
Mathematical Sohare: Plod

Is user-easy
software for
“stiff” equations
merely a fond
dream? Not
with the Plod
approach.

-
Elvira Agron
National Institutes of
Health

I-Lok Chang
The American University

Gamini Gunaratna

David K. Kahaner
National Bureau of
Standards

Martin A . Reed
IBM Corporation

hysical models-even those described as “routine”-can pose some
interesting challenges. First of all, they can involve hundreds, or P thousands, of equations. These equations range from simple algebraic

statements of conservation or symmetry to relations between variables at
discrete time units. They include derivatives, integrals, or complicated func-
tionals of the unknowns. Consequently, describing the model mathemati-
cally can become tedious. Another challenge is that an approximate solu-
tion, generated numerically, must eventually take a form that is palatable to
users. The achievement of such a form inevitably changes the values of con-
stants, approximations, or even the model itself.

By a model, we mean an initial value problem’ given by a set of ordinary
differential equations. Many models are modest, involving only a few dozen
ODES and a similar number of parameters. These models occur frequently
in dynamics, such as Josephson junctions.2 Although the problems in this
group may be small, they are among the most taxing to solve numerically
because of instability with respect to initial conditions, or “stiffness.” (See
box on the next page.) One can rarely solve models in closed form, but some
of them are easy to integrate numerically. This type of model often occurs as
an example in classroom situations.

Although a number of simulation software packages are available on the
market, their cost, scope, capability, and quality vary tremendously. The
journal Simulation, a good source for information on available software,
has published a compendium of almost 50 such packages exclusively for
microcomputers.3 Among them, the Advanced Continuous Simulation
Language package is typical and well known? Some packages have good in-
tegrators, but many use explicit Runge-Kutta integration, which is inade-
quate for stiff ODES.

In view of the foregoing, we designed Plod (plotted solutions of ordinary
differential equations) mathematical software to address the difficulties
under discussion. In addition, we wanted to provide a problem-solving tool
for the expanding number of micro users unfamiliar with programming
techniques. Consequently, we proceeded with the following criteria in
mind:

The physical problem can be described by 25 ODES and 10 parameters.
The problem is solvable while the user is at the terminal (Plod is entirely

interactive).

56 IEEEMICRO US government work; not protected by US copyright

Plod is easy to use; no manual is required.
The numerical methods are of high quality.
Rapid, flexible, and attractive graphics (not pub-

lication quality) are included.
Plod is mostly portable.
Plod is in the public domain.

In discussion of these criteria, PlodTs 25 ODE/IO pa-
rameter description addresses some application and
prototype problems.5 However, Plod is inappropriate
for studying, say, the complete suspension system of an
automobile. It also excludes any problems that require
large amounts of CPU time. The latter conditions can
occur in “chaotic” systems2 with many abrupt
changes, or when the user wants to integrate for long
periods of simulated time. Plod also excludes problems
that need to be repeated automatically to generate an
average as a parameter is changed. We designed Plod
for “what if” studies and as a prototype for more am-
bitious simulations.

Plod includes two files with installation and tutorial
information. Users should read them, but once Plod is
installed, even first-time users can proceed directly.
Keyboard blunders do not prevent the package from
working. It is not possible to anticipate all situations,
but error recovery was a major design goal. Thus Plod
is also suited for classroom use.

In regard to numerical methods, Plod’s integrator,
DDRIV,6 is a modern double-precision implementa-

After reading installation
and tutorial information,

even first-time users
can proceed directly.

tion of an algorithm described by Gear.’ This well-
known algorithm is in widespread use. DDRIV imple-
ments variable-step, variable-order Adams and Gear
formulas, with the ability to solve stiff ODES. Plod’s
results are as accurate and reliable as current technol-
ogy permits.

To promote portability, we did not use special char-
acteristics of a particular computer unless it was
unavoidable. Plod is not entirely portable because of
graphics and screen control, but we isolated these re-
quirements and kept them to a minimum. The current
target environment is an IBM PC XT/AT (discussed
later), although versions have been moved to a Sun
workstation and a UnivadTektronix combination.

August 1988 57

Mathematical somare

Overview of Plod
Plod is a package for the solution of a set of ODES

subject to specified initial conditions,

The solution is desired on an interval [a, b]. Most
problems also involve physical parameters whose
values determine the character of the solution. The
previous equation does not show these explicitly.

We designed Plod to be used in two interactive steps:
PlodO and Plodl. Plod, a batch program, runs PlodO
and optionally does the processing to pass to Plodl.
During PlodO the user enters the ODES. No integration
occurs during this step, and numerical values are not re-
quested for any of the variables or parameters. PlodO is
a preprocessor with a Fortran program as output. The
output program includes the ODES and has a mecha-
nism to communicate needed information to the Plodl
step.

Plod automatically compiles the output Fortran pro-
gram and links it to precompiled modules supplied with
the package. The result is an executable program that
we call the Plodl step. Plodl prompts for parameter
and initial values, and for the interval on which the in-
tegration is to take place. After the integration, you can
generate graphs and listings. You can also change pa-
rameter values, initial conditions, and the integration
interval, for example. You may experiment with the
problem, examining results under different conditions.
A sophisticated user can also alter the integration
method and make other changes of interest to a special-
ist in numerical integration. During Plodl , you cannot
alter the functional form of the model by adding terms,
or by adding or removing equations. Those actions re-
quire returning to the PlodO step and recompiling.

If Plod did not use a compiler, you could easily flip
between changing the model and integrating the equa-
tions. The ODES would be interpreted. We have devel-
oped a compiler-free version for our own use. Not
much is lost in simple problems, but the integration of
difficult problems slows by a factor of 10.

What do you need to run Plod?
Plod requires an IBM PC XT/AT (running MS-

DOS) with a math coprocessor and a memory of at least
360 Kbytes. An executable file in the Plodl step
averages 270 to 300 Kbytes for five to 10 equations.
Plod also runs on an IBM PC, but a hard disk is more
convenient. Teachers could run PlodO, compile and
link steps on an XT or AT, and distribute copies of the

executable output for PC use.
Graphics necessitate an IBM enhanced graphics

adapter, an IBM color graphics adapter, or a Hercules
graphics card and associated monitor. Plod runs auto-
matically at highest resolution on an EGA, CGA, or
HGA, and also runs on an IBM professional graphics
adapter in CGA mode. Because the HGA does not have
any color capabilities and because some IBM com-
patibles do not support color, Plod does not utilize col-
or in any way. An IBM graphics printer, a Proprinter,
or Epson graphics printers such as models FX 80 and
100 produce screen quality plots. Printer output is
optional.

A version of Plod is available to support Ryan-
McFarland Fortran, version 2.14, or Lahey Fortran
(F771), version 2.20.

Linking the libraries into an executable program re-
quires either IBM Link (version 2.3 or higher) or
Phoenix Software’s Plink86.

Because of the high degree of text processing, we
wrote PlodO in Pascal. However, we wrote Plodl
(mostly) in Fortran, which allowed us to make the
easiest use of the high-quality ODE software currently
available. Also, most scientific users already have a
Fortran compiler. The need for full ANSI Fortran 77
compatibility determined our specific choices.

Please note that since we compiled the libraries sup-
plied with Plod by using one of our supported Fortran
compilers, these libraries may not link correctly with
other compilers.

Portability issues. The Fortran source for Plodl
compiles with any compiler supporting the full Fortran
77 standard. The sections dealing directly with graphics
are in Intel 8088 Assembler and Lattice C languages.
The conventions of calling assembly language from
Fortran differ for each compiler. Thus, if you request a
copy of Plod you must specify which Fortran you are
using. To generate a working copy of Plodl from
source, you must have Fortran and C compilers, as well
as Assembler. To compile PlodO requires Turbo Pascal.
(To use Plod, you need have only a Fortran compiler.)

An example of PlodO
PlodO has a built-in editor for generating models,

which are written onto a user-specified file with exten-
sion MOD. A companion file with extension FOR for
the Plodl step is also produced. Figure 1 displays an ex-
ample MOD file. MOD files use a Fortran-like syntax
except that the prime symbol can denote derivatives
and a percent sign can denote comments that can begin
anywhere in a line. Although Figure 1 does not show it,
MOD files can be quite complicated and can include IF
tests. Once you have created a MOD file, you can use it
as direct input to a Plod run. Thus it is only necessary
for you to create the model once.

58 IEEE MICRO

T
% HBRO2: Scaled concentration of Bromoua Acid
% BRION: Scaled concentration of Bromide ion
% CEIV: Scaled concentration of Cesium IV
% T : Scaled seconds
% Reasonable initial conditione are
% HBR02=4, BRION=l.l, CEIV=4
% Reasonable parameter values are
x S=77.270
Y, q = o . a m ~ - 0 5
% Y=O. 161
% A full cycle is on interval 10, 3503,
%
% Plot all variables, log scaling vertically
HBRO2’~S*(BRION-HBROZ*BRIOH+HBRO2-q*HBRO2**2)
BRION ’ =(CEIV-BRION-HBR02*BRION)/S
CEIV’=U*(HBROZ-CEIV)

with lots of action by T-10.

_ _ _ _ _ _ _ _ _ _ _ ~ ~ ~ ~ ~

Figure 1. Example of a MOD file generated by Plod.

An example of Plod1
A user normally selects automatic compilation and

linking to Plodl from a menu. A typical Plodl session
involves data input, integration, plot or list of results,
modification of some aspect of the problem, or reex-
amination of the output.

You can type in initial and parameter values or read
them from a file. These values include simple constants
or expressions involving variables or parameters. A
parser catches syntax errors or square roots of negative
numbers, for example. You can also set the integration-
stopping conditions. This normally involves specifying
the interval on which the integration is to be performed,
but it can also be stated in terms of any of the dependent
variables, such as BRION = 2*HBR02.

You need not specify the method used to integrate
and the accuracy of integration, but can set them in an
Expert menu, which is easily accessed from the main
menu. During the integration, intermediate output is
displayed one screen at a time, so it is possible to verify
whether things are behaving properly. The integration
can also be performed “quietly.” Plod takes a max-
imum of 400 internal steps before asking “what-next?”
(The number of steps can be changed to suit specific
problem needs in the Expert menu.) Even in Quiet mode,
you can interrupt the calculation by pressing the space
bar, and if all is well, continue the interaction. The in-
tegration step size is variable, which makes it impossible
to tell in advance how many steps will be needed.

In graphics mode, up to nine curves can be drawn on
one screen involving any combination of the variables,
parameters, and derivatives. In practice, the most-
often used plots are the dependent variables plotted

against t (the default) or phase-plane plots, y, versusy2.
Plots can be linear or logarithmic, and can be generated
on an attached printer. It is possible to move around the
screen and read out the numerical values, as well as to
“zoom.” The first-time user can get default graphs by
responding with a carriage return to every question.

Plod’s integration output points drive its graphics.
You need not specify the plotting interval. Choosing
the output points adaptively solves an aliasing problem
that is common in generating plots of dynamic vari-
ables; plots are guaranteed to be smooth and not miss
structural details. To prevent too much data from being
plotted, we use a sieving algorithm that only plots
points that affect the appearance of the graphs. Figure
2 on the next page shows two typical plots from the
model discussed.

Graphics capabilities
We examined several Fortran-callable libraries for

IBM micros, but the Plod user needs to compile and
link programs. Hence, the graphics library must be
available to the linker. Distributing a proprietary
library would have violated each of the vendors’ pur-
chase agreements. Since we were committed to devel-
opment of public domain software, we saw simple
graphics, or plotting, as an important need, Conse-
quently, we wrote a small set of screen plotting
subroutines.

Extensibility
Plod is a menu-driven, interactive program built on

Fortran subroutines for solving ODES. As such, it can-
not be completely flexible. At the beginning of this arti-
cle, we mentioned several situations where Plod is inap-
propriate. Sometimes the best bet is to return to the
original Fortran to program a specific application. In
other cases, one would like to have just a bit more flex-
ibility than Plod allows. You can modify the Plod
source, but please do not hesitate to contact us first (ad-
dress at the end of this article) to see whether a more
general solution could be reached that would also be
useful to others.

ne of the important results of the rapid spread of
microprocessors is that people with less computer- 0 oriented training are using computers to help in

their jobs. This has pressured software developers into
finding clever and interesting methods of generating
problem-solving tools that do not require program-
ming. Plod is one step in this direction. It is being used
at several hundred sites for solving continuous time-

August 1988 59

-
Mathematical somare

....................
I

1 .E+06

...

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - - - - - - - - - - - - - _ - -

I

1. E-03

- - - - - - a : - I .I - 4 * * HBR02

- BRlON
- - - - - - - - i f

I

1 . E 4 3 I I I I 1 I

Figure 2. Field-Noyes chemical oscillator (a), and expanded new of its left edge (b).

60 IEEEMICRO

..................... CElV

simulation problems. As our ingenuity and experience
improve, we expect to see even better products with this
same nonprogramming flavor. %

References
1. C.W. Gear. Numerical Initial Value Problems in Ordinarv

2.

3.

4.

5.

6.

Differential Equations, Prentice-Hall, Inc., Englewooh
Cliffs, N.J., 1971.
H. Fowler et al., “Wave Form Simulations for Josephson
Junction Circuits Used for Noise Thermometry, ” NBS
Tech. J., 1983.
“Catalog of Simulation Software,” Simulation, Vol. 45,
No. 4, 1985, pp, 196-209.
Advanced Continuous Simulation Language (ACSL)
Reference Manual, Mitchell and Gauthier, Assoc., 290
Baker Ave., Concord, Mass., 1981, p. A-19.
V. Franceschini, “Bifurcations of Tori and Phase Locking
in a Dissipative System of Differential Equations,”
Physica, Vol. 6D, 1983, pp. 285-304.
R. Boisvert, S. Howe, and D. Kahaner, “The Guide to
Available Mathematical Software (GAMS),” PB
84-17135, Nat’l Tech. Info. Service, Springfield, Va., Feb.
1984.

Gamini Gunaratna holds a master’s degree in computer
science from The American University. He has previously
worked at the National Bureau of Standards and the Universi-
ty of Pittsburgh. His current interests include MS-DOS com-
puters and Turbo Pascal.

David K. Kahaner is the technical group leader for scientific
software and microcomputer applications in the Scientific
ComDuting Division, Center for Amlied Mathematics at the - -
NBS. His research interests include evaluation of integrals,
solution of ordinary differential equations, interpolation,
Fourier transforms, and mathematical software in general.

Kahaner received his PhD in applied mathematics from the
Stevens Institute of Technology, Hoboken, New Jersey. He
then worked at Los Alamos National Laboratory as a
numerical analyst. He has been a visiting professor in the
Mathematics Department of the University of Michigan, at
the ETH-Zurich, at the Technical University-Vienna, and at
the Catholic University of America in Washington, DC. omputer systems analyst at the National In-

stitutes of Health, where she helps researchers utilize statistical
program packages and interpret the results.

Agron received her BS degree in mathematics at the Univer-
sity of Puerto Rico and an MA degree in applied mathematics
at the University of Maryland.

Martin A. Reed is a development manager at IBM, where he
has worked for the past 15 years. He received his MS degree in
electrical engineering and operations research from Rensselaer
Polytechnic Institute in Troy, New York. Reed holds a PhD
degree in electrical engineering from the Catholic University
of America, where his dissertation research involved interac-
tive modeling. H~ is a member of the
IEEE.

Questions concerning this article may be directed to David
K. Kahaner, Center for Applied Mathematics, National
Bureau of Standards, Technology Building, Room A161,

I-Lok Chang is an associate professor of mathematics at The
American University, Washington, DC. His areas of interest
include value distribution theory in complex variables, and
optimization and approximation in numerical analysis.

Chang received his BS and PhD degrees in mathematics
from the California Institute of Technology and Cornell
University, respectively. Gaithersburg, MD 20899.

graphics

Reader Interest Survey
Indicate your interest in this article by circling the appropriate number on the Reader Interest Card.

Low 162 Medium 163 High 164

August 1988 61

