
A Model for the
High-Level Description
and Simulation
of VLSI Networks

onventional VLSI (very large scale integration) modeling tech-
niques’** derive from a data-driven simulation concept. Any value
change at an input of a design entity (node) results in the generation

of new values at the outputs of the node. These values are irrelevant in the
high-level design stages. The generation of these values leads to a collection
(heap) of output data in which the significant values are often hard to find.
In contrast, the applicative state transition (AST) model we propose explic-
itly represents the flow of information through a network. We do not
evaluate a leaf node in a network until its (selected) input ports have
received new (significant) data and the data at its (selected) output ports has
been processed. Other aspects that contribute to the power of the model are:

It allows the description of designs from the level of abstract functional
or algorithmic behavior down to the register-transfer level. The model can
describe both synchronous and asynchronous designs.

In design descriptions, the model logically separates state, function,
and function control. This separation increases the clearness of the descrip-
tions and simplifies the development and application of silicon compilers.

An AST node is a good high-level abstraction of general hardware. It
can execute different instructions (functions) with different inputs and can
write different outputs. It contains a controller (next-function selection) that
selects the next mode of operation. Unless otherwise indicated in our
discussion, the term AST denotes an individual node.

Backus3 first introduced the AST concept to “liberate” programming
languages from the classical von Neumann style. According to Backus, an
AST is a “self-modifying function,” that is, the input-output mapping

An earlier version of this article appeared in the Proceedings of the 26th ACMIIEEE Design
Automarion Conference, 1989.

0272-1732/90/0800-0041$01.00 0 1990 IEEE

We present a new
applicative model for
the description and
analysis of synchronous
and asynchronous VLSI
networks at the top
levels of abstraction.
The model uses two
powerful paradigms that
provide an elegant, fast
method for the high-
level description and
simulation of VLSI
networks.

A.J. van der Hoeven
A.A.J. de Lange
E .F. Deprettere
P . M . Dewilde

Delft University of
Technology

August 1990 41

~

VLSI simulation
I

Table 1.
Two versions of a delay AST.

I Delay Formula

For integer numbers

The types of the AST
The set of named types
The ports of the AST
The set of functions F
The I/O part off
The control part off

For Boolean numbers

The types of the AST
The set of named types
The ports of the AST
The set of functions F
The I/O part off,
The control part off,

The I/O part off,
The control part off,

Z is the set of integer numbers
U = {in: Z , out: Z, state: Z]
D = in, R = out, S = state
{f I
f’: state + out, o = f ’ (s) = s
f”: in + F x state, (fs,s) =

f”(i) =fs =f, s = i

B = (0 , 1)
U = (in: B , out: E]
D = in, R = out, S = 0
v,, f, I
f;: 0 + out, 0 =f; () = 0
f,”: in + F , fs = f/ (i) =

if i = 0, then .fs = .f, - - Y

if i = 1, thenfs =f,
f,’: 0 3 out, 0 =f,’ () = 1
f,”: in -+ F , fs =f,” (i) =

if i = 0, thenfs =f,
if i = 1, thenfs =f,

pand the definition of an AST by
introducing a data state apart from
the already introduced function state.

Let U be a set of named types. Each
named type U : T E U has a name U that
is unique in U and a type T. U‘ de-
notes the Cartesian product that is
made up from the elements of U. We
sometimes refer to a named type by
its name only.

We now define an AST as follows:

Let D be a subset of U , D =
{ d,, . . ., dm] . D is the set of input ports
of an AST.

Let R be a subset of U , R =
{r , , ..., r n] , s u c h t h a t D n R = O . R i s
the set of output ports of an AST.

An AST F is a set of functions
(f], such thatJ: 0,‘ -+ Rf x F, . D, is a
subset of D, R, is a subset of R, and F ,
is a subset of F .

It follows from this definition that
a functionf, can be decomposed into
two functions K’, f , ”] , such that

Range U;‘) c Rl‘, Range U; ”) =

Domain U; ’) U Domain U; ”) =
F,, and

Domain E).

changes in time. Consequently, an AST can operate as
a set of functions with one function active at any time.
Each time an AST is evaluated, the currently selected
functionfmaps its input values onto its output values
and selects the next functionf: I f + Of x F . F is the set
of functions that make up the AST.

We added a number of refinements to make the AST
concept suitable for VLSI modeling. We based the
communication between different ASTs on the petri
net, single-token-pass mechanism as defined in the
theory of ConditionEvent (C/E) We ex-
tended this communication mechanism to allow for the
distribution or broadcast of tokens. We discuss this
subject later and also explain how the AST model
enables the use of synchronous communication be-
tween AST nodes.

Concept definition
We define an AST node as a set F of functionsf,, in

which each function has a subset of F as part of its
range. By and large, this definition follows the AST
structure introduced by Backus.

Each function of an AST can be decomposed into two
functions that execute in parallel. Furthermore, we ex-

The hardware realization maps the
functions f,” of an AST onto the

controller path. The functions A‘ form the high-level
model of the data path. The decomposition into two
functions also allows for the differentiation between
Mealy and Moore functions in an AST. We define the
functions as:

Mealy : Domain U; ’) = Domain U;’’)
Moore: Domain E’) = 0 (constant function).

If the domain of a functionx’ is empty, the function
f , is a Moore function as opposed to a Mealy function.
In case of a Moore function, we allow the execution of
f , ‘ prior to-and independent from-A”. A Mealy func-
tion allows only the combined execution.

The differentiation between Mealy and Moore func-
tions in an AST allows the creation of proper loops in
a network without creating deadlocks.

For the introduction of a data state, we redefine the
functions of F as follows. Let S be a subset of
U , S = { s,, . . ., sp I . Then the functions convert into

8 : D , ‘ x S‘+ R:x S‘ x F ,

Apart from the fact that S significantly reduces the
number of functions that need to be specified, S can
represent the data state of a hardware module (for

42 IEEE MICRO

I

Figure 1. Typical example of token distribution (a) and its C/E-system equivalent (b).

example, the memory of a counter). S is usually imple-
mented as a set of registers.

An example. Table 1 specifies two versions of a
delay AST. The first one is a delay for integer numbers
that consists of only one function and a data-state S = Z.
The second version is a delay for Boolean numbers that
consists of two functions and no data state. Note that the
functions are Moore functions.

Communication hierarchy
We can embed the AST concept into the theory of

petri nets. By doing so, we can define the operational
aspects of a graph that consists of interconnected AST
nodes. This process allows us to construct a graph and
to define an AST as a graph. By using petri net theory
to define the communication protocol between nodes,
we emphasize the information flow through the net-
work instead of the raw dataflow of conventional, data-
driven simulation models.

We chose the C/E system as the basic type of petri
net4,’ because

The communication protocol derives from the
single-token-pass mechanism, which closely resembles
the dataflow through a VLSI network.

We could define the AST concept in terms of
conditions and events of a C/E system.

Using the theory of timed petri nets and C/E-
systems, we could easily define an appropriate timing
model.

In short, a C/E system consists of a set of conditions
(places) C and a set of events (transitions) E. Further-
more, each element of E has a subset of C as its input
conditions and a subset of C as its output conditions. An
element of C can hold at most one token (item of
information). An event e E E can occur if all its input
conditions hold a token and all its output conditions do
not. If e occurs, the tokens at its input conditions are
removed, and tokens at its output conditions are cre-
ated-all in one atomic action.

Token distribution. To simplify the design and
representation of AST graphs, we allow tokens to be
distributed or multiplied. Allowing conditions (or
ports) to have (sets of) subconditions (or subports)
provides for the distribution of tokens. We informally
describe the concept of token distribution as follows.

When a condition receives a token, so do its sub-

As long as one of its subconditions contains a

When all its subconditions become devoid of a

conditions.

token, the condition does too.

token, so does the condition.

Figure 1 depicts a typical case of token distribution

August 1990 43

VLSI simulation

__ ~

Figure 2. Functional outline of an AST (a), its C/E-system-equivalent
black box representation of a node with ports (b), and its graphical
representation (c).

and its equivalent C/E system. Rectangles represent the
events and circles represent the conditions. In this
diagram, either the events e , , , e,2, and e I 3 occur, or the
events e and e2, occur. Figure l b expresses this mutual
exclusivity. *!

C/E-system representation. Here we express the
AST concept as a C/E system. We do this informally by
following an example. In Figure 2, the output of the
events&" is a token with a valueffrom the set F . If the
value is equal tof,, the destination of the token is thef,
events. These events constitute a Mealy function. If the
value is equal tof2, the destination of the token is thef,
events, or a Moore function. One can easily deduce that
this graph is free of conflict since either thef, events
(functions) or the f, events can occur. In a Mealy
function&, the inputs of&" are a subset of the inputs of
&'. In a Moore function J , the set of inputs of & ' is
empty. (Refer to the previous formulas.)

The execution rules of the C/E system prescribe the
operation of the AST. The execution of the graph in

44 IEEE MICRO

Figure 2c starts with a token in the
common output-condition of the f."
events.

Hierarchy in the AST graph.
The basic elements in AST graphs
are the ASTs, which can be defined
in terms of a C/E system as shown.
However, we would like to define
hierarchical constructions on top of
the ASTs. This hierarchy results
from simply connecting output ports
of some ASTs to input ports of other
ASTs and adding input or output
ports to the incoming or outgoing
edges of the graph. These ports then
form the interface of the graph (Fig-
ure 3, described later). Now, AST
graphs can function as nodes in other
AST graphs. Note that the operation
of such a hierarchical graph is the
same as that of its flattened equiva-
lent. By connecting nodes in this
manner, one can define asynchro-
nous systems.

An AST node defined by a graph
of nodes. One can also define an
AST node by specifying an AST
graph with the constraint that the
graph must behave as a leaf AST
node. We use this method for the
construction of synchronous net-
works. We construct the node from
the graph in the following fashion.

The current functions of the
(hierarchical) nodes of the graph compose the current
function of the AST.

The function subsequently executes as if it were a
function of an AST.

The functions that have now been selected again
compose the next function.

Note that the use of Moore functions in such a
composite AST leads to pipelining effects in the net-
work. The use of a composite AST results in a synchro-
nous system with implicit clocking.

Conditional functions. A synchronous operation
can have a conditional (data-dependent) dataflow,
which can be modeled using operations or conditional
functions. An operation or conditional function in an
AST is a function composition f = fz 0 . . . 0 f i 0 fi that
executes as if it were a single function.fis executed if
f i , . . . , fz are selected by fi, f i , . . . ,b as their respective
next functions.fi, ..., f y are control functions, and f z is
a dataflow function.

A simple example is a two-input multiplexer with
control, left, and right ports for input and one output
port. The multiplexer functions are

fc: control + 0 x Ifl,fr) (control function).
f7: left -+ out x cfc) (dataflow function).
fr: right + out x cfc) (dataflow function).

The resulting conditional functions of the AST are
now fl 0 f c and f r 0 fc. The value at the control port
determines which function executes. We always con-
sider a conditional function to be a Mealy function.

Timing in the graph
The literature defines different mechanisms to im-

pose timing constraints onto petri nets. In principle,
two ways of adding time to petri nets exist.

The first way, proposed by Ramchandani,8 assigns a
duration to each event in a petri net. An event effec-
tively splits into a consumption event of tokens and a
production event of tokens between whose respective
occurrences lies the specified duration. However, this
method of defining time changes the behavior of the
untimed petri net because it destroys the concept of the
atomic occurrence of an event.

The second way, proposed by Merlin5 for general
petri nets, is based on the duration of a token in a
condition. Merlin proposes a minimal wait for an event.
An event may occur only after that time has elapsed,
counting from the moment at which all its input condi-
tions initially contain a token. From the Merlin timing
operation, it follows that the operation of a C/E system
does not change as long as the system is conflict free.4
Therefore, we can add timing delays to an AST graph
with the Merlin mechanism.

With the timing mechanism proposed by Walter? we
can impose data-integrity constraints onto an AST
graph. In accordance with his proposal, we add a mini-
mum duration to each condition. A token at a condition
becomes “visible” to its output events after the mini-
mum duration has expired. We can now define the
complete timing operation of a C/E system. Since for
any AST graph there exists an equivalent C/E system,
we thus define the timing model for the graph.

A timed C/E system TCE = (C E , T,, T,) is a C/E
system C E = (C, E ; F) , in which T , is a function from
the set of conditions C to Q , and T E is a function from
the set E of events to Q . In this system, Q denotes the set
of integral numbers F c C x E U E x C. F defines the
interconnections between the events and the condi-
tions.

An event (function) e E E occurs (executes) if and
only if tokens at its input conditions (ports) are visible
and its output conditions (ports) do not hold a token. If
e E Domain (T J , a time T, (e) must have elapsed since

Figure 3. An asynchronous sorter network. Dashed
lines and external ports denote black box
representation.

the moment all its output conditions became visible. A
token at a condition c E C becomes visible if and only
if the condition holds a token and a time T , (c) has
elapsed since the moment the condition started to hold
a token.

One can model the computation time needed by a
function with the wait time of an event. One can de-
scribe setup times and hold times with the minimum
duration time of a token at a condition. If an AST is
defined as an AST graph, one can compute the overall
timing specification from the timing specifications of
the constituting AST nodes.

An application
Here we explore the design of a simple priority queue

as both a real-time systolic (synchronous) system and a
real-time wavefront (asynchronous) system. This ex-
ample stresses the capability of the AST graph model to
handle loops in the design and to describe both synchro-
nous and asynchronous designs. We based the priority
queue on a sorter AST (Figure 3) that contains three
functions.

On the basis of its input from the left (Zs), the select
function either selects the put or the get function and
transfers its input value to the right (Os) . The put
function takes a value from the left (Z,), compares it
with the current state value, outputs the larger value to
the right (O,), and stores the smaller value in its state.
The function outputs its state on O8 and reads data from
Z8 to establish a correct dataflow. The select function
becomes its successor. The get function outputs the
input from Z8 to Og, stores it in its state, and chooses the
select function again. Note that all functions defined
are Mealy functions. The initial function of the sorter

August 1990 45

-
VLSI simulation

L Latch

.

Init = sort Init = no-op Init = sort

Figure 4. Design of a synchronous sorter network. Rectangles and ports
denote black box representations of AST nodes.

m Right

l l t l

Figure 5. Realization of a synchronous sorter network. Directed edges
denote data flow; other edges denote clock edges.

AST outputs the value +- on Og with select as its next
function. Its initial state value is +w. Combining a
number of sorter ASTs into a one-dimensional array, as
depicted in Figure 3 , simply creates a wavefront prior-
ity queue.

For the design of the systolic version, we have to take
some additional steps. First, we combine the functions
of the original sorter AST into two conditional func-
tions: put 0 select and get 0 select. Note that these are
Mealy functions. Therefore we can't just cascade the
sorter ASTs because loops would be created in the
network. To break up the loops, we need to separate
the sorter ASTs with buffer ASTs (Figure 4).

46 IEEEMICRO

A buffer AST consists of the fol-
lowing two functions.

f] : I -3 s x F , f , (i) = (i. fJ,
f, : s + 0 x F , f 2 (s) = (.Lf,).

If we properly initialize the
buffer (if marked with an asterisk,
init = f 2 , else f,) and simulate the
graph in an asynchronous mode,
we observe that of two adjacent
sorter ASTs, only one is operating
at any moment. Therefore, in the
synchronous mode, we have to add
a dummy function to the sorter
AST for the no-op function. The
sorter AST now switches between
one of its sorter functions and its
no-op function. Finally, we choose
the right initial function for each
AST node in the network (see Fig-
ure 4).

Given the types of data, we can
now realize the sorter AST in hard-
ware. A register that operates on a
nonoverlapping, two-phase (@l
and @2) clock realizes the state of
the sorter node. The buffers in the
graph are realized by latches that
either operate on the clock signal
@l or @2 (depending upon whether
they were marked with an asterisk
or not). Of any two adjacent sorter
ASTs, one operates on @ l T and
the other operates on @2T. (See
Figure 5.)

Implementation
notes

We embedded the model de-
scribed into an interactive design
system called HIFI (Hierarchical,
I(n)tera(c)tive Flowgraph Integra-

tion). The core of the system consists of a hierarchical,
interactive simulator9 and a graphical user interface for
both design and simulation of HIFI networks."

In the HIFI system, one can specify both behavior
and structure in a generic fashion. The concepts of the
method of generic design come from the abstraction
and application axioms of Lambda calculus."

We are implementing a number of high-level parti-
tioning and synthesis and have designed
the tools around a powerful, versatile, semantic data-
base en~ir0nment.I~ Construction of the HIFI system
takes place in the object-oriented Objective C program-
ming language.15

e have described a method for the modeling
and simulation of VLSI networks at a high W level of abstraction based on mathematical

principles. The power of the model primarily stems
from the notion that it describes the flow of information
(instead of data) through a network. The model allows
the description of self-timed systems, synchronous sys-
tems, and combinational ripple logic from the highest
functional level onto the register-transfer level. The
AST model separates data states, functional behavior,
and control in a natural way that can be exploited by
automatic layout-synthesis tools (silicon compilers).
The model favors a hierarchical design style of step-
wise structural refinement of behavioral descriptions,
which is a powerful means to reduce the design com-

References
1 . Special Issue on VHDL: The VHSIC Hardware Descrip-

tion Language, IEEE Design & Test of Computers, Vo1.3,
No. 2, Apr. 1986, pp. 10-73.

2. R.E. Bryant, “A Switch-Level Model and Simulator for
MOS Digital Systems,” IEEE Trans. Computers, Feb.

3. J. Backus, “Can Programming Be Liberated from the von
Neumann Style? A Functional Style and Its Algebra of
Programs,” Comm. ACM, Vol. 21, Aug. 1978, pp. 613-
641.

1984, pp. 160-177.

4. W. Reisig, Petri Nets, Springer-Verlag, Berlin, 1985.

5. P.M. Merlin and D.J. Farber, “Recoverability of Commu-
nications Protocols,” IEEE Trans. Comm., Sept. 1976,

6. B. Walter, “Timed Petri-Nets for Modeling and Analyz-
ing Protocols with Real-Time Characteristics,” in Proto-
col Specification, Testing and Verification, I I I , H. Rudin
and C.H. West, eds., North-Holland, Amsterdam, 1983.

7. Petri Nets: Central Models and Their Properties, W.
Brauer, W. Reisig, and G. Rozenberg, eds., Springer-
Verlag, 1986.

8. C. Ramchandani, Analysis of Asynchronous Concurrent
Systems by Timed Petri Nets, Massachusetts Institute of
Technology, Cambridge, Mass., 1974.

pp. 1036-1043.

plexity. To model the timing of VLSI (sub)systems in
a structure (network), we use a simple model that adds
delays for the assignment of functions and ports that are
part of an AST. This approach allows for fast verifica-
tion and analysis of the correctness of dataflow in a
VLSI system as well as the determination and optimi-
zation of system throughput. 8

Acknowledgments
The Dutch National Science Foundation supported

this work under Grant STW DEL 47.0643. The Euro-
pean Community supported this work via the ESPRIT
NANA project.

9. A.J. van der Hoeven, “Modeling and Implementation of
Communications AST Nodes in an Object-Oriented
Fashion,” tech. report, EE Dept., Delft University of
Technology, Delft, The Netherlands, Sept. 1988.

10. P. van Prooijen, “A User Interface for the HiFi System,”
tech. report, EE Dept., Delft University of Technology,
Nov. 1988.

1 1. H.P. Barendregt, The Lambda Calculus, Its Syntax and
Semantics, North-Holland, 198 1 .

12. J. Annevelink, “HIFI, A Design Method for Implement-
ing Signal Processing Algorithms . . .,” PhD thesis, Delft
University of Technology, Jan. 1987.

13. K. Jainandunsing, “Parallel Algorithms for Solving
Systems of Linear Equations and Their Mapping on Sys-
tolic Arrays,” PhD thesis, Delft University of Technol-
ogy, Jan. 1989.

14. P. van der Wolf and T.G.R. van Leuken, “Object Type
Oriented Data Modeling for VLSI Data Management,”
Proc. 25th Design Automation Conf., IEEE Computer
Society Press, Los Alamitos, Calif., 1988, pp. 351-356.

15. B.J. Cox, Object Oriented Programming, An Evolution-
ary Approach, Addison Wesley, Reading, Mass., 1986.

August 1990 47

n *c "3 r"* - i

VLSI simulation

Van der Hoeven De Lange Deprettere Dewilde

A.J. yan der Hoeven is a researcher at the Delft University
of Technology. The Netherlands, where hc is working toward
the PhD degree in electrical engineering. Hi, primary scien-
tific interests include high-level VLSI design modeling and
anal y s i s. h i g h - I eve1 V LS I s y n t he s i s, and po I y nio rp h ic pro -
gramming languagez.

Van der Hoeven received the MS degree in electrical engi-
neering from the Delft University of Technology. He is a
student member of the IEEE.

A.A.J. de Lange is currently working toward the PhD degree
in electrical engineering and computer science at the Delft
University of Technology. His main interests are the high-
level modeling, simulation, and synthesis of massively paral-
lel pipelined processor arrays and mapping them onto VLSI
devices.

De Lange holds an MS degree in electrical engineering
from the Delft University of Technology. He has authored
more than 20 scientificitechnical publications and is a student
member of the IEEE.

E.F. Deprettere is an associate professor in the network the-
ory section (signal processing group) of the department of
electrical engineering, Delft University of Technology. His

ciirrcnt research interests are VLSI and modern signal pro-
cessing. modeling. computer graphic\. VLSI array process-
i t i g . and in app i 11 g signa 1 proces 5 in g a I gori th 111 s . net work
graphs. and matrix equations onto silicon devices.

Deprettere received the MS degree from the Ghent State
University in Belgium and the PhD degree from the Delft
University of Technology. He coauthored a paper that re-
ceived a 1989 IEEE S P award.

P.M. Dewilde i s professor of network theory at the Delft
University of Technology. He has held various research and
teaching positions at the University of California, Berkeley.
the University of Lagos in Nigeria. and the University of
Leuven in Belgium. His research interests include theoretical
topics such as the inverse scattering theory and its impact on
computational algebra. Practical topics include fast real-time
computing on dedicated VLSI devices.

Dewilde received the degree of electrical engineering from
the University of Leuven, the license in mathematics from the
Belgian Central Examination Commission, and the PhD de-
gree in electrical engineering from Stanford University. He
became a Fellow of the IEEE in 1981 for his work on the
scattering theory. He has also been a project leader for major
European projects in microelectronics.

Questions concerning this article can be addressed to A.J. van der Hoeven, Delft University of Technology, EE Department,
Network Theory Section, PO Box 503 I , 2600 CA Delft, The Netherlands.

Reader Interest Survey

Indicate your interest in this article by circling the appropriate number on the Reader Service Card.

Low 156 Medium 157 High 158

48 IEEE MICRO

