
A Model for the 
High-Level Description 
and Simulation 
of VLSI Networks 

onventional VLSI (very large scale integration) modeling tech- 
niques’** derive from a data-driven simulation concept. Any value 
change at an input of a design entity (node) results in the generation 

of new values at the outputs of the node. These values are irrelevant in the 
high-level design stages. The generation of these values leads to a collection 
(heap) of output data in which the significant values are often hard to find. 
In contrast, the applicative state transition (AST) model we propose explic- 
itly represents the flow of information through a network. We do not 
evaluate a leaf node in a network until its (selected) input ports have 
received new (significant) data and the data at its (selected) output ports has 
been processed. Other aspects that contribute to the power of the model are: 

It allows the description of designs from the level of abstract functional 
or algorithmic behavior down to the register-transfer level. The model can 
describe both synchronous and asynchronous designs. 

In design descriptions, the model logically separates state, function, 
and function control. This separation increases the clearness of the descrip- 
tions and simplifies the development and application of silicon compilers. 

An AST node is a good high-level abstraction of general hardware. It 
can execute different instructions (functions) with different inputs and can 
write different outputs. It contains a controller (next-function selection) that 
selects the next mode of operation. Unless otherwise indicated in our 
discussion, the term AST denotes an individual node. 

Backus3 first introduced the AST concept to “liberate” programming 
languages from the classical von Neumann style. According to Backus, an 
AST is a “self-modifying function,” that is, the input-output mapping 

An earlier version of this article appeared in the Proceedings of the 26th ACMIIEEE Design 
Automarion Conference, 1989. 
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Table 1. 
Two versions of a delay AST. 

I Delay Formula 

For integer numbers 

The types of the AST 
The set of named types 
The ports of the AST 
The set of functions F 
The I/O part off 
The control part off  

For Boolean numbers 

The types of the AST 
The set of named types 
The ports of the AST 
The set of functions F 
The I/O part off, 
The control part off, 

The I/O part off, 
The control part off, 

Z is the set of integer numbers 
U = {in: Z ,  out: Z,  state: Z ]  
D = in, R = out, S = state 
{f I 
f’: state + out, o = f ’ ( s )  = s 
f”: in + F x state, (fs,s) = 

f”(i) =fs =f, s = i 

B =  ( 0 ,  1 )  
U = (in: B ,  out: E ]  
D = in, R = out, S = 0 
v,, f, I 
f;: 0 + out, 0 =f; () = 0 
f,”: in + F ,  fs = f/ (i) = 

if i = 0, then .fs = .f, - - Y  

if i = 1, thenfs =f, 
f,’: 0 3 out, 0 =f,’ () = 1 
f,”: in -+ F ,  fs =f,” (i) = 

if i = 0, thenfs =f, 
if i = 1, thenfs =f, 

pand the definition of an AST by 
introducing a data state apart from 
the already introduced function state. 

Let U be a set of named types. Each 
named type U :  T E U has a name U that 
is unique in U and a type T.  U‘ de- 
notes the Cartesian product that is 
made up from the elements of U.  We 
sometimes refer to a named type by 
its name only. 

We now define an AST as follows: 

Let D be a subset of U ,  D = 
{ d,, . . ., dm]  . D is the set of input ports 
of an AST. 

Let R be a subset of U ,  R = 
{r , ,  ..., r n ] , s u c h t h a t D n R = O . R i s  
the set of output ports of an AST. 

An AST F is a set of functions 
(f], such thatJ: 0,‘  -+ Rf x F, .  D, is a 
subset of D, R, is a subset of R, and F ,  
is a subset of F .  

It follows from this definition that 
a functionf, can be decomposed into 
two functions K’, f , ” ] ,  such that 

Range U;‘ ) c Rl‘, Range U; ” ) = 

Domain U; ’ ) U Domain U; ” ) = 
F,,  and 

Domain E). 

changes in time. Consequently, an AST can operate as 
a set of functions with one function active at any time. 
Each time an AST is evaluated, the currently selected 
functionfmaps its input values onto its output values 
and selects the next functionf: I f  + Of x F .  F is the set 
of functions that make up the AST. 

We added a number of refinements to make the AST 
concept suitable for VLSI modeling. We based the 
communication between different ASTs on the petri 
net, single-token-pass mechanism as defined in the 
theory of ConditionEvent (C/E) We ex- 
tended this communication mechanism to allow for the 
distribution or broadcast of tokens. We discuss this 
subject later and also explain how the AST model 
enables the use of synchronous communication be- 
tween AST nodes. 

Concept definition 
We define an AST node as a set F of functionsf,, in 

which each function has a subset of F as part of its 
range. By and large, this definition follows the AST 
structure introduced by Backus. 

Each function of an AST can be decomposed into two 
functions that execute in parallel. Furthermore, we ex- 

The hardware realization maps the 
functions f,” of an AST onto the 

controller path. The functions A‘ form the high-level 
model of the data path. The decomposition into two 
functions also allows for the differentiation between 
Mealy and Moore functions in an AST. We define the 
functions as: 

Mealy : Domain U; ’ ) = Domain U;’’ ) 
Moore: Domain E’) = 0 (constant function). 

If the domain of a functionx’ is empty, the function 
f ,  is a Moore function as opposed to a Mealy function. 
In case of a Moore function, we allow the execution of 
f ,  ‘ prior to-and independent from-A”. A Mealy func- 
tion allows only the combined execution. 

The differentiation between Mealy and Moore func- 
tions in an AST allows the creation of proper loops in 
a network without creating deadlocks. 

For the introduction of a data state, we redefine the 
functions of F as follows. Let S be a subset of 
U ,  S = { s,, . . ., sp I .  Then the functions convert into 

8 :  D , ‘ x  S‘+  R:x  S‘ x F ,  

Apart from the fact that S significantly reduces the 
number of functions that need to be specified, S can 
represent the data state of a hardware module (for 
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Figure 1. Typical example of token distribution (a) and its C/E-system equivalent (b). 

example, the memory of a counter). S is usually imple- 
mented as a set of registers. 

An example. Table 1 specifies two versions of a 
delay AST. The first one is a delay for integer numbers 
that consists of only one function and a data-state S = Z. 
The second version is a delay for Boolean numbers that 
consists of two functions and no data state. Note that the 
functions are Moore functions. 

Communication hierarchy 
We can embed the AST concept into the theory of 

petri nets. By doing so, we can define the operational 
aspects of a graph that consists of interconnected AST 
nodes. This process allows us to construct a graph and 
to define an AST as a graph. By using petri net theory 
to define the communication protocol between nodes, 
we emphasize the information flow through the net- 
work instead of the raw dataflow of conventional, data- 
driven simulation models. 

We chose the C/E system as the basic type of petri 
net4,’ because 

The communication protocol derives from the 
single-token-pass mechanism, which closely resembles 
the dataflow through a VLSI network. 

We could define the AST concept in terms of 
conditions and events of a C/E system. 

Using the theory of timed petri nets and C/E- 
systems, we could easily define an appropriate timing 
model. 

In short, a C/E system consists of a set of conditions 
(places) C and a set of events (transitions) E. Further- 
more, each element of E has a subset of C as its input 
conditions and a subset of C as its output conditions. An 
element of C can hold at most one token (item of 
information). An event e E E can occur if all its input 
conditions hold a token and all its output conditions do 
not. If e occurs, the tokens at its input conditions are 
removed, and tokens at its output conditions are cre- 
ated-all in one atomic action. 

Token distribution. To simplify the design and 
representation of AST graphs, we allow tokens to be 
distributed or multiplied. Allowing conditions (or 
ports) to have (sets of) subconditions (or subports) 
provides for the distribution of tokens. We informally 
describe the concept of token distribution as follows. 

When a condition receives a token, so do its sub- 

As long as one of its subconditions contains a 

When all its subconditions become devoid of a 

conditions. 

token, the condition does too. 

token, so does the condition. 

Figure 1 depicts a typical case of token distribution 
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Figure 2. Functional outline of an AST (a), its C/E-system-equivalent 
black box representation of a node with ports (b), and its graphical 
representation (c). 

and its equivalent C/E system. Rectangles represent the 
events and circles represent the conditions. In this 
diagram, either the events e , , ,  e,2, and e I 3  occur, or the 
events e and e2, occur. Figure l b  expresses this mutual 
exclusivity. *! 

C/E-system representation. Here we express the 
AST concept as a C/E system. We do this informally by 
following an example. In Figure 2, the output of the 
events&" is a token with a valueffrom the set F .  If the 
value is equal tof,,  the destination of the token is thef, 
events. These events constitute a Mealy function. If the 
value is equal tof2, the destination of the token is thef, 
events, or a Moore function. One can easily deduce that 
this graph is free of conflict since either thef, events 
(functions) or the f, events can occur. In a Mealy 
function&, the inputs of&" are a subset of the inputs of 
&'. In a Moore function J ,  the set of inputs of & '  is 
empty. (Refer to the previous formulas.) 

The execution rules of the C/E system prescribe the 
operation of the AST. The execution of the graph in 
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Figure 2c starts with a token in the 
common output-condition of the f." 
events. 

Hierarchy in the AST graph. 
The basic elements in AST graphs 
are the ASTs, which can be defined 
in terms of a C/E system as shown. 
However, we would like to define 
hierarchical constructions on top of 
the ASTs. This hierarchy results 
from simply connecting output ports 
of some ASTs to input ports of other 
ASTs and adding input or output 
ports to the incoming or outgoing 
edges of the graph. These ports then 
form the interface of the graph (Fig- 
ure 3, described later). Now, AST 
graphs can function as nodes in other 
AST graphs. Note that the operation 
of such a hierarchical graph is the 
same as that of its flattened equiva- 
lent. By connecting nodes in this 
manner, one can define asynchro- 
nous systems. 

An AST node defined by a graph 
of nodes. One can also define an 
AST node by specifying an AST 
graph with the constraint that the 
graph must behave as a leaf AST 
node. We use this method for the 
construction of synchronous net- 
works. We construct the node from 
the graph in the following fashion. 

The current functions of the 
(hierarchical) nodes of the graph compose the current 
function of the AST. 

The function subsequently executes as if it were a 
function of an AST. 

The functions that have now been selected again 
compose the next function. 

Note that the use of Moore functions in such a 
composite AST leads to pipelining effects in the net- 
work. The use of a composite AST results in a synchro- 
nous system with implicit clocking. 

Conditional functions. A synchronous operation 
can have a conditional (data-dependent) dataflow, 
which can be modeled using operations or conditional 
functions. An operation or conditional function in an 
AST is a function composition f = fz 0 . . . 0 f i  0 fi that 
executes as if it were a single function.fis executed if 
f i ,  . . . , fz are selected by fi, f i ,  . . . ,b as their respective 
next functions.fi, ..., f y  are control functions, and f z  is 
a dataflow function. 



A simple example is a two-input multiplexer with 
control, left, and right ports for input and one output 
port. The multiplexer functions are 

fc: control + 0 x Ifl,fr) (control function). 
f7: left -+ out x cfc) (dataflow function). 
fr: right + out x cfc) (dataflow function). 

The resulting conditional functions of the AST are 
now fl 0 f c  and f r  0 fc. The value at the control port 
determines which function executes. We always con- 
sider a conditional function to be a Mealy function. 

Timing in the graph 
The literature defines different mechanisms to im- 

pose timing constraints onto petri nets. In principle, 
two ways of adding time to petri nets exist. 

The first way, proposed by Ramchandani,8 assigns a 
duration to each event in a petri net. An event effec- 
tively splits into a consumption event of tokens and a 
production event of tokens between whose respective 
occurrences lies the specified duration. However, this 
method of defining time changes the behavior of the 
untimed petri net because it destroys the concept of the 
atomic occurrence of an event. 

The second way, proposed by Merlin5 for general 
petri nets, is based on the duration of a token in a 
condition. Merlin proposes a minimal wait for an event. 
An event may occur only after that time has elapsed, 
counting from the moment at which all its input condi- 
tions initially contain a token. From the Merlin timing 
operation, it follows that the operation of a C/E system 
does not change as long as the system is conflict free.4 
Therefore, we can add timing delays to an AST graph 
with the Merlin mechanism. 

With the timing mechanism proposed by Walter? we 
can impose data-integrity constraints onto an AST 
graph. In accordance with his proposal, we add a mini- 
mum duration to each condition. A token at a condition 
becomes “visible” to its output events after the mini- 
mum duration has expired. We can now define the 
complete timing operation of a C/E system. Since for 
any AST graph there exists an equivalent C/E system, 
we thus define the timing model for the graph. 

A timed C/E system TCE = ( C E ,  T,, T,) is a C/E 
system C E  = (C, E ;  F ) ,  in which T ,  is a function from 
the set of conditions C to Q ,  and T E  is a function from 
the set E of events to Q .  In this system, Q denotes the set 
of integral numbers F c C x E U E x C. F defines the 
interconnections between the events and the condi- 
tions. 

An event (function) e E E occurs (executes) if and 
only if tokens at its input conditions (ports) are visible 
and its output conditions (ports) do not hold a token. If 
e E Domain ( T J ,  a time T,  ( e )  must have elapsed since 

Figure 3. An asynchronous sorter network. Dashed 
lines and external ports denote black box 
representation. 

the moment all its output conditions became visible. A 
token at a condition c E C becomes visible if and only 
if the condition holds a token and a time T ,  (c) has 
elapsed since the moment the condition started to hold 
a token. 

One can model the computation time needed by a 
function with the wait time of an event. One can de- 
scribe setup times and hold times with the minimum 
duration time of a token at a condition. If an AST is 
defined as an AST graph, one can compute the overall 
timing specification from the timing specifications of 
the constituting AST nodes. 

An application 
Here we explore the design of a simple priority queue 

as both a real-time systolic (synchronous) system and a 
real-time wavefront (asynchronous) system. This ex- 
ample stresses the capability of the AST graph model to 
handle loops in the design and to describe both synchro- 
nous and asynchronous designs. We based the priority 
queue on a sorter AST (Figure 3) that contains three 
functions. 

On the basis of its input from the left (Zs), the select 
function either selects the put or the get function and 
transfers its input value to the right (Os ) .  The put 
function takes a value from the left (Z,), compares it 
with the current state value, outputs the larger value to 
the right (O,), and stores the smaller value in its state. 
The function outputs its state on O8 and reads data from 
Z8 to establish a correct dataflow. The select function 
becomes its successor. The get function outputs the 
input from Z8 to Og, stores it in its state, and chooses the 
select function again. Note that all functions defined 
are Mealy functions. The initial function of the sorter 
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Init = sort Init = no-op Init = sort 

Figure 4. Design of a synchronous sorter network. Rectangles and ports 
denote black box representations of AST nodes. 

m Right 

l l t l  

Figure 5. Realization of a synchronous sorter network. Directed edges 
denote data flow; other edges denote clock edges. 

AST outputs the value +- on Og with select as its next 
function. Its initial state value is +w. Combining a 
number of sorter ASTs into a one-dimensional array, as 
depicted in Figure 3 ,  simply creates a wavefront prior- 
ity queue. 

For the design of the systolic version, we have to take 
some additional steps. First, we combine the functions 
of the original sorter AST into two conditional func- 
tions: put 0 select and get 0 select. Note that these are 
Mealy functions. Therefore we can't just cascade the 
sorter ASTs because loops would be created in the 
network. To break up the loops, we need to separate 
the sorter ASTs with buffer ASTs (Figure 4). 
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A buffer AST consists of the fol- 
lowing two functions. 

f ]  : I -3 s x F ,  f ,  (i) = (i. fJ,  
f, : s + 0 x F , f 2  (s) = (.Lf,). 

If we properly initialize the 
buffer (if marked with an asterisk, 
init = f 2 ,  else f,) and simulate the 
graph in an asynchronous mode, 
we observe that of two adjacent 
sorter ASTs, only one is operating 
at any moment. Therefore, in the 
synchronous mode, we have to add 
a dummy function to the sorter 
AST for the no-op function. The 
sorter AST now switches between 
one of its sorter functions and its 
no-op function. Finally, we choose 
the right initial function for each 
AST node in the network (see Fig- 
ure 4). 

Given the types of data, we can 
now realize the sorter AST in hard- 
ware. A register that operates on a 
nonoverlapping, two-phase (@l 
and @2) clock realizes the state of 
the sorter node. The buffers in the 
graph are realized by latches that 
either operate on the clock signal 
@l or @2 (depending upon whether 
they were marked with an asterisk 
or not). Of any two adjacent sorter 
ASTs, one operates on @ l T  and 
the other operates on @2T. (See 
Figure 5.) 

Implementation 
notes 

We embedded the model de- 
scribed into an interactive design 
system called HIFI (Hierarchical, 
I(n)tera(c)tive Flowgraph Integra- 

tion). The core of the system consists of a hierarchical, 
interactive simulator9 and a graphical user interface for 
both design and simulation of HIFI networks." 

In the HIFI system, one can specify both behavior 
and structure in a generic fashion. The concepts of the 
method of generic design come from the abstraction 
and application axioms of Lambda calculus." 

We are implementing a number of high-level parti- 
tioning and synthesis and have designed 
the tools around a powerful, versatile, semantic data- 
base en~ir0nment.I~ Construction of the HIFI system 
takes place in the object-oriented Objective C program- 
ming language.15 



e have described a method for the modeling 
and simulation of VLSI networks at a high W level of abstraction based on mathematical 

principles. The power of the model primarily stems 
from the notion that it describes the flow of information 
(instead of data) through a network. The model allows 
the description of self-timed systems, synchronous sys- 
tems, and combinational ripple logic from the highest 
functional level onto the register-transfer level. The 
AST model separates data states, functional behavior, 
and control in a natural way that can be exploited by 
automatic layout-synthesis tools (silicon compilers). 
The model favors a hierarchical design style of step- 
wise structural refinement of behavioral descriptions, 
which is a powerful means to reduce the design com- 
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