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Abstract 
 
To achieve pervasive secure information processing over the public wired and wireless Internet, it is 
desirable to be able to perform cryptographic transformations rapidly and conveniently.  The performance 
of software-implemented cryptographic functions is hampered by certain operations which have not been 
optimized in the Instruction Set Architecture of processors, due to their infrequency in earlier programming 
workloads.  One such operation is the permutation of bits within a block to be encrypted, which is 
particularly difficult in word-oriented processors.  This paper introduces four novel permutation 
instructions and the underlying methodology for performing arbitrary n-bit permutations efficiently in 
programmable processors.  While targeted at solving the more difficult problem of permuting n 1-bit 
elements, we also address the issue of permuting a smaller number of multi-bit subwords packed into an n-
bit word, a feature needed to accelerate multimedia processing in software.  By providing the ability to do 
fast permutations in software, we open the field for new cryptography and multimedia algorithms using 
these powerful yet simple permutation primitives.  This results in much faster cryptography and multimedia 
processing, while retaining the flexibility of software implementations, for secure multimedia information 
appliances and servers. 
 
1. Introduction 
 
The need for secure information processing increases with the increasing use of the public internet and 
wireless communications in e-commerce, e-business and many other aspects of our daily lives.   The 
internet today is not secure.  Secure information processing includes authentication of users and host 
machines, confidentiality of messages sent over public networks, and assurances that messages, programs 
and data have not been maliciously changed.  These security functions can be achieved by using different 
security protocols employing different cryptographic algorithms, such as public key, symmetric key and 
hash algorithms.  To facilitate pervasive secure information processing, it is important that such security 
functions be implemented in a fast and painless way, otherwise users will not use them.  One way to 
achieve this is to perform the cryptographic functions very rapidly with software, rather than requiring 
additional special-purpose hardware chips and boards.  For the purposes of this paper, we assume that some 
programmable processor is available in an information appliance or server machine, in order to perform 
regular (non-secure) transactions over the Internet.  What general-purpose operations can be added to this 
programmable processor, or as a cryptography coprocessor, so that it can execute cryptographic functions 
at network link speeds, or at least with insignificant performance degradation?  These are operations 
frequently used in encrypting and decrypting information, which were not frequent in general-purpose 
programming workloads before the need for pervasive secure information processing.  In this paper, we 
focus on one set of operations, permutations, used in encrypting large amounts of data for confidentiality or 
privacy.  Bit-level permutations are particularly difficult for processors, so they tend to be avoided in the 
design of new cryptography algorithms, for example the Advanced Encryption Standard [1], where it is 
desired to have fast software implementations.  In this paper, we show how very efficient bit permutations 
can be achieved in programmable processors, thus enabling future cryptography algorithms to be designed 
using the superior diffusion [2] capabilities of permutations if desired.  In addition, we also show how these 
same permutation instructions can also be used to accelerate subword parallel processing in multimedia 
applications [3,4]. 
 
For encrypting large amounts of data, symmetric key cryptography algorithms are used [2].  These 
algorithms use the same secret key to encrypt and decrypt a given message, and encryption and decryption 
have the same computational complexity.  In symmetric key algorithms, the cryptographic techniques of 
confusion and diffusion are synergistically employed.  Confusion obscures the relationship between the 



plaintext (original message) and the ciphertext (encrypted message), for example, through substitution of 
arbitrary bits for bits in the plaintext.  Diffusion spreads the redundancy of the plaintext over the ciphertext, 
for example through permutation of the bits of the plaintext block.  Such bit-level permutations are very 
slow when implemented with the current instructions available in microprocessors and other programmable 
processors. 
 
Permutations are also an important new requirement for fast processing of digital multimedia information, 
using subword-parallel instructions [3,4], more commonly known as multimedia instructions.  Every major 
microprocessor Instruction Set Architecture (ISA) now has these subword parallel instructions [3-10] for 
fast multimedia information processing.  With subwords packed into 64-bit words, it is often necessary to 
rearrange the subwords within the word.  However, such subword permutation instructions are not provided 
by many of these multimedia ISA extensions, except for a few initial attempts in MAX-2 [4], IA-64 [7] and 
Altivec[8].   
 
In this paper, we propose innovative permutation instructions for solving the permutation problems in both 
cryptography and multimedia.  For fast cryptography, bit-level permutations are required, whereas for 
multimedia, permutations on subwords of typically 8 bits or 16 bits are required.  Since the complexity of 
permutations increases with the number of elements (subwords) being permutated, we solve the most 
complex problem of allowing any arbitrary permutation of sixty-four 1-bit subwords in a 64-bit processor, 
i.e., a processor with 64-bit words, registers and datapaths, for fast cryptography.  We then show how these 
instructions can also be used for permuting subwords greater than 1 bit in size, for fast multimedia 
processing.  For example, in addition to being able to permute sixty-four 1-bit subwords in a register, the 
permutation instructions and underlying functional unit should also be able to permute thirty-two 2-bit 
subwords, sixteen 4-bit subwords, eight 8-bit subwords, four 16-bit subwords, or two 32-bit subwords.  
These powerful and flexible permutation instructions may be added as new instructions to the Instruction 
Set Architecture of an existing microprocessor, or they may be used in new processors or coprocessors that 
are designed from scratch to be efficient for both cryptography and multimedia software. 

1.1 Past work 
 
Since current microprocessors are word-oriented, performing bit-level permutations is very painful.  Every 
bit has to be extracted from the source register, moved to its new location in the destination register, and 
combined with the bits that have already been moved.  This requires 4 instructions per bit (mask 
generation, AND, SHIFT, OR), and 4n instructions to perform an arbitrary permutation of n bits.  With 
certain microprocessors like PA-RISC [11], more powerful bit-manipulation instructions exist, such as the 
EXTRACT and DEPOSIT instructions, which can essentially perform the four operations required for each 
bit in 2 instructions (EXTRACT, DEPOSIT), resulting in 2n instructions for any arbitrary permutation of n 
bits.  Pre-defined permutations with some regular patterns can of course be done in fewer instructions, for 
example, the permutations in DES [2].  But, in general, an arbitrary 64-bit permutation could take 128 or 
256 instructions on current microprocessors. 
 
Since this is unacceptably slow, table lookup methods have been used to implement fixed permutations.  To 
achieve a fixed permutation of n input bits with one table lookup, we would need a table with 2n entries, 
each entry being n bits.  For a 64-bit permutation, this would be 267 bytes, which is clearly infeasible.  The 
table would have to be broken up into smaller tables, and several table lookup operations would be needed.  
For example, a 64-bit permutation could be implemented by permuting 8 consecutive bits at a time, then 
combining these 8 intermediate permutations into the final permutation.  This requires 8 tables, each with 
256 entries, each entry being 64 bits.  Each entry would have zeros in all positions, except the 8 bit 
positions to which the selected 8 bits in the source are permuted.  After the eight table lookups done by 8 
LOAD instructions, we have to combine the results with 7 OR instructions to get the final permutation.  In 
addition, 8 instructions are needed to extract the index for the LOAD instruction, for a total of 23 
instructions.  The memory requirement is 8*256*8=16 kilobytes for eight tables.  Although 23 instructions 
sounds considerably better than the 128 or 256 instructions in the previous method, the actual execution 
time could be much longer due to cache miss penalties or memory access latencies.  Suppose half of the 8 
Load instructions miss in the cache, and each cache miss takes 50 cycles to fetch the missing cache line 



from main memory.  Then, the actual execution time is more than 4*50=200 cycles, which is actually 
longer than the previous 128 cycles using EXTRACT and DEPOSIT.  Also, the memory requirement of 16 
kilobytes for just the tables is not insignificant. 
 
For subword permutation instructions, MAX-2 has a general-purpose PERMUTE instruction which can do  
any permutation, with and without repetitions, of the subwords packed in a register.  However, it is only 
defined for 16-bit subwords.  IA-64 also has the MUX instruction, which is a fully general permute 
instruction for 16-bit subwords, with five new permute byte variants.  Altivec  has the VPERM instruction, 
which extends the general permutation capabilities of MAX-2’s PERMUTE instruction to 8-bit subwords 
selected from two 128-bit source registers, into a single 128-bit destination register.  Since there are 32 
such subwords from which 16 are selected, this requires 16* lg32=80 bits for specifying the desired 
permutation.  This means that VPERM has to use another 128-bit register to hold the permutation control 
bits, making it a very expensive instruction with three source registers and one destination register, all 128 
bits wide. In [18], Lee proposes a small set of subword permutation primitives useful for two-dimensional 
multimedia processing.  None of the subword permutation instructions defined so far can perform arbitrary 
bit-level permutations efficiently. 
 
In this paper, we present significantly faster and more economical ways to perform arbitrary permutations 
of n bits, without any need for table storage.  In searching the mathematical literature on permutations, we 
could not find any literature on the efficiency of achieving arbitrary permutations.  The problem of 
performing any arbitrary n-bit permutation in the minimum number of steps using permutation primitives 
(encoded in instructions) is an unsolved problem so far.  Hence, in Section 2, we investigate the minimal 
number of steps needed to generate any arbitrary permutation of n bits.  But what are the permutation 
primitives needed for these efficient permutations?  In Section 3, we propose four alternative methods for 
permuting n bits, each based on a new permutation instruction that we define.   In Sections 4 and 5, we 
compare the hardware complexity and performance of these permutation methods with each other and with 
current microprocessors.  In section 6, we consider how arbitrary n-bit permutations may be specified in a 
high-level language.  In section 7, we summarize the paper. 
 
2. Minimal number  of steps for  arbitrary n-bit permutations 
 
The number of n-bit permutations without repetitions is n!.  According to Stirling’s approximation [12,13], 
we can prove that  
 

)(! nnon =           (1) 

 
and 
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which means that the number of bits needed to specify one permutation is on the order of nlgn.  We also 
need to do permutations in which some bits are replicated.  The repetition of bits increases the number of 
possible permutations to nn.  Therefore, the number of bits required to specify a permutation of n bits with 
repetition is  
 

)lg()lg( nnnn =          (3) 

 
Assume we conform to the standard datapath arrangements of current microprocessors with general-
purpose registers, where each instruction has two source registers and one destination register (see figure 
1), and no extra state is stored between the permutation instructions.  Then, one source register must be 
used for the n bits to be permuted, and the destination register gives an intermediate result leading to the 
final desired permutation.  Since the second source register can hold only n bits of permutation 
specification, and nlgn bits are needed to specify an n-bit permutation, lgn permutation instructions are 
needed.  Hence, the minimum number of instructions needed for performing any arbitrary n-bit permutation 



is lgn instructions, if each instruction has only two source registers and one destination register, and no 
extra state is stored.  Similarly, the minimum number of instructions needed for performing any 2n-bit 
permutation, using n-bit registers, is (2n* lg(2n)/n)=2lgn+2. 
 
3. Alternative permutation methodologies 
 
We start with bit-level permutations of all n bits in a register, for n=64, since microprocessors today have 
registers and datapaths that are either 32 or 64 bits wide, and common symmetric key block ciphers like 
DES and Triple DES [2] encrypt 64-bit blocks.  We describe four methods: 
 
• PPERM, a new incarnation of the PERMUTE instruction, first introduced in MAX-2 [4], 
• GRP, a new approach that separates bits into left and right parts, 
• CROSS, a new approach using Benes interconnection network theory, and 
• OMFLIP, a new approach that uses Omega-Flip interconnection network theory. 
   
In each case, the same solution can be applied to different subword sizes of 2i bits, for i=0, 1, 2, …, m, 
where n=2m bits.  For a fixed word size of n bits, clearly the hardest permutation problem is for 1-bit 
subwords, where there are n subwords to be permuted.  For n=64 bits, we show how the solution for such 
bit-level permutations can also be used for subword permutations of fewer multi-bit subwords, e.g., eight 8-
bit subwords, commonly used in multimedia programs.  We also discuss how the solution can scale up 
from n=64 to n=128 bits, since future cryptography algorithms are being designed to encrypt 128-bit blocks 
[1].  We also consider if the permutation methodology easily allows permutations where bits can be 
repeated or omitted.  All the four permutation instructions fall into the conventional 2-source, 1-result 
execution paradigm.  However, new permutation functional units are needed to support these new 
instructions.  These permutation functional units fit into a microprocessor’s datapath the same way as an 
ALU does.  This is shown in Figure 1. 
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Figure 1: Standard M icroprocessor  Datapath with a new Permutation Functional Unit 

3.1  PPERM permutation instruction 
 
An intuitive way to do permutations is to explicitly specify the position in the source for each bit in the 
destination.  This is done by the PERMUTE instruction in MAX-2 [4], where any subword in the source 
register can go to any subword position in the destination register.  The PERMUTE instruction currently 
supports only 16-bit subwords, so all position information can be encoded in eight bits in the instruction.  
To perform bit-level permutation, we need to generalize the PERMUTE instruction to support the subword 
size of one.  In this case, each bit is a subword and the number of subwords becomes n.  Therefore, nlgn 
bits are required to specify the position information for all these n bits.  Obviously, they cannot be specified 
in one instruction.  We have to use more than one instruction to do a single permutation.  With each 



instruction, we specify the permutation of a subset of bits.  Suppose the source positions for k bits can be 
specified with one instruction, we define PPERM instructions as follows 
 

PPERM,x R1, R2, R3 
 
R1 and R2 are the source registers, and R3 is the destination register.  R1 contains the bits to be permuted, 
R2 contains the configuration bits.  x specifies which k bits in R3 will change.  In R3, only k bits specified 
by x are updated, the other bits are set to zero (see Figure 2).  We use klgn bits in R2 to specify where to 
extract the k consecutive bits.  In order to store the position information in one register, the following 
inequality should hold 
 nnk ≤lg          (4) 

Therefore,  

n

n
k

lg
≤          (5) 

Approximately n/lgn bits can be specified with one instruction.  In total, we need around n/k≈lgn 
instructions for an n-bit permutation.  When n=64, we can choose k=8.  Therefore, we need eight PPERM 
instructions for a 64-bit permutation, and seven OR instructions to merge these results to get the desired 
permutation.  The pseudo code for the operation performed by PPERM instruction on 64-bit architecture is 
shown in Table 2. 
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Figure 2: Diagram of PPERM  instruction 

 
Specifying the configuration bits for the PPERM instruction is straightforward.  For every one of the k bits 
to be changed in the final permutation, we use lgn bits to specify which bit in the source register should go 
there.  
 
To allow PPERM to permute bits from two or more source registers, an extra bit (denoted “otherreg”) is 
used to select each bit in the source register.  For n=64 bits, each index into the source register is now (lgn 
+1) = 7 bits.  If this “otherreg”  bit = 0, then the remaining 6-bit index selects a bit in the source register to 
place in the destination register, as described above.  However, if this “otherreg”  bit = 1, then the 
corresponding bit in the destination register is forced to zero.  This allows two or more registers to be used 
as source registers, in different PPERM instructions. 
 

3.2 GRP permutation instruction 
 
The GRP instruction also looks like any two-operand, one-result instruction on typical microprocessors 
(see Figure 1): 



 
GRP R1, R2, R3 

 
R1 and R2 are the source registers, and R3 is the destination register.  The operation of a GRP instruction is 
shown as pseudo code in Table 2. 
 
The basic idea of the GRP instruction is to divide the bits in the source R1 into two groups according to the 
bits in R2.  For each bit in R1, we check the corresponding bit in R2.  If the bit in R2 is 0, we put this bit 
from R1 into the first group.  Otherwise we put this bit into the second group.  During this process we do 
not change the relative positions of bits in the same group.  Finally, by putting the first group to the left of 
the second group, we get the result value in R3.  Figure 3 shows how the GRP instruction works on 8-bit 
architectures. 
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Figure 3:The GRP instruction on 8-bit architectures 

 
On an n-bit architecture, we can do any n-bit permutations with no more than lgn GRP instructions.  This 
can be proved by construction [14].  Rather than giving this proof in this paper, we show an example 
illustrating how the GRP instruction achieves 8-bit permutations. 
 

Table 1: The GRP instruction sequence for  an 8-bit permutation 

 Iteration 1 Iteration 2 
P (5, 0, 1, 2, 4, 3, 7, 6) (3, 5, 7, 0, 1, 2, 4, 6) 
MISes in P (5)(0, 1, 2, 4)(3, 7)(6) (3, 5, 7), (0, 1, 2, 4, 6) 
Combining MISes (5, 3, 7), (0, 1, 2, 4, 6) (3, 5, 7, 0, 1, 2, 4, 6) 
Sorting  (3, 5, 7), (0, 1, 2, 4, 6) (0, 1, 2, 3, 4, 5, 6, 7) 
New Permutation (3, 5, 7, 0, 1, 2, 4, 6) (0, 1, 2, 3, 4, 5, 6, 7) 
Control bits for 
GRP instruction 

(1, 0, 1, 0, 0, 0, 0, 1) (1, 1, 1, 0, 1, 0, 1, 0) 

 
Table 1 shows the procedure of finding the control bits for GRP instructions performing an 8-bit 
permutation (0, 1, 2, 3, 4, 5, 6, 7)→(5, 0, 1, 2, 4, 3, 7, 6).  This means that bit 5 in R1 becomes bit 0 in R3, 
bit 0 in R1 becomes bit 1 of R3, and so forth.  At the beginning of iteration 1 (see the second column), P is 
the permutation we need to do.  We divide the integer sequence into monotonically increasing sequences 
(MIS), as shown in the third row.  Underlined MISes are in the right half.  Then we combine the MISes in 
the left and right halves.  The first in the left is merged with the first in the right, the second in the left with 
the second in the right, and so on.  Then we sort the merged groups.  Results of sorting are shown in the 
fifth row.  This is an intermediate permutation, which is “closer”  to the desired final permutation.  
Examining the numbers in this intermediate permutation, we get control bits for one GRP instruction.  If 
the number in the new permutation is in the second half (underlined in the third row), the corresponding 
control bit is 1, and 0 otherwise.  Next, we do the iteration again with the new intermediate permutation.  
The process terminates when the newly generated permutation is a single monotonically increasing 
sequence (0, 1, 2, …, n-2, n-1), which represents the original input.  Using the control bits generated in this 
process, we can perform the permutation with the following sequence of GRP instructions 
 



GRP R1, R2, R1  ; R2 = 0b11101010  
GRP R1, R3, R1  ; R3 = 0b10100001  

 
R2 and R3 contain the control bits we generated in iteration 2 and iteration1, respectively. 
 

Table 2: Pseudo code for  the new permutation instructions 

Instruction Pseudo code 
PPERM,x  R1, R2, R3 R3[ 0. . n- 1]  = 0;  

f or  ( i  = 0;  i  < k ;  i  ++)  
ot her r eg = R2[ i * ( l g( n) +1) ] ;   
j  = R2[ i * ( l g( n) +1) +1 . .  ( ( i +1) * ( l g( n) +1) - 1] ;  
i f  ( ot her r eg == 0)  

R3[ x* k+i ] = R1[ j ] ;  
 

GRP  R1, R2, R3 j  = 0;  
f or  ( i  = 0;  i  < n;  i  ++)  

i f  ( R2[ i ]  == 0)  
  R3[ j  ++]  = R1[ i ] ;  
f or  ( i  = 0;  i  < n;  i  ++)  

i f  ( R2[ i ]  == 1)  
 R3[ j  ++]  = R1[ i ] ;   

CROSS,m1,m2  R1, R2, R3 R3 = R1;
j  = 0;
di s t  = 1 << m1;
f or  ( s  = 0;  s  < n;  s  += ( di st  *  2) )

f or  ( i  = 0;  i  < di s t ;  i  ++)
i f  ( R2[ j ++]  == 1)

swap( R3[ s+j ] ,  R3[ s+j +di st ] ) ;
di s t  = 1 << m2;
f or  ( s  = 0;  s  < n;  s  += ( di st  *  2) )

f or  ( i  = 0;  i  < di s t ;  i  ++)
i f  ( R2[ j ++]  == 1)

swap( R3[ s+j ] ,  R3[ s+j +di st ] ) ;
 

OMFLIP,c  R1, R2, R3 f or  ( i  = 0;  i  < 2;  i ++)  
 i f  ( c [ i ]  == 0)  
  f or  ( j  = 0;  j  < n/ 2;  j ++)  

  R3[ 2 *  j ]  = R1[ j ] ;  
   R3[ 2 *  j  + 1]  = R1[ j  + n/ 2] ;  
   i f  ( R2[ j ]  == 1)  
    swap( R3[ 2 *  j ] ,  R3[ 2 *  j  + 1] ) ;  
 el se  

f or  ( j  = 0;  j  < n/ 2;  j ++)  
  R3[ j ]  = R1[ 2 *  j ] ;  

   R3[ j  + n /  2]  = R1[ 2 *  j  + 1] ;  
   i f  ( R2[ j  + n/ 2]  == 1)  
    swap( R3[ j ] ,  R3[ j  + n /  2] ) ;   

 
Note:  n is the number of bits in registers.  i, j, and s are temporary variables.  k in the codes for PPERM  is 
the number of bits we can permute with one instruction.  (In this paper, k=8).  “swap”  is a function that 
exchanges the value of its two parameters.  R1[1] means the bit 1 in R1.  R1[0..7] means bit 0 to bit 7 in 
R1.  
 

3.3 CROSS permutation instruction 
 
In interconnection networks such as the butterfly network, data at any input can be directed to any output 
by setting up the proper connections in the network.  We observe that a permutation of n elements (without 



repetitions) is like n pieces of data being routed simultaneously to n different destinations.  We want to look 
for networks that can achieve this task using edge-disjoint paths and can also be easily implemented as a 
simple functional unit in a processor.  Furthermore, there must exist an algorithm to specify how the n data 
are to be routed. 
 
The CROSS instruction is based on the Benes network, which is formed by connecting two butterfly 
networks of the same size back-to-back.  An 8-input Benes network is shown in Figure 4.  An n-input 
Benes network can be used to perform any permutation of its n inputs with edge-disjoint paths [15].  In 
addition, Benes network has the following properties 
 

1. An n-input Benes network can be broken into 2lgn stages, lgn of them are distinct. 
2. In each stage of a Benes network, every input has two outputs to the next stage.  For each input, 

there is another input that shares the same two outputs with it.  We call these pairs of inputs 
conflict pairs.  The connections for a conflict pair can be configured with one bit.  The distances 
between conflict pairs in one stage are the same.  They are different in different stages. 
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Figure 4: An 8-input Benes network 

Due to the existence of conflict pairs, each stage of an n-input Benes network can be configured with n/2 
bits.  If the configuration bit for a conflict pair is 0, the two inputs take straight paths to the next stage.  If it 
is 1, the two inputs cross paths to the next stage.  We can define a set of basic operations for a Benes 
network.  Each basic operation corresponds to one distinct stage in a Benes network.  A basic operation is 
specified by a parameter m, where 2m is the distance between conflict pairs for the corresponding stage.  A 
basic operation uses n/2 configuration bits to set up the connections in the corresponding stage and move 
the n input bits to the output.  Since an n-input Benes network has lgn distinct stages, we have lgn different 
basic operations.  With these basic operations, the CROSS instruction is defined as follows 
 
 CROSS,m1,m2 R1, R2, R3 
 
R1 is the source register, which contains the bits to be permuted, R3 is the destination register for the 
permuted bits, and R2 is the configuration register.  One CROSS instruction performs two basic operations 
on the source according to the contents of the configuration register and the values of m1 and m2.  m1 and 
m2 are the parameters that specify the two basic operations to be used.  The operation of a CROSS 
instruction is shown in Figure 5.  The pseudo code is shown in Table 2. 
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Figure 5: Operation of CROSS,2,1  R1,R2, R3 
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Figure 6: An example showing permutation (abcdefgh)→→→→(fabcedhg) on an 8-input Benes network 

 
In order to generate the CROSS instruction sequence for a specific permutation, we perform the following 
steps 
 

1. Obtain a valid configuration for the desired permutation on a Benes network, the method is 
discussed in [16]; 

2. Break the configured Benes network into pairs of stages; 
3. For each pair of stages, assign a CROSS instruction.  Each CROSS instruction uses the output 

from the previous CROSS instruction and generates input for the next CROSS instruction.  The 
first CROSS instruction takes the original input and the last CROSS instruction generates the final 
result. 

 
Because there are 2lgn stages in an n-input Benes network, we need at most lgn CROSS instructions for 
any n-bit permutation.  An example is shown in Figure 6. 
 
 
 



3.4  OMFLIP permutation instruction 
 
The CROSS instruction is very efficient because any permutation of n bits can be achieved with at most lgn 
CROSS instructions.  However, because an n-input Benes network has lgn distinct stages and these stages 
are in a specific order, a permutation FU must have a whole Benes network in hardware to implement all 
CROSS instructions.  This is not efficient in area for machines with wider words, for example, 64 bits.  In 
this case, each CROSS instruction only uses two stages out of twelve stages needed for the whole network. 
  
We explore alternative possibilities which can achieve the same level of performance as the CROSS 
instructions, but yield more efficient hardware implementations.  The disadvantage of the CROSS 
implementation stems from the fact that a Benes network has many distinct stages.  We search for a 
network that has uniform stages, which can also achieve any arbitrary permutation in 2lgn stages.   
 
One solution is the omega-flip network, which consists of an omega network followed by a flip network.  
An n-input omega network has lgn identical omega stages.  An n-input flip network is the exact mirror 
image of an n-input omega network.  It has lgn identical flip stages.  An 8-input omega-flip network is 
shown in Figure 7.  An n-input omega-flip network is isomorphic to an n-input Benes network.  As a result, 
they share common properties.  An n-input omega-flip network can be broken into 2lgn stages.  However, 
it only has two distinct stages, one omega stage and one flip stage.  In each stage of an n-input omega 
network or flip network, we also have n/2 conflict pairs and the connections for each conflict pair can be 
configured with one bit. 
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Figure 7: An 8-input omega-flip network 

 
For an omega-flip network, we can define two basic operations as opposed to lgn basic operations for a 
Benes network.  One basic operation is the omega operation, which accomplishes the operation of an 
omega stage.  It uses n/2 configuration bits to set up an omega stage and move the input bits to their 
corresponding outputs.  Another basic operation is the flip operation, which performs the operations of a 
flip stage.  It also uses n/2 configuration bits to set up a flip stage and move input bits to the output.  The 
definition of the configuration bits follows the same convention as that for the Benes network.  An 
OMFLIP instruction carries out two basic operations on the source word.  It is defined as 
 

OMFLI P, c R1,  R2,  R3 
 
R1, R2 and R3 hold source, configuration bits and result, respectively.  c is a two-bit sub-opcode defining 
which two basic operations to use.  For each bit in c, 0 indicates the omega operation and 1 indicates the 
flip operation.  The operation of an OMFLIP  instruction is shown in Figure 8.  The corresponding pseudo 
code is given in Table 2. 
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Figure 8: Operation of OM FLIP,01  R1,R2, R3 

Since the omega-flip network is isomorphic to the Benes network, we can use the following steps to 
generate the OMFLIP instruction sequence for a specific permutation 
 

1. Obtain a valid configuration for the desired permutation on a Benes network; 
2. Map the configuration of the Benes network to the omega-flip network based on the 

isomorphism between them; 
3. Break the configured omega-flip network into pairs of stages; 
4. For each pair of stages, assign an OMFLIP instruction.  Each OMFLIP instruction uses the 

output from the previous OMFLIP instruction and generates input for the next OMFLIP 
instruction.  The first OMFLIP instruction takes the original input and the last OMFLIP 
instruction generates the final result. 

 
Because there are 2lgn stages in an n-input omega-flip network, we need at most lgn OMFLIP instructions 
for any n-bit permutation.  An example is shown in Figure 9. 
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Figure 9: An example showing permutation (abcdefgh)→→→→(fabcedhg) on an 8-input omega-flip 

network 

 



A permutation unit implementing the OMFLIP instruction is only four stages deep, two omega stages 
followed by two flip stages [17].  This is sufficient to implement the four combinations of the two basic 
operations, omega and flip.  This number of stages does not change with n, unlike the Benes network which 
requires the implementation of 2lgn stages.    
 

3.5  Subwords, scalability and repetition 
 
In this section, we consider the extensibility of the permutation instructions defined above for efficient 
permutation of multi-bit subwords, scalability to 2n bits, and whether permutations with repetition of bits 
can be supported. 
 
3.5.1  Subwords 
  
If we have subwords greater than one bit packed into an n-bit register, we will have fewer subwords to 
permute.  For example, with 8-bit subwords in a 64-bit register, there are only eight elements to permute, 
rather than 64 elements with 1-bit subwords.  Fewer permutation instructions should be needed, lg8=3 
instructions rather than lg64=6 instructions.  Can the permutation instructions defined above for bit-level 
permutations also allow efficient permutation of multi-bit subwords? 
 
The PPERM instruction, as currently defined, is not efficient for multi-bit subword permutations.  It can 
perform permutations of larger subwords packed in a register, but cannot take advantage of the smaller 
number of elements which have to be permuted, to reduce the number of permutation instructions required. 
 
The GRP instruction is as efficient for permuting multi-bit subwords as for 1-bit subwords.  The number of 
GRP instructions required depends only on the number of elements to be permuted, and hence fewer GRP 
instructions are required to permute larger subwords.  For example, on 64-bit processors, if the subword 
size is eight, there are only eight elements.  Therefore, at most lg8=3 instructions are enough to do any 
permutation of the eight 8-bit subwords, whereas at most lg64=6 GRP instructions are required for any 
permutation of the 64 bits.  In the previous example, if the elements in the permutation (5, 0, 1, 2, 4, 3, 7, 6) 
are 8-bit subwords in a 64-bit processor, rather than 1-bit subwords in an 8-bit processor, we also need only 
two instructions to do it.  By substituting each 0 or 1 with eight consecutive 0’s or 1’s, respectively, we get 
the control bits for n=64 with 8-bit subwords.  
 
The CROSS and OMFLIP instructions are also as efficient for multi-bit subwords as for 1-bit subwords.  
One important property of a Benes network is that when it is configured for k-bit subword permutations, 
the middle 2lgk stages are configured as pass-throughs [16].  The same is true of the omega-flip network 
[17].  These bypassing stages can be eliminated before assigning CROSS or OMFLIP instructions.  
Therefore, when permuting k-bit subwords in an n-bit word, the maximum number of instructions needed is 
lgn-lgk=lg(n/k)=lgr, where r is the number of subwords. 
 
3.5.2  Scalability to 2n bits 
 
We now consider if the permutation instructions can permute subwords packed into more than one register.  
In particular, if a register is n bits, we consider the scalability to permutations of 2n bits.  Here, we are 
doubling the number of elements to be permuted, since each element is one bit.  As discussed earlier in 
Section 2, this should require at least 2lgn +2 instructions to achieve any arbitrary permutation of 2n bits.  
We wish to see how close to this optimal number of instructions we can achieve with the alternative 
permutation instructions defined. 
 
The PPERM instruction allows permuting 2n bits stored in two n-bit registers, by the use of the extra 
“otherreg”  bit in each index that selects a bit of the source register.  This allows different PPERM 
instructions to pick bits from more than one source register.  To permute 2n bits, two source registers must 
be used, and two destination registers are produced.  For each destination register, 8 PPERM instructions 
are used on each source register, requiring a total of 16 PPERM instructions and 15 OR instructions to 



combine the results into one destination register.  The same must be repeated to produce the other 
destination register.  Hence, a total of 2(16+15) = 62 instructions are needed to permute 2n bits.   This is 
not efficient compared to other methods described below. 
 
The GRP instruction scales very efficiently to 2n-bit permutations with the help of an instruction like the 
Shift Pair instruction in PA-RISC [11] and IA-64 [7].  The Shift Pair instruction concatenates two source 
registers to form a double-word value, and then extracts any contiguous single-word value.  Suppose R1 
and R2 store the bits to be permuted, and the results will be placed in R3 and R4.  Figure 10 shows how 
two GRP instructions followed by two Shift Pair instructions can be used to separate the 2n bits into the 
appropriate left and right registers (R3 and R4) of the result.  Finally, two separate n-bit permutations are 
performed on R3 and R4 to get the desired 2n-bit permutation. 
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Figure 10: Use the SHIFT PAIR and GRP instructions to do 2n-bit permutations 

 
In total, excluding the instructions needed for loading control bits, we need 4+2lgn instructions to do a 2n-
bit permutation.  These are only 2 instructions more than the minimum number of instructions required.  
With 64-bit registers, a 128-bit permutation can be done with 16 instructions.  
 
CROSS or OMFLIP instructions can also be used to permute 2n bits stored in two registers.  We use a 
similar approach to that used with GRP instructions.  We first permute each of the two n-bit words using 
CROSS or OMFLIP instructions so that the bits going to the left n-bit word and the right n-bit word in the 
result are separated.  Then we use two Shift Pair instructions to move the bits belonging to the left word 
and right word into two registers.  Finally, we permute the bits in these left and right registers to get the 
final result.  The first step uses a maximum of 2lgn CROSS or OMFLIP instructions, the last step also uses 
at most 2lgn instructions.  Therefore, it takes at most 4lgn+2 instructions to permute 2n bits using n-bit 
words.  Compared to the ideal instruction count of 2lgn+2, this method uses 2lgn more instructions.  Hence, 
CROSS and OMFLIP instructions are not as efficient as the GRP instruction when scaling up to 2n-bit 
permutations. 
 
3.5.3  Permutations with Repetitions 
 
So far, we have discussed permutations where each bit in the source goes to a different bit in the 
destination.  These are permutations where no bit in the source is repeated or omitted in the destination.  
We now consider the case where we allow bits in the source to be repeated. 
 
PPERM can easily handle permutations with repetitions, since any of the n bits can be selected any number 
of times.  This is useful for some cryptography algorithms.  For example, DES has an expansion 
permutation in which some bits are replicated.  
 
Currently, none of the other permutation instructions defined (GRP, CROSS and OMFLIP) support 
permutations with repetitions.  
 
To summarize, GRP, CROSS and OMFLIP instructions are all efficient for permuting multi-bit subwords.  
GRP is the most efficient for scaling up to bit permutations of 2n bits.  CROSS and OMFLIP can perform 
2n bit permutations, but require (2lgn-2) more instructions than GRP.  PPERM is not efficient for multi-bit 



subwords and can scale to permuting 2n bits, but not efficiently.  However, it is the only permutation 
alternative defined above that can perform permutations with repetitions. 
 
4. Hardware requirements for  new permutation instructions 
 
We now consider the hardware complexity of the permutation functional unit corresponding to each of the 
new subword permutation instructions we have proposed.  On a 64-bit processor architecture, the PPERM 
instruction requires a 64-by-8 crossbar network and a specialized shifter in hardware.  This is because each 
PPERM instruction generates eight consecutive bits in the result.  These eight bits can come from any of 
the 64 bits in the source and can be deposited into different contiguous eight bits in the destination.   
 
The GRP instruction requires a hierarchical lgn-stage bit gathering network in hardware.  This is due to the 
fact that a GRP instruction needs to separate bits in the source into two groups based on their corresponding 
configuration bits.  The separation process has to be done in a recursive manner.   
 
To implement the CROSS instruction, a full Benes network is needed in hardware.  The hardware required 
for the OMFLIP instruction is much simpler.  Because there are only two distinct stages in an omega-flip 
network, and each OMFLIP instruction can perform the operation of two stages, the hardware only needs to 
implement four stages, two omega stages and two flip stages.  For the execution of each OMFLIP 
instruction, we use two of the four stages and bypass the other two.  The rough transistor counts for the 
hardware required for these four permutation instructions are given in Table 3. 
 

Table 3: Transistor  counts for  the hardware required for  the four  permutation instructions 

 PPERM GRP CROSS OMFLIP 
Number of transistors 7k 68k 4.6k 3k 

 
The hardware cost for the GRP instruction for 64-bit permutations is an order of magnitude larger than the 
other three instructions.  OMFLIP needs the fewest transistors, and potentially the smallest area. 
 
5. Per formance 
 
  Figure 11a shows the minimum instruction sequence for permuting 64 bits using either GRP, CROSS or 
OMFLIP instructions, assuming we need to load the six configuration registers.  This takes lgn+2=8 steps, 
with a 2-way superscalar machine, assuming the base register for the address of the LOAD instructions can 
be set with one load offset (LDO) instruction.   Figure 11b shows that PPERM would take n/8 +6=14 steps, 
with the same assumptions.  Without any new permutation instruction, the table lookup method (see 
Section 1.1) used in current microprocessors would take 16 steps on a 2-way superscalar machine ( Figure 
11c).  We assume that instructions like EXTR in PA-RISC [11] are available to extract the index for 
loading a table entry, and the base register for each of the eight tables can be set with one LDO instruction.  
In  Figure 11d, we show the instructions required for one table lookup.  We do not consider higher degrees 
of superscalar execution for this paper since the additional hardware cost of multiple LOAD pipes and 
permutation functional units may be too high for internet information appliances. 
 
The number of instructions and cycles required for 64 bit permutations with the different methods is 
summarized in Table 4.  The cycle counts assume no LOAD delays and no cache misses.  GRP, CROSS 
and OMFLIP have the same performance in all cases.  Although PPERM and table lookup have similar 
numbers, the configuration bits to be loaded for PPERM are only eight words (see Table 6), which typically 
fit in one or two cache lines.  Hence loading configuration bits for PPERM instructions is much less likely 
to cause cache misses than loading random entries from eight different tables occupying 16 Kbytes in the 
table lookup method.  
 
In Table 5, we compare the number of instructions and cycles for permuting eight 8-bit subwords in a 64-
bit register.  GRP, CROSS and OMFLIP reduce the number of instructions by half.  PPERM and table 
lookup cannot take advantage of fewer elements with the larger subword size.  They do the subword 



permutations in the same way as doing bit permutations.  Since the number of elements in these 
permutations is only eight, it is reasonably efficient to do 8-bit subword permutations using existing 
instructions (see last column).  Each subword is taken from the source register with an EXTRACT 
instruction as in PA-RISC [11], and put in the destination register with the DEPOSIT instruction.  Only 16 
instructions are required for eight subwords.  
 

a.  GRP,  CROSS,  OMFLI P b.   PPERM   c.   Tabl e Lookup  
    ( 2=way ss)   ( 2- way ss)    ( 2- way ss)  
 
 1 LDO    LDO    LDO EXTR 
 2 LD             LD                      LDO EXTR 
 3    LD   GRP                LD    PPERM          LD LDO 
 4    LD   GRP                LD    PPERM             LD EXTR 
 5    LD   GRP                LD    PPERM    LDO   EXTR 
 6    LD   GRP                LD    PPERM            LD   LDO 
 7    LD   GRP                LD    PPERM         LD   EXTR 
 8         GRP                LD    PPERM          LDO   EXTR 
 9                            LD    PPERM          LD    LDO 
10                            OR    PPERM        LD EXTR 
11                            OR    OR   LDO EXTR 
12     OR    OR   LD OR 
13     OR      LD OR 
14     OR             OR OR 
15         OR OR 
16         OR 
 
 d.  One t abl e l ookup 
  
 1 LDO TABLE( R27) ,  R2 ;  Load t he addr ess of  t he t abl e i nt o R2 
 2 EXTR R9,  7,  8,  R3 ;  Ext r act  t he i ndex i nt o R3 
 3 LD ( R2,  R3) ,  R4 ;  Load a 64- bi t  ent r y  i nt o R4 

 Figure 11:  Scheduling instruction sequences for  Permutations 

Table 4: Number  of instructions for  a 64-bit permutation 

 PPERM GRP CROSS/OMFLIP Table Lookup 
# of instructions without LDs 15 6 6 

# of instructions with LDs 24 13 13 
31 

# of cycles on 2-way ss with LDs 14 8 8 16 
 

Table 5: Number  of instructions for  an 8-bit subword permutation 

 PPERM GRP CROSS/OMFLIP Table Lookup EXTR/DEP 
# of instructions w/o LDs 15 3 3 
# of instructions with LDs 24 7 7 

31 16 

# of cycles on 2-way ss with LDs 14 5 5 16 9 

 

Table 6: Storage requirement on 64-bit processors 

 PPERM GRP CROSS/OMFLIP Table lookup 
Storage requirement (bytes) 64 48 48 16K 
 
GRP, CROSS and OMFLIP only need 6*8=48 bytes of memory for configuration information, PPERM 
needs 8*8=64 bytes of memory for configurations, whereas the table lookup method in current 



microprocessors needs 16 Kilobytes of memory for the eight tables describing one 64-bit permutation.  Not 
only is this three orders of magnitude more storage, but these LD instructions for the table lookup method 
are much more likely to miss in the cache.  If a cache miss costs 50 cycles, then even if only two out of the 
eight LD instructions miss for the table lookup method, this can cause an extra 100 cycles of execution 
time, resulting in two orders of magnitude more in execution time to perform a 64-bit permutation. 
 
Figure 12 shows the speedup of DES using the new permutation instructions over traditional software 
(without new ISA).  We assume a 64-bit processor with 2-way superscalar issue and one load/store unit.  
We consider two cache configurations:  Cache 1 may represent an internet information appliance, while 
Cache 2 may represent a web-server.  Cache 1 is a one-level split cache system, with 16 Kbytes of data 
cache memory, and a cache miss penalty of 50 cycles.  Cache 2 is a two-level cache system:  L1 cache is on 
the processor chip with a miss penalty of 10 cycles; L2 is off-chip with a miss penalty of 50 cycles. Cache 
2 has 16K bytes L1 data cache and 256K bytes unified L2 cache.  We use table lookup as the baseline for 
comparison because we find that table lookup is almost as fast as, and sometimes faster than, the most 
optimized DES routine we can find in libdes for 64-bit processors.  
 
Figure 22a shows that the speedup of encryption more than doubles for Cache 1, and improves by 12% to 
17% for Cache 2.  The new permutation instructions perform very well on systems with a small cache, even 
though we have optimized the baseline program to eliminate all permutations in the encryption kernel, 
except the initial and final permutations.  In the table lookup method, the P-box permutation in the DES 
encryption kernel is eliminated by combining it with the S-box substitution, which is more efficient when 
permutation instructions are not available in the processor.  When permutation instructions are available, 
the S-box tables are much smaller, since the P-box permutation can be achieved efficiently with these new 
permutation instructions.  The much larger tables in the table lookup method results in more cache misses, 
which degrade performance. 
 
Figure 22b shows that the speedup of key generation increases tremendously from 11 to 16 times, because 
this routine is dominated by the time taken for performing permutations. 
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a) Speedup of DES encryption/decryption. 
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b) Speedup of DES key scheduling 

 

Figure 12: Speedup of DES  

 
6. High-Level Language Specification  

 
We need to provide programmers with a high-level language interface so that they can specify permutations 
in a convenient manner without worrying about how the permutations are actually performed by the 
processors.  We also need to add support in the compiler or macro assembler so that it can translate the 
programmers’  high-level permutation specifications into the corresponding permutation instruction 
sequence.  For example, a permutation may be specified explicitly by either a new high-level language 
statement, or a macro call, of the form 

 
Permute(m, r, int spec[]), 
 

where m is the number of subwords to permute, r is the number of bits in a subword, and spec is an 
array of integers that specifies the desired order of the subwords from the source register in the 
permuted result.   
 

During macro expansion, this is translated to the available permutation instructions, as described in Section 
3.  Based on the type of permutation instructions supported by the target processor, the compiler or macro 
assembler invokes the corresponding instruction generation algorithm to produce the instruction sequence 
for the desired permutation.  In case no permutation instructions are supported by the target processor, the 
compiler can always fall back to the traditional AND/SHIFT/OR or EXTRACT/DEPOSIT methods, or 
generate tables for permutation by the table lookup method. 

 
7.  Conclusions 
 
We defined four permutation methodologies and created innovative permutation instructions for 
performing arbitrary n-bit permutations efficiently with software running on programmable processors.  We 
characterized the performance of these different permutation methodologies, and the tradeoffs between 
them.  We also described how arbitrary permutations could be specified in high-level software by means of 
an array of integers, in a processor-independent way. This can be used by compilers or macro assemblers to 
generate efficient sequences of permutation instructions to achieve any arbitrary permutation, using the 
permutation instructions available in the target processor. 
 



 

Table 7: Summary 

 Table 
Lookup 

PPERM GRP CROSS OMFLIP 

performance for arbitrary n-
bit permutation 

slowest  medium 
 (O(lgn)) 

fast  
(lg n) 

fast 
(lg n) 

fast 
(lg n) 

permutations of fewer number 
(r<n) of multi-bit subwords 

inefficient  inefficient 
(O(lgn)) 

efficient 
(lgr ) 

efficient 
(lg r ) 

efficient 
(lg r ) 

scalability to 2n bits inefficient inefficient efficient less efficient less efficient 

permutations with bit 
repetitions 

 efficient efficient not possible not possible not possible 

area for permutation 
functional unit 

system 
memory 

medium  largest small smallest 

memory requirements 
(for n=64 bits) 

large 
(16 Kbytes) 

small 
(64 bytes) 

very small 
(48 bytes) 

very small 
(48 bytes) 

very small 
(48 bytes) 

single-cycle permutation 
primitive 

not 
applicable 

yes maybe 
(complex 
circuitry) 

yes 
(with 
caveats) 

yes 

  
Table 7 summarizes the relative advantages and disadvantages of our permutation methodologies and the 
table-lookup method, for achieving any arbitrary permutation of n bits.  All four permutation instructions, 
PPERM, GRP, CROSS and OMFLIP, are standard 2-source 1-destination instructions. GRP, CROSS and 
OMFLIP can perform any n-bit permutation in lgn instructions, not counting loading of the configuration 
registers.  If we count the loading of the configuration registers, then it takes 2lgn instructions, but only 
lgn+2 cycles, if the processor is two-way superscalar.  PPERM is less efficient in terms of instructions and 
cycles needed.  Without at least one of these new permutation instructions, the fastest way to perform 64-
bit permutations is with Table Lookup methods, which can be one to two orders of magnitude larger, 
depending on the cache configuration. 
 
All four methods can also perform permutations of any subword size that is a power of two, with the same 
permutation functional unit.  GRP, CROSS and OMFLIP require only lgr instructions, where r is the 
number of subwords to be permuted.  Hence, they are efficient in permuting a smaller number of multi-bit 
subwords in the n-bit register.  PPERM and the table lookup method cannot reduce the number of 
instructions needed to permute fewer elements. 
 
The GRP instruction is the most efficient in terms of scaling up to perform a 2n-bit permutation, using n-bit 
registers.  CROSS and OMFLIP require more instructions, and PPERM is even more inefficient.  The 
PPERM instruction is advantageous in that permutations with repetitions are handled with the same ease as 
permutations without repetitions of elements.  None of GRP, CROSS and OMFLIP is defined to handle 
permutations with repetitions. 
 
The OMFLIP permutation functional unit is the smallest in terms of the number of transistors, followed by 
CROSS, PPERM, with GRP having the most complex hardware implementation. All four instructions need 
three orders of magnitude less storage than the table lookup method for performing permutations in today’s 
microprocessors.  OMFLIP and PPERM can be implemented in a single cycle, assuming a cycle is 
typically one or two times the time taken for an addition of two n-bit integers.  CROSS and GRP may be 
implementable in one cycle, but GRP will require complex circuitry to achieve single-cycle execution. 
 



Only one of the four permutation instructions, PPERM, GRP, CROSS or OMFLIP needs to be 
implemented in a processor, since they overlap in functionality.  We have shown the advantages and 
disadvantages of each.  
 
By providing the ability to do fast permutations in software, we not only speed up current cryptography and 
multimedia programs, but also open the field for new algorithms using these powerful yet simple 
permutation primitives.  This facilitates much faster software cryptography and multimedia processing, 
combining high performance with flexibility in secure multimedia information appliances and servers. 
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