

M N×
10

ssbar
ch link
 noisy
inter-

e that

smart”
ment of
reduc-
 one of
is same

iron-
e. In
 rate at
 toler-
 PLL

se align-

n

PLL to
ks. By
4 High Speed Chip-to-Chip Serial Communication Links
TheTiny Tera design poses several chip-to-chip communication challenges. First, the cro

switch and scheduler chips each need to terminate 32 or more communication links, with ea
originating from a different board. Second, the links must achieve very high data rates in a
digital environment, as they are integrated on chips with equally high bandwidth memory
faces and complex logic.

To allow a single chip to terminate many links, we have chosen a serial link architectur
departs from the traditional practice of adjusting the link timing in the receivers. Instead, theTiny
Tera links have all the phase adjustment circuitry in the transmitters and receivers at one “
end. The other, “dumb” end, does not need to do any phase alignment. By careful arrange
the links, we ensure that all chips with large fan-in are at the dumb ends of the links, greatly
ing the complexity and power consumption of these chips. Figure 9 shows the link between
the many data slice chips on a port (smart end) and a crossbar slice chip (dumb end). Th
link is reused for almost all IC-IC communications on theTiny Tera.

Operation of high data rate communication links in the low voltage, high edge-rate env
ment of deep sub-micron CMOS chips requires link circuitry with excellent noise toleranc
addition, the long feedback path for the phase adjustment of the smart transmitter limits the
which phase drift can be tracked, requiring very stable clocks. We improve our voltage noise
ance by using integrating receivers, while clock stability is achieved with a low phase-noise
design that compensates for voltage and temperature variations. Steady and precise pha
ment is accomplished with a digitally controlled clock phase interpolator [12].

4.1 Clock Distribution
In a multi-board system such as theTiny Tera, performance is often limited by the distributio

of high frequency clocks, and the resultant clock skew and phase noise (jitter). While theTiny Tera
design uses a careful clock distribution scheme to minimize skew, we also use an on-chip
multiply up the byte clock that is distributed on board to create the transmit and receive cloc

Figure 9 Tiny TeraSerial Link Architecture

Phase
Control

Timing
Rx

Data
Rx

Data
Rx

Tx

Timing
Rx

Port Chip Crossbar Chip

Tx

From Input
Memory

To Output
Memory

Cross-
Bar
Switch

Clock

Clock
Interp.

Mult.
PLL

Clock
Mult.
PLL
11

s, all
stment

receiver
les the
e tim-
 clock

d rel-
ming

rom the
nclude
forma-
ts the
nce the
 run off

ample
 input
es the
of the

ed-
e that

mpact
band-
ossible
performing all high speed board-to-board communication with phase aligning serial link
clock distribution skews, along with wire and package delays, are offset by the phase adju
feedback loops.

4.2 Phase Control
Phase detection and selection: Two receivers are used in each link. The first is the data

which samples the data centered in the bit time, while the second, the timing receiver, samp
data one-half bit time offset, centered about the bit transition. A comparator determines if th
ing receiver is sampling before or after the transitions. Phase control logic alters the receive
to optimize the data receiver sampling window. The timing receiver sampling window is fixe
ative to the data receiver window. Figure 10 illustrates a one-to-zero transition, if the ti
receiver output is high, the sampling clock was early.

Remote Phase Detection and selection: It is necessary to align the phase of the data f
smart transmitters to the fixed sampling clock of the dumb receivers. The dumb receivers i
both a data and a timing receiver, but have no phase adjustment mechanism. The timing in
tion from the dumb receivers is fed back periodically to the smart transmitter, which adjus
phase of its transmit clock to center the data around the fixed clock in the dumb receiver. Si
transmitter adjusts its phase to match the receiver, all links on the crossbar or scheduler can
the same clock for transmit and receive with no need for local phase control.

4.3 Current Integrating Receivers
Even with proper phase alignment, voltage noise at exactly the sample time (for ex

switching noise) can still cause errors. Our serial links improve immunity to this by using an
receiver that integrates the value of the input over the entire bit time. This integration mak
timing of any noise irrelevant; the received bit value will depend only on the average value
signal over the bit time[11].

5 Conclusion
We have described the architecture and concepts behind theTiny Tera, a small high perfor-

mance fixed-size packet switch. TheTiny Tera combines the best of switch architecture and sch
uling, VLSI datapath, and high performance serial link circuits to create a switching engin
has extremely high performance for a CMOS VLSI-based machine. TheTiny Tera is bottlenecked
only by memory bandwidth and scheduler speed. We expect it to be a cost effective, co
building block for a wide range of high performance data switching applications pushing the
width available from a single-stage element at least an order of magnitude beyond what is p
today.

Data Sample

Timing Sample

Received Data
Waveform

Bit

Figure 10 Phase Measurement Waveforms
12

ions
i
ithms.
eh,
Ani)

ch,”

 net-

ro-

tch,”

for

ali-

put-

ed

-

stem

State
6 Acknowledgments
We wish to thank Richard Edell of the University of California at Berkeley for discuss

with Nick McKeown that lead to the first version of theTiny Tera architecture, as well as Balaj
Prabhakar and Ritesh Ahuja who helped in the development of multicast scheduling algor
We also thank other members of theTiny Tera team: Ken Chang, Shang-Tse Chuang, Jeff Hsi
Youngmi Joo, Rolf Muralt, and Brian Stark at Stanford; Ah-Lyan Yee, Helen Chang, P. N.(
Anirudhan, and Sharat Prasad at Texas Instruments.

7 References
[1] Tamir, Y.; Frazier, G. “High performance multi-queue buffers for VLSI communication switches,”Proc.

of 15th Ann. Symp. on Comp. Arch., June 1988, pp.343-354.

[2] Karol, M.; Hluchyj, M.; and Morgan, S. “Input versus output queueing on a space division swit
IEEE Trans. Communications, 35(12) (1987) pp.1347-1356.

[3] Anderson, T.; Owicki, S.; Saxe, J.; and Thacker, C. “High speed switch scheduling for local area
works,” ACM Trans. on Computer Systems.Nov 1993 pp. 319-352.

[4] McKeown, Nick; and Prabhakar, Balaji; “Scheduling Multicast Cells in an Input-Queued Switch,” P
ceedings ofIEEE Infocom ‘96, March 1996, vol. 3, pp.271-278.

[5] McKeown, Nick; Varaiya, Pravin; and Walrand, Jean; “Scheduling Cells in an Input-Queued Swi
IEE Electronics Letters, Dec 9th 1993, pp.2174-5.

[6] McKeown, Nick; and Anderson, Tom E.; “A Quantitative Comparison of Scheduling Algorithms
Input-Queued Switches,” submitted for publication. Available on request.

[7] McKeown, Nick; “Scheduling Cells in Input-Queued Cell Switches,” PhD. Thesis, University of C
fornia, Berkeley, 1995.

[8] McKeown, Nick; Anantharam, Venkat; and Walrand, Jean; “Achieving 100% Throughput in an In
Queued Switch,” Proceedings ofIEEE Infocom ‘96, March 1996, vol. 3, pp. 296-302.

[9] Prabhakar, Balaji; McKeown, Nick and Ahuja, Ritesh; “Multicast Scheduling for Input-Queu
Switch”, submitted for publication. Preprint available on request.

[10] Tarjan, R.E. “Data structures and network algorithms,”Society for Industrial and Applied Mathemat
ics, Pennsylvania, Nov 1983.

[11] Sidiropoulos, Stefanos. and Horowitz, Mark, “Current Integrating Receivers for High Speed Sy
Interconnects”, IEEE Custom Integrated Circuits Conference, May 1995.

[12] Maneatis, John, “Precise Delay Generation Using Coupled Oscillators”, IEEE Journal of Solid
Circuits, vol. 28, no. 12, Dec. 1993.
13

	The Tiny Tera: A Packet Switch Core
	Nick McKeown, Martin Izzard*, Adisak Mekkittikul, ...
	Abstract — In this paper, we present the Tiny Tera...
	1 Introduction
	2 Switch Architecture
	Figure 1 Architecture and detail of the Tiny Tera ...
	2.1 Scheduler and Crossbar Switch Hub
	2.2 Port
	Figure 2 Architecture of port card. The Data Slice...
	Figure 3 A packet can be viewed as a 2-D structure...

	3 Queueing and Scheduling
	Figure 4 Input-queueing structure at each port.
	3.1 Scheduling Unicast Packets
	Figure 5 Example of one iteration of the iSLIP alg...
	Step 1. Request. Each unmatched input sends a requ...
	Step 2. Grant. If an unmatched output receives any...
	Step 3. Accept. If an unmatched input receives a g...
	Figure 6 Performance of iSLIP for 1,2 and 4 iterat...

	Property 1. For independent arrivals uniformly dis...
	Property 2. No connection is starved; because of t...
	Property 3. For iSLIP with one iteration, and unde...
	Property 4. The algorithm will converge in at most...
	Property 5. The deterministic nature of iSLIP redu...
	Figure 7 Implementation of iSLIP.

	3.2 Scheduling Multicast Traffic
	Figure 8 Random Schedule: Average packet latency v...

	4 High Speed Chip-to-Chip Serial Communication Lin...
	Figure 9 Tiny Tera Serial Link Architecture
	4.1 Clock Distribution
	4.2 Phase Control
	Figure 10 Phase Measurement Waveforms

	4.3 Current Integrating Receivers

	5 Conclusion
	6 Acknowledgments
	7 References
	[1] Tamir, Y.; Frazier, G. “High performance multi...
	[2] Karol, M.; Hluchyj, M.; and Morgan, S. “Input ...
	[3] Anderson, T.; Owicki, S.; Saxe, J.; and Thacke...
	[4] McKeown, Nick; and Prabhakar, Balaji; “Schedul...
	[5] McKeown, Nick; Varaiya, Pravin; and Walrand, J...
	[6] McKeown, Nick; and Anderson, Tom E.; “A Quanti...
	[7] McKeown, Nick; “Scheduling Cells in Input-Queu...
	[8] McKeown, Nick; Anantharam, Venkat; and Walrand...
	[9] Prabhakar, Balaji; McKeown, Nick and Ahuja, Ri...
	[10] Tarjan, R.E. “Data structures and network alg...
	[11] Sidiropoulos, Stefanos. and Horowitz, Mark, “...
	[12] Maneatis, John, “Precise Delay Generation Usi...

