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Deformable Models with Parameter Functions for 
Cardiac Motion Analysis from Tagged MRI Data 

Jinah Park,* Dimitri Metaxas, Member, IEEE, Alistair A. Young, and Leon Axel, Member, IEEE 

Abstract-We present a new method for analyzing the motion 
of the heart’s left ventricle (LV) from tagged magnetic resonance 
imaging (MRI) data. Our technique is based on the development 
of a new class of physics-based deformable models whose parame- 
ters arefunctions. They allow the definition of new parameterized 
primitives and parameterized deformations which can capture 
the local shape variation of a complex object. Furthermore, these 
parameters are intuitive and require no complex post-processing 
in order to be used hy a physician. Using a physics-based 
approach, we convert the geometric models into dynamic models 
that deform due to forces exerted from the datapoints and 
conform Lo the given dataset. We present experiments involving 
the extraction of the shape and motion of the LV’s mid-wall 
during systole from tagged MRI data based on a few parameter 
functions. Furthermore, by plotting the variations over time of the 
extracted LV model parameters from normal and abnormal heart 
data along the long axis, we are able to quantitatively characterize 
their differences. 

I. INTRODUCTION 

LTERATION of heart wall motion is a sensitive indicator 
of heart disease such as ischemia [32],  which is typically 

caused by occlusion of a coronary vessel: The local anemia 
caused by the obstruction of the blood supply results in 
abnormal ventricular wall motion even before any significant 
clinical symptoms develop [35]. Moreover, abnormalities in 
heart wall motion are taken very seriously by physicians. 
because they can be life threatening injuries. However, since 
the heart undergoes complex motion, proper characterization 
of its motion still remains an open and challenging research 
problem 

The main difficulties in assessing heart wall motion come 
from two sources: 1) limitation of conventional cardiac imag- 
ing methods in terms of providing good datasets for motion 
studies and 2) the absence of computational techniques for 
automatic extraction of the three-dimensional (3-D) heart wall 
motion parameters in a way that is useful to physicians. 
Recently, the introduction of magnetic tagging [2], [391 in 
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magnetic resonance imaging (MRI) has provided a powerful 
tool to study the heart wall motion. The MR tagging methods 
provide temporal correspondence of material points on fea- 
tureless structures like the heart wall in a noninvasive manner. 
Unfortunately, the tagged MR images are not easily analyzed 
with simple qualitative viewing, while current quantitative 
analysis techniques are not only time consuming, but also yield 
data that may not be easily interpreted for diagnosis. 

A precise model that can reflect the mechanics of ventricular 
myocardium would provide a better understanding of the 
complex regional changes under pathological conditions. In 
addition, it is also important that the model be constructed 
and analyzed in close to real-time to be useful in a clinical 
environment. The goal of our work is to develop computational 
techniques for automatic extraction of the 3-D heart wall 
motion parameters that are not only compact, but also can give 
accurate descriptions of ventricular function based on tagged 
MR images. 

A. Previoiis Work 

In order to quantify the complicated motion of the left 
ventricle (LV) and to interpret its measured deformation, it 
is necessary to represent the LV by a model. Simple analytical 
shapes like spheres, ellipsoids, or cylinders are often used to 
approximate the shape and motion of the LV [I], [6], [13]. 
However, since they are formulated in terms of very few 
parameters, they can offer only a gross approximation to the 
LV motion. 

Recently, 3-D surface models and associated computer 
vision or graphics techniques have been developed to capture 
the shape and motion of the inner or the outer wall of 
the LV from medical image data. These models are either 
finite element meshes derived from a polyhedron-based surface 
reconstruction of a stack of cross sections [8], [ll],  physics- 
based elastic models [9], [12j, [15], [20], [33j, bending and 
stretching models [3], [3 11, or axisynimetrical geometric mod- 
els with augmented local details [4], [ l X ] .  Some of above 
techniques are briefly described as follows: 

Amini and Duncan [3] developed bending and stretching 
thin-plate models for motion tracking of the LV wall, 
which allow point matching based on the amount of the 
bending energy. Shi et al. [31] further developed the 
models and presented results of the shape-based tech- 
nique applied to MRI data showing motion trajectories 
of selected endocardial points. 
Pentland et al. [33j, [28] developed a deformable model 
based on modal analysis, which can decompose the 
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motion into modes, and applied the technique to recover 
the nonrigid motion of a heart from 2-D X-ray images. 
Extending their work, Nastar and Ayache [20] performed 
“spectrum” analysis in modal space for various LV’s from 
radio-nuclide images in order to classify nonrigid motion. 
Friboulet et al. [ l  I ]  constructed a polyhedral model from 
a set of cross section slices obtained from volumetric 

(a) (b) 

MRI data. The motion of the model was approximated Fig. 1. (a) Superquadric ellipsoid. (b) Primitive with parameter functions. 

by an affine transformation with translation, rotation, and 
dilation motion parameters. 
Huang and Goldgof [12] developed a spring-mass, 
adaptive-size mesh model and applied it to computed 
tomography (CT) data of a canine heart during a cardiac 
cycle to track the LV motion based on the displacement 
of corresponding model nodes at different time points. 
By adapting the deformable balloon model of Cohen and 
Cohen [9], McInerney and Terzopoulos [15] developed a 
3-D deformable model composed of triangular C1 finite 
elements based on the physics-based framework devel- 
oped by Metaxas and Terzopoulos [17]. They applied it 
to CT data of a canine heart in order to reconstruct the LV 
shape at different time frames during one cardiac cycle. 
Bardinet et al. [4] estimated in detail the LV shape by 
using the technique of free-form deformations [29] to 
model local deformations in deformable superquadrics 
[51. 

The main limitation of these techniques is that they do not 
provide intuitive motion parameters to describe the rigid and 
nonrigid motion of the LV. Most of the techniques [31, 181, [9], 
[12], [lS], [IS], [31], provide only local displacement vectors 
which require nontrivial post-processing to be useful to a 
physician, and they are good only for qualitative visualization. 
In contrast to these approaches, models like [4], [ l l ]  are 
formulated in terms of very few parameters that can offer 
only a gross approximation to the LV motion. There have 
been some attempts to characterize the LV motion with a small 
number of parameters [20], [33] ,  but these parameterizations 
do not correspond to the geometry of the LV closely enough 
to provide better understanding of the LV motion. 

Moreover, most techniques [31, [4j, [ I l l ,  [12], [IS], [IS], 
1201, [33] ignore the twisting or wringing motion of the 
LV known to occur during systole, since the input dataset 
generally does not provide temporal correspondence between 
frames. In order to accurately capture the heart wall motion, 
material points on the myocardium must be located and 
tracked. Therefore, techniques based on such marker-based 
methods, such as tagged MRI, can provide the most accurate 
motion of the left ventricle of a heart. They include the finite 
element models of Young et al. [36] and Moore et al. [19], and 
the multidimensional stochastic model of Denney and Prince 
[ 101. However, these representations do not directly lend 
themselves to an understanding of the underlying kinematics 
in an intuitive way. The parameters of the models are local 
displacements, resulting in a large number of parameters, and 
therefore the physical interpretation of the parameters can be 
difficult. The 3-D strain tensor in [36j, for example, has three 
normal components and three shear components, each of which 

the complex relationship between these components and other 
motion parameters, it is desirable to characterize the motion 
in terms of a small number of physical parameters without 
sacrificing sufficient accuracy. 

To overcome the problems of the above techniques, namely 
the accurate estimation of the LV surface shape and motion 
and the extraction of parameters that can be easily interpreted 
by physicians, we have developed a class of deformable 
primitives whose global parameters are functions (see also 
[21], [22]). Our technique describes the time-varying shape, 
deformation, and motion of the LV in terms of a few global 
parameter functions, such as twisting, whose values vary 
locally. In this way, the complex motion of the heart is 
described by the same small number of parameters, whose 
values may vary from region to region. Furthermore, these 
parameters can be used by a physician directly without further 
complex processing. 

B. Proposed Model: 
Deformable Models with Parameter Functions 

We present a new family of parameterized deformable 
primitives suitable for applications where a complex shape 
needs to be described in terms of a small number of intuitive 
parameters. These deformable primitives are parameterized 
through a few number of parameters which are functions, and 
therefore each parameter’s value varies across the shape of 
the primitives, as opposed to being constant. Through the use 
of appropriate parameterization, the axes of our deformable 
primitives can be curved. This is a major generalization com- 
pared to other parameterized primitives such as superquadrics 
and cylinders, commonly used in the vision literature. Even 
though generalized cylinders [ 141 allow shapes with curved 
axes, they do not offer a representation of shape in terms of a 
few parameters. Furthermore, our models can represent open 
parameterized shapes’ suitable for modeling the shape and mo- 
tion of the LV. Fig. l(b) shows an example of the deformable 
primitives with parameter functions whose shape is defined by 
generalizing the parametric equations of an ellipsoid shown in 
Fig. l(a). The complex nonsymmetric shape in Fig. l(b) was 
created by varying only six parameter functions. 

While these new shape primitives can be used in many 
applications, this paper describes shape and motion estimation 
results for the LV. By incorporating the geometric definition 
of the models into the physics-based framework developed 
by Metaxas and Terzopoulos [16], [17j, we create dynamic 
models that deform due to forces exerted from 3-D tagged 
datapoints, thereby causing the models to conform to the given 
dataset. The LV extracted parameters, plotted in parameter 

may vary throughout the LV wall. In order to understand ’Not a closed surface, but more like a cup 
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graphs, can then be directly used for analysis by a physician. 
We applied our technique to various subjects and analyzed 
the results of our parameter extraction. These results quantita- 
tively verified qualitative knowledge about the LV known to 
physicians. Furthermore, we present a method for visualizing 
the model fitting results. 

In the following sections, we first define the geometry of 
the deformable models with parameter functions (DMPF): and 
then describe the physics-based framework through which the 
geometric models are converted into dynamic models. Finally, 
we present experiments where we applied our technique to 
LV datasets from healthy volunteers and patients with hyper- 
trophic cardiomyopathy. 

11. MODEL DEFINITION 

The class of DMPF allows the use of global parameters 
that can characterize an object's shape in terms of a few 
parameter functions. The model is a 3-D surface2 whose 
material coordinates U = ( U ,  v)  are defined in a domain R. The 
positions of points on the model relative to an inertial frame 
of reference in 3-D space are given by a vector-valued, 
time-varying function x(u, 1) = (x(u> t ) ;  y(u.  t ) ;  z(u.  t) jT: 
where T denotes transposition. We set up a nonineriial, model- 
centered reference frame 4 and express the position of a point 
on a model as 

x = c + R s  

where the center of the model, c ( t ) ,  is the origin of q5 and 
the rotation matrix R(t) gives the orientation of 4 relative to 

with a reference shape s (see Fig. 2). Thus, s (u , t )  gives 
the positions of points on the model relative to the model 
frame. Local deformations [17] are not used, since the global 
deformations s will be defined based on parameter functions 
capable of capturing the local variation of the LV shape. 

the scope of this paper (see [23] and [24]). 
'The model can be generalized into a volumetric model, but it is beyond 

We define the reference shape as 

s = T ( ~ ; P ~ ( u ) , P I ( u ) , . . . )  

where e can represent either a set of 3-D points in space3 or 
a geometric primitive e(u; QO(U) ,  a l ( u ) , .  . .) defined para- 
metrically in U and parameterized by the variables .;(U). 

The shape represented by e is subjected to the deformation 
T which depends on the deformation parameter functions 
OI(u). Although generally nonlinear, e and T are assumed 
to be differentiable4 so that we may compute the Jacobian of 
s.T may be a composite sequence of primitive deformation 
functions T(e) = TI(T2(. . .Tn(e))) .  We concatenate the 
deformation parameters into the vector q, 

q s  = (~o(~)~~l(~),"~,P~(~),~l(~);~~)T. 

The parameters a; and p; are functions of U, instead of 
constants as in our previous work [17]. This definition allows 
us to generalize definitions of primitives (e.g., superquadrics, 
cubes) and parameterized deformations (e.g., twisting), as will 
be shown in the following section and was demonstrated in 
Fig. l(b). 

A.  Dejining the Reference Shape 

Our technique for creating primitives with parameter func- 
tions can be applied to any parametric primitive, by replacing 
its constant parameters with differentiable parameter func- 
tions. For example, we define a generalized primitive e = 
(e l .  ep. to be used for modeling the LV wall as follows: 

e = e(u; ao(u), a1(u), Qz(U), a3(u)) 
a1 (U) cos U cos '11 

(1) 

where -5~12 5 U 5 n/4,-?r 5 'U < ?r,no(u) > 0, and 
0 5 al(u) ,  a2(u),  u3(u)  5 1. This primitive is created from 
an ellipsoid primitive e ,  

a1 cos U cos v 
(2) 

where - ~ / 2  5 7~ 5 nTr/2,--?i 5 'U < x , a o  > 0, and 
0 5 al; a2, a3 5 1, by replacing its constant parameters with 
parameter functions. a0 is a scale parameter and a l l ,  a2, and 

31n that case, the material coordinates U coincide with the Cartesian space 

41n the case where e is a set of points, the above assumption does not 
in which the 3-D points are expressed. 

apply. 
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gp LV Midwall 

(a) (b) 
Fig. 5.  SPAMM images: (a) Short-axis view, (b) early systole, and (c) end systole 

(a) (b) 

Fig. 6. Fitting a model to data of the LV midwall from a normal heart. 

a3 are the aspect ratio parameters along the 2-, y- and z-axes, 
respectively. Note that the ranges of the U and I I  parameters for 
our generalized primitive (1)  are restricted to a subset of those 
for an ellipsoid primitive defined by (2) ,  in order to construct 
an open parameterized primitive. The orientation of a model 
used for our application is schematically drawn in Fig. 3. The 
model-centered reference frame q!~ is chosen at the center of the 
LV with the y axis pointing toward the right ventricle (RV). 
The material coordinates U = ( U ,  w )  are depicted in Fig. 3(b), 
where U runs from the apex to the base of the LV, and w starts 
and ends at the point where the midseptum is located. Note 
that as shown in Fig. 3(b), the model is tessellated into planar 
triangular elements. 

Our formulation of deformations with continuous parameter 
functions is general and can be applied to any underlying shape 
e .  For our application, we will define a model which includes 
parameterized twisting and axis offset deformations. 

Given a primitive, e, we define parameterized twisting 
along the model axis z, which results in the global shape 
S t  = (S1,S2.S3)T 

where .(U) is the twisting parameter function along the z axis. 
Finally, we apply offset deformations which allow the axis to 
be nonstraight in the :x: and y directions. In this way we can 
recover the LV shape more accurately. The resulting reference 
shape s is expressed as follows: 

where elo (U) and e2, (U) are axis-offset parameter functions 
in the .z' and TJ directions, respectively. 

For the applications presented here, we have defined seven 
parameter functions for our  model^.^ Therefore, the deforma- 
tion parameter vector q, becomes 

The set of these parameters was sufficient to characterize 
the LV shape and motion for our application. We have also 
experimented with deformations such as oblique (nonplanar) 
bending (see [21]), but did not find them clinically relevant 
given our data. Note that the above defined parameters are 
carefully chosen so that they represent independent degrees of 
freedom. 

Without loss of generality, we will assume that all our model 
parameters are functions of U [i.e., ai(.) = ai(.), /"i(u) = 
a ( u ) ] ,  allowing them to vary from the apex to the base 
of the LV. We may define the parameters as functions of 
circumferential position (i.e., v )  as well. However, it was 
not necessary for the experiments provided in this paper. The 
choice of the parameter functions depends on the application. 
For the applications in this paper we assume that the parameter 
functions are piecewise linear along 7 ~ ,  so we do not impose 
any shape continuity constraints on the LV shape and motion. 
In other words, the model deforms based on the motion 
dictated by the dataset and not on the imposition of constraints 
such as artificial elastic properties. It is difficult to obtain 
elastic properties for the myocardium, since they may vary 
among hearts and cannot be measured from MRI data. 

5Refer to Section IV-B and Fig. 7 for the interpretation of each parameter 
function. 
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111. KINEMATICS AND DYNAMICS OF THE SYSTEM 

The velocity of points on the model is given by [30] 

. d(x) d ( c + R s )  x = - =  
d t  d t  
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where J is the Jacobian of the primitive function. Therefore, 
we can write 

X = [I B RJ]q= Lq 

where L is the model's Jacobian matrix which maps 
where B = (. . .  , B,, . .  .)T is the vector of rotational coordinates 
of the model and B = [. . .  d(Rs)/dBi.. .]. 

the model's parameter space into 3-D space, and q = 
(qz,ql,q:)' is the vector of the model's degrees of 
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freedom. q, = c is the translation vector, and 9 0  is the 
vector of the model's rotational parameters. Note that we 
represent the rotation vector qe as a quaternion [7]. 

The goal of fitting the model to datapoints is to recover the 
vector q. This is achieved by carrying out the fitting procedure 
in a physics-based way-by enabling the data to apply traction 
forces onto the surface of the model [34]. 

A. Simpli$ed Lagrange Equations of Motion 

We can make the model dynamic in q, in general, by 
introducing mass, damping, and a deformation strain energy 
[16], [17]. The governing Lagrange equations of motion are 
second-order differential equations given as follows 

Mq+ Dq+ Kq = g, + fq ( 3 )  

where M, D,  and K are the mass, damping, and stiffness 
matrices, respectively. g ,  are inertial forces arising from 
the dynamic coupling between the local and global degrees 
of freedom, and fq(u , t )  are the generalized external forces 
associated with the degrees of freedom of the model. In 
shape estimation problems [16], it makes sense to simplify the 
motion equations while preserving useful dynamics by setting 
the mass density to zero to obtain 

B. Model Force Computation 

The generalized forces, fq, are computed using the formula 
[I61 

fq = LTfdu.  .I' 
These forces modify the components of q, where f (u, t )  is the 
3-D force distribution applied to the model. Approximating 
each triangular element of the model with a plane, we deter- 
mine the closest point p on the model for each given datapoint 
z. The force that z exerts on the model is computed from 

fz = Y(Z - P) (6) 

where y is the strength of the force. We then linearly distribute 
f, to the nodes XI, xp, and x3 of the associated triangular 
element based on the formula 

f,, = m,f,. a = 1 ,2 ,3  (7) 

where the vi, are computed from the solution of the following 
linear system 

c m 2 x 2  = P (8) 

Ern, = 1.0. (9) 

2 

and their sum is such that 

2 

Therefore the following equation is also true 

m,f, = f,. (10) 
2 

Intuitively, each of the m,'s is a weight given to each element 
node and the vector p is the location of the center of mass 
of the element. 

Since the tagged dataset provides correspondence over time 
of individual 3-D points, we apply the force distribution 
algorithm only once for the initial frame. In subsequent frames, 
the corresponding points will exert a force to the same point 
on the model as computed in the first frame. In this way we 
can recover the LV twisting motion. 

Dq + Kq = f,. (4) 
Iv. MODEL FITTING TO TAGGED DATA 

The above equation yields a model that has no inertia and 
comes to rest as soon as all the applied forces equilibrate or 
vanish. We use D as a stabilizing factor only, and we do 
not impose any physical damping which cannot be measured 
from our data. Therefore, we assume that D is diagonal and 
constant over time. 

Given that the datapoints from medical images are relatively 
accurate, and we want to avoid undesired smoothing caused by 
the model, we further simplify (4) by introducing null stiffness 
to the global parameters of our model (this is like a plastic 
deformation where there is no resistance to deformation). 
Finally, the resulting equation of motion is 

Dq = fq. ( 5 )  

For fast interactive response, a first-order Euler method [26] 
is employed to integrate (5). 

A. Data Acquisition 

We apply our technique to SPAMM data sequences from 
two normal hearts and two abnormal hearts with hypertrophic 
cardiomyopathy. The data were obtained from the Department 
of Radiology at the University of Pennsylvania and were 
collected during the LV systole over five intervals. When 
a saturation pulse sequence is applied prior to imaging, the 
amplitude of the magnetization varies spatially, in a sinusoidal- 
like fashion. At the minima of this sinusoidal-like variation of 
the magnetization, dark lines appear. If we continue to image 
the tissue after the saturation pulse sequence is applied, we can 
see those dark lines move, allowing us to track the motion of 
the underlying tissue. Fig. 5(b) and (c) shows short-axis views 
of an LV at early systole and toward end-systole, respectively. 
One drawback of the current MR tagging technique is that the 
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tracking is possible only during systole or diastole at one time 

magnetization signal over time as can be observed in Fig. 5. 

TABLE I 
PARAMETERS (i.e., not for a complete heart cycle), due to the decay of the 

The SPAMM technique provides data throughout the heart 
Parameters Representation 

wall. However, since our modeling technique is surface based, 
we chose to fit the LV mid-wall motion since this is most 
accurately defined by the SPAMM imaging technique. The 
datasets used in the current study comprised 400 material 
points each, whose position described the geometry and motion 
of the mid-wall surface of the LV during systole. The mid-wall 
data was obtained from 3-D reconstructions of the geometry 
and motion of the LV performed previously [36]-[38].  Briefly, 
the locations of the inner and outer boundaries of the LV were 
defined manually on each frame, and the tags were tracked 
using a semiautomatic procedure based on snakes [ 3 8 ] .  A 
high-order finite-element model was fitted to the locations of 
the inner and outer LV contours at end-diastole. This model 
comprised 16 3-D finite elements (40 nodes) with bicubic 
interpolation in the circumferential and longitudinal directions 
and linear interpolation in the transmural direction [36].  The 
model then deformed to match the displacements of the tracked 
tag data, based on a least-squares based approach. The mid- 
wall surface of the model was sampled to provide a set of 
material points equally spaced around the surface. This data 
was then used as input for the experiments presented in the 
following section. 

B. Model Fitting to Tagged Datapoints over Time 

Given a set of tagged 3-D datapoints from the LV mid-wall 
during systole, we first fit a model to the initial time frame (i.e., 
end-diastole). This is done by first overlaying a simple model: 
which resembles an ellipsoid, onto the data. Initially, the model 
frame is placed at the center of mass of the datapoints (square 
dots in Fig. 6). The forces acting on the model will cause 
it to translate and to rotate, to find a suitable position and 
orientation as shown in Fig. 6(a). Then the nodes on the 
model are pulled toward the datapoints by the generalized 
forces, described in Section 111, concurrently updating all 
the deformation parameter values. When all applied forces 
equilibrate or vanish, or the error of fit (the distance between 
a datapoint and the model surface) diminishes below an 
acceptable threshold, the model comes to rest. Fig. 6(c) shows 
our model fitted to the data. Fig. 6(b) shows, for demonstration 
purposes only, a model with constant parameters (an ellipsoid) 
fitted to the data. The inadequacy of such a model to obtain 
an accurate fit is obvious, and we can easily observe the 
improvement of fitting in Fig. 6(c) compared with Fig. 6(b). 
The length of the LV is approximately 100 mm. The average 
distance error of fit for Fig. 6(b) is 1.3 mm and the rms error 
for Fig. 6(b) is 0.83 mm, while the average distance error for 
Fig. 6(c) is 0.86 mm and the rms error for Fig. 6(c) is 0.48 mm. 

The model fitted to the data from the first time frame is then 
used as the initial shape to fit the data from the second time 
frame. Then, the model fitted to the second time frame is used 
as the initial shape to fit the data from the third time frame, 
likewise, for the subsequent frames. Since the datapoints in 
subsequent time frames are tagged, the model deforms to the 

a 1 ( u ) .  U - ? ( U )  radial contractions 
longitudinal contraction 

twisting about the long axis 
0 3  ( U )  

4.1 
el,.  ezn ill) long-axis deformation 

corresponding points in the next time frame. Fig. 9(a) shows 
the model shown in Fig. 6(c) from a different viewpoint, and 
Fig. 9(b)-(e) shows the model fitted to subsequent time frames 
during systole. 

As described in Section 11, our model is defined by six de- 
formation parameter functions in addition to global translation 
and rotation. In the process of fitting the model to datapoints 
from subsequent time frames, the global translation is kept 
constant, because the amount of translation of the model frame 
depends on where the center of mass of the datapoints is 
located at each frame. It may be arbitrary and may result in 
false estimation of the deformation parameters especially the 
longitudinal contraction of the LV. But if there is a significant 
translation in zyz, we can recover it, since it will be reflected 
in the e l o ( u ) ;  e2,(u),  and Q ( U )  parameters. We compute the 
global rotation of the model frame before estimating the model 
deformations. In this way, we can estimate separately the 
global rotation and the twisting deformations. 

The scaling parameter function ~ ( u )  is also kept unchanged 
during the fitting of subsequent time frames so that the 
scaling variation is captured by the aspect ratio parameters 
(al(u): u*(u). and ~ ( u ) )  over time. Therefore, our model 
requires only six deformation parameter functions in order to 
characterize the LV motion, as summarized in Table I, and a 
quaternion vector to represent the rotation of the model. 

Deformation Parameters: The parameter functions we use 
in our experiments can be interpreted intuitively without any 
further complex processing. Since our model is in a normalized 
scale, we utilize the scaling parameter function a"(.), which 
is constant over U .  Once the value of uo(u) is set for the 
first time frame (i.e., end-diastole), it does not change during 
subsequent time frames. a l ( u ) ,  Q ( U ) ,  and ~ ( u )  are the aspect 
ratios along the 2-,  g-,  and z-axes, respectively. Since the 
short-axis views of the LV lie in the zy plane, the changes in 
al(u) and a*(u) over time will capture the radial contraction 
of the LV. Likewise, the changes in the aspect ratio along the 
z axis [i.e., ~ ( u ) ]  will capture the longitudinal contraction of 
the LV. The twisting parameter .(U) is defined about the z 
axis which coincides with the long axis of the LV. The axis 
offset parameters e l ,  ( U )  and eZo ( U )  allow the long axis to be 
nonstraight in the 5 and 7~ directions, in order to capture more 
accurately the shape variation over time of the LV. 

Fig. 7 demonstrates the effect of changing the value of each 
parameter function at a particular point U ;  along U .  + A and 
-A denote an increase or decrease, respectively, in the value 
of the relevant parameter function at ui. The dotted lines 
denote the initial shape of the deformable model at U; ,  while 
the solid line denotes its shape after changing the value of the 
relevant parameter function. 
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Fig. 9. Model fitted to SPAMM data (LV mid-wall) from a normal heart during systole: (a) time 1 (ED), (h) time 2, (c) time 3, (d) time 4, and (e) time 5 (ES). 
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Fig. 10. Extracted model parameters as functions of U for the normal heart. 

C. LV Fitting Results 

Fig. 8 depicts how we plot the parameter functions in the 
graphs shown in Figs. 10 and 12. The parameter values are 
plotted as a function of 1 1 ,  which varies from the apex to the 
base of an LV, for each time frame t( t  = 1 . . . 5 ) .  In this way, 
we can observe their variation along the long axis of the LV 
(71) for each time frame. As an example, in Fig. 8 we show 
how to observe the parameter value changes during systole at 
the long axis location U = e. 

I )  Normal LV's in Systole: Fig. 9 shows two different 
views of the model fitting results to data from a normal 
heart taken over five time sequences during systole [from 
end-diastole (t  1) to end-systole (1 = 5 ) ] .  We can easily 
observe the contraction as well as twisting of the model. 
Using the parameter functions, we can quantify the observed 
variations along the long axis of the LV over time. 

Fig. 10 we plots some of the extracted model parameter 
functions over the five time frames for the normal heart. 
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(a) (b) ic) (d) (e) 

Fig. 11. Model titled to SPAMM data from an abnormal heart during systole: (a) time 1 (ED), (b) time 2, (c) time 3, (d) time 4, and (e) time 5 (ES). 
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Fig. 12. Extracted model parameters as functions of U for the abnormal heart. 

Fig. 10(a) and (b) shows the plots of the model’s parameter 
functions a1 (71,) and a 2 ( u ) ,  which are associated with its length 
in the x and y directions, respectively. For each frame we plot 
the percentage of change in each parameter function during 
frame t 1 2 .  . . 5 ,  with respect to its value at the initial frame 
(t  = 1). Fig. 1O(c) shows plots of the displacement of the 
length along the z direction computed from the parameter 
function a 3 ( u ) .  Fig. 10(d) shows plots of the model’s twisting 

parameter function .(U). Finally, Fig. 10(e) and (0 shows 
plots of the model’s long-axis deformation parameters el,, ( U )  

and e2, ( U ) ,  respectively. 
From these graphs, we can quantify the shape and motion of 

the LV during its systole. For example, by studying the graphs 
of al(u) and u ~ ( u )  [Fig. 10(a) and (b)], we can conclude 
that the magnitude of contraction in the radial direction (i.e., 
along the T and y axes) during systole is approximately 
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(a) (b) (c )  (d) 

Fig. 13. Models Rued to four subjects (top: at end-diastole, bottom: at end-systole): (a) volunteer 1, (b) volunteer 2, (c) patient 1, and (d) patient 2 
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Fig. 14. 
and (b) abnormal hearts. 

Extracted LV parameter U I ( U )  at end-systole: (a) normal hearts, 

20-25%. While the graph of a1 shows uniform contraction 
along the long axis of the LV, the graph of a2 shows less 
contraction toward the base of the LV making the base look 
more elliptical. This result supports clinical study findings 
where more stress is exerted at the apex during the LV motion, 
and also there is an increased similarity of the LV base shape to 
an ellipse, during systole. We measure from the graph shown in 
Fig. 10(c), that the total displacement along the z axis, which 
corresponds to contraction along the z axis, is approximately 
18 mm, where the length of the LV is approximately 75 
mm. Therefore, thc contraction along the z axis known as 
longitudinal contraction is approximately 24% for this LV. 
From the graph in Fig. 1O(d), we can quantify the twisting 
motion of the LV during systole to approximately 18". The 
graph shows that there is a small amount of twisting in early 
systole with gradual increases toward end-systole. Finally, 
from the long-axis deformation parameters (or axis offset 
parameters) shown in Fig. lO(e)-(f), we observe that there are 
only slight deformations and most of the deformation appears 
toward its apex and base, capturing a bending motion of the 
long axis. By having the graphs of the parameter functions 
plotted next to the animation, we can quantify and easily 

twist-normal twist-abnormal 
degree degree 

-1 

-20.00- " -20.00 
apex base apex base 

(a) (b) 

Fig. 15. 
(b) abnormal hearts. 

Extracted LV parameter ~ ( u )  at end-systole: (a) normal hearts, and 

characterize a detailed motion of the deforming model along 
its long axis and over time. 

We applied our technique to another normal LV to verify 
the result and we found that the extracted parameter functions 
were very similar to those shown in Fig. 10. The overall 
contraction was approximately 25%. Like in the other normal 
LV, there was less contraction (defined by 112) along the g 
axis toward the base of the LV compared with the contraction 
toward the apex. The second normal heart was known to 
have greater twisting motion during systole. Surprisingly, we 
found that the LV underwent greater global rotational motion 
initially, before twisting. Fig. IS(a) shows the twisting param- 
eters at the end-systole for both normal LV's. The twisting 
angle during systole was quantified to be approximately 20". 

2) Abnormal LV's in Systole: To further evaluate our 
model fitting technique, we also fit our model to abnormal 
heart data from two patients with hypertrophic cardiomy- 
opathy. Abnormal hearts with hypertrophic cardiomyopathy 
are generally bigger in size, but do not pump as well as 
normal hearts. While the results were similar for these two 
abnormal hearts, they were different from those we obtained 
for the normal hearts. Fig. 11 shows the fitted models to one 
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parameter u~(u) parameter .(U) 

time 5(ES) time 1 (ED) time 3 time 4 time 5(ES) time 3 time 4 

(a) (b) (c) 

Fig. 16. Visualizing changes of values in parameter functions. (Darker drawn areas indicate greater deviation from the initial state.) 

of the abnormal heart data, while Fig. 12 shows graphs of 
the model’s parameter functions which may be compared 
with the normal heart’s model parameter functions, shown 
in Fig. 10. The radial contraction of the abnormal heart is 
approximately 15-20%, and the longitudinal contraction is 
approximately 7%6. Note that the overall contraction decreases 
significantly toward the apex. The twisting motion during its 
systole is approximately 27”. Finally, from the graphs shown 
in Fig. 12(e) and (0, we observe that there is greater long-axis 
deformation compared with the normal LV’s. 

Note that all the model fitting results are within an accept- 
able error bound, since rms errors are less than 0.5 mm, where 
the length of the hearts is approximately 100 mm. 

Visualizing Extracted Parameter Functions: In order to 
view the changes in the parameters during systole, we can 
shade the model’ with respect to a certain parameter, as 
shown in Fig. 16(b) and (c). The images in the first row of 
Fig. 16 are the recovered models from the first set of normal 
heart data at different time frames, and those in the second row 
are the recovered models from the first set of abnormal heart 
data. In Fig. 16(a) the models at the initial time frame are 
shaded in white. As the respective parameter value changes, 
the shading in the corresponding part of the model becomes 
darker. Fig. 16(b) and (c) shows the models shaded according 
to the values of the al(u) (radial contraction) and the .(U) 

parameters (twist) at times 3, 4, and 5 ,  respectively. It can 
be easilv observed that. comoared with the normal heart. the 

D. Comparing Normal and Abnormal LV Parameters 

at the 
end-diastole: the first two are of healthy volunteers (VI,  
v2), and the Other two are Of patients (pl ,  p2) with hyper- 
trophic cardiomyopathy. The second row Of Fig. l 3  shows 

The top row Of Fig. l 3  shows four fitted 

the corresponding LV at the end-systole. As shown in the 
figure, the LV’s with hypertrophic cardiomyopathy are bigger 
in size than the normal LV’s. Figs. 14 and 15 show plots 
of extracted parameters at end-systole for two normal, and 
two abnormal LV’s. The extracted parameter functions a1 ( U )  

(shown in Fig. 14), where the radial contraction of a heart 
is captured, show that the abnormal hearts contract much 
less than the normal hearts, especially toward the apex. The 
extracted twisting parameter functions (shown in Fig. 15), 
however, show that the abnormal hearts twist more than the 
normal hearts. It seems that the abnormal hearts twist more, 
perhaps to compensate for their inability to contract as much 
as a normal heart. As we plotted the graphs of extracted 
parameters from the fitting process, not only can we observe 
the results qualitatively, but we can also measure the changes 
quantitatively. Therefore, we are able to quantitatively verify a 
result about the above abnormal hearts that was qualitatively 
evident to physicians. 

abnormal heart has less radial contraction at the end of systole 
[compare changes in shading in Fig. 16(b)], but more twisting 
motion [compare changes in shading in Fig. 16(c)]. We can 
also observe that the parameter variation between the two 
LV’s is greater toward the apex. 

Using this new family of primitives which are defined based 
on parameter functions, we can capture and quantify the LV 
motion and shape changes in an intuitive way. Therefore, we 
can quantitatively compare normal and abnormal hearts and 
present the results in a way that can be readily understood by 
physicians. 

V. CONCLUSION 

We have presented a new class of physics-based deformable 
models that can be used in many applications, among them the 
very important problem of analyzing the shape and motion 
of the LV from tagged MRI data. The significant aspect of 

’Even though we show shaded models, the computer screen representation 
of value changes in the parameter variation is based on the use of different 
colors in addition to shading. 

“Total displacement along the z axis is approximately 7 mm where the 
normalized length of the LV is 107 mm. 
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these new models is that their global parameters are functions 
allowing the representation of complex shapes with a few 
intuitive parameters. For the applications in this paper, we 
were able to eliminate the need for calculation of local 
deformation parameters that require nontrivial processing to 
provide a compact and intuitive representation of shape. We 
demonstrated the applicability of our technique to the shape 
and motion analysis of the mid-wall of the LV for normal and 
abnormal hearts during systole, from tagged data. By plotting 
the parameter functions over time we were able to make 
comparisons between normal and abnormal hearts and verify 
quantitatively, qualitative knowledge about the LV motion 
known to physicians. We plan to apply our framework to mul- 
tiple normal and abnormal hearts to be able to quantitatively 
characterize the ranges of normal LV motion and the effects 
of the various LV diseases to the LV shape and motion. 
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