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Penalized-Likelihood Estimators and Noise Analysis
for Randoms-Precorrected PET Transmission Scans
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Abstract—This paper analyzes and compares image reconstruc- computing the attenuation correction factors leads to resolution
tion methods based on practical approximations to the exact log mismatch between transmission and emission data [6], [7].
likelinood of randoms-precorrected positron emission tomogra- peconstructing images of attenuation distributions (attenuation
phy (PET) measurements. The methods apply to both emission . . ) .
and transmission tomography, however, in this paper we focus maps) from noisy transmission scans has desirable properties,
on transmission tomography. The results of experimental PET such as better noise performance [4], [5] and anatomical
transmission scans and variance approximations demonstrate localization [8]. These attenuation maps are usually reprojected
mat the Shi?Ed T%isfon (SF;])tnzjelthOdt avoids th‘(? V\S/Kg)emaﬂf l()jias gfto form attenuation correction factors. Using the conventional

€ conventional data-wel ea least squares metnoa and .. . . .
leads to significantly Iowe?variance thgn conventional statistical filtered t?ack projection (F,BP)_ method .for reconstruction of
methods based on the log likelihood of the ordinary Poisson (OP) attenuation maps results in biased estimates when the trans-
model. We develop covariance approximations to analyze the mission counts are small [9]. Penalized-likelihood methods,
propagation of noise from attenuation maps into emission images which incorporate the measurement statistics appropriately,
via the attenuation correction factors (ACF’s). Empirical pixel avoid this bias problem.

and region variances from real transmission data agree closel . L

with thg analytical predictions. Both the approximatio%s and they In PET, accidental coincidence (AC) events occur when two

empirical results show that the performance differences between photons that originate in separate annihilations are detected

the OP model and SP model are even larger, when considering within the coincidence timing window [2], [10]. In transmis-

noise propagation from the transmission images into the final sjon scans, photons that originate from different transmission

fhrzﬁsélglcelglnages, than the differences in the attenuation maps sources (rod or ring sources) cause most AC events. The effect
of AC events is most severe for rays with low true-coincidence

_Index Terms—Covariance approximations, penalized max- a1 [11], such as those traversing the thorax. Most PET scans

imum likelihood image reconstruction, randoms-precorrected - -

PET, statistical approximations. are compgnsated fpr AC events py real-time .subtr.actlon of
delayed-window coincidences. This precorrection yields the
proper ensemble mean, but destroys the Poisson measurement

. INTRODUCTION statistics [10]. To preserve Poisson measurements, one should
O obtain accurate images of the radioactivity distributiodcquire separate transmission and randoms sinograms [5], [12].
within a patient, using emission computed tomograph¥lowever, because of hardware and data storage space limita-
one must correct for the effects of attenuation [1] and acdions (and historical momentum), most PET centers currently
dental coincidences [2]. The measured attenuation correctiollect and archive only the randoms-precorrected data.
method is routinely performed in positron emission tomog- The exact log likelihood for randoms-precorrected data
raphy (PET) centers, where transmission scans are usecdaatains infinite summations, so we have previously developed
measure the unique attenuation characteristic of each patierfew practical approximations [13]-[15]. The three simplest
over the slices of interest [3]. Since PET transmission scanfsthese approximations are the focus of this paper: the data-
are performed, essentially, to compute attenuation correctimighted least squares (WLS) method, the ordinary Poisson
factors, rather than being the primary medical interest, it (©®P) model (which ignores the AC corrections), and the
desirable to minimize their durations. Short scans suffer fronsaifted Poisson (SP) model, which matches both the first-
limited number of counts, especially for the projections passiagd second-order moments of the model to the underlying
through high attenuation regions of the patient, which resuligatistics of the precorrected data [13]-[15]. Previous two-
in propagation of unwanted errors and artifacts into emissi@imensional (2-D) computer simulation studies of penalized-
images [4], [5]. Smoothing of the transmission data befofgelihood estimators, based on these approximations, showed
" - received Julv 17. 1998 revised Auqust 3. 1699, This work that the WLS method leads to a large systematic negative
e e o Esos s and the SP method yields attenuation maps with lower
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the WLS method, and lower variance for the SP method. Weean for AC events, but which also increases the measurement
also implemented and evaluated an extremely precise appreariance.
imation to the exact statistical model, based on truncating theLet Y = [Y7, ---, Y] denote the vector of precorrected
infinite summations in the log likelihood. Although the individ-measurements, wheredenotes the vector and matrix trans-
ual images reconstructed by the SP method and the truncgtede. The precorrected measurement forrttie coincidence
exact log-likelihood method differed slightly, the differencedetector pair is
in the ensemble means and variances were insignificant. We
also investigated the reconstruction results for the saddle-point Y, = yprompt _ydelay (1)
(SD) approximation that we introduced previously [14], [15].
We observed very close agreement between the SD metideere Y, and Y, are the number of coincidences
and truncated exact log likelihood for each reconstruction Within the prompt and delayed windows, respectively. Let
our simulations. However, for the transmission scans reported= [#1. -+, pn]’ denote the vector of unknown linear
here the difference between the SD and the SP method watienuation coefficients. For transmission scans, we assume
not statistically significant, so we did not include the StthatYPP* andY,!¢* are statistically independent Poisson
reconstruction results in this paper. Thus, the simple af@ndom variables with mean® andg“, respectively, as
practical SP approximation appears adequate for routine use ombtt )
on randoms-precorrected PET transmission data. E{YPromPit =gP(u) = bpe™ ¥ + 1y, )

In addition to evaluating the attenuation maps themselves, E{ydlvy —5d = ¢, (3)
we also investigated the propagation of noise from the recon-
structed attenuation maps into emission images reconstrucdiere [, (1) = Ej‘il an; ity IS the total attenuation between
using the FBP method. Again, the SP method leads to loweth detector pair. Thew,,; > 0 factors have units of length
variance than the OP method. Interestingly, the difference amd describe the tomographic system geometry. Fhe-0
variances in the emission images was even greater than in fiiefors denote the blank scan counts andsthe> 0 factors
attenuation maps. denote the mean of AC events.

To corroborate the empirical studies described above, weSinceY,PPt andY, !/ are statistically independent and
have also developed analytical approximations to the recdeisson
structed image covariance based on the techniques developed

in [16]. The covariance approximations for the OP and SP E{Y,} =7°() — 7' = boe @ 2 5(0) ()
methods, which had previously been evaluated only with sim- Var{Y,} =7°(p) + 7 = bpe™ " 1+ 25, (5)

ulated data in [16], were found to agree well with the empirical

variance computed from the experimental PET transmissibet y = [y, -- -, yn]’ be an observed realization &fin (1).

scans. Since the measurements are independent, one can express the

In this paper we also develop analytical approximations fexact log likelihood as follows [15]:
the propagation of noise from attenuation maps into recon-
structed emission images. To isolate the effect of transmission N
noise in the resultant emission image, we consider noise- L(p) = Zh"f(l"(“)’y") 6)
free emission measurements and develop approximations for n=l
the covariance of emission images reconstructed using AClyfere, ignoring constants independent.ofhroughout
computed from noisy attenuation maps. These approximations
describe the propagation of noise from attenuation maps into

) o0 —P Yn+M o
emission reconstruction. We also show that the predicted vari- A, (1,,(11), y»n) 2 log Z %%
ances agree with the empirical results from the experimental ——— (yn +m)! m!

PET transmission scans. — @P(1) + ) @)

Section Il reviews the measurement model and exact log
likelihood, and Section Ill describes the log-likelihood apwhere |z = « if >0 and is zero otherwise.
proximations. Section IV describes the empirical results for Since image reconstruction is ill conditioned, we combine

attenuation map reconstruction. Sections V and VI descrigeroughness penalti®(;) with the log likelihood to form a
the covariance approximations and examine the propagatjgéhalized-likelihood objective function

of noise into the emission images.
() = L(p) — R(p). (8)

Il. MEASUREMENT MODEL AND EXACT LOG LIKELIHOOD The goal is to estimatg: by maximizing ®(;:) over the

In conventional PET scans, the system detects coincidergginegative cone
events during two time windows, the prompt window and the .
delayed window, and the data are precorrected for AC events fi = arg lggg‘l’(u)- 9)
by real-time subtraction of delayed window coincidences [10].
Each such precorrected measurement is the difference of t@ince the exact log-likelihood function (7) is complicated, we
independent Poisson random variables, which compensatedeascribe approximations to the exact log likelihood.
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I1l. A PPROXIMATIONS TO THEEXACT LOG LIKELIHOOD

In this section, we review three practical approximations to
L(u): the WLS model, the conventional OP model, and the SP
model approximation that we introduced previously [13]-[15].
All three log-likelihood approximations have the form (6) for
different choices forh, (I, ). .

A. Quadratic Approximations

A quadratic approximation to the exact log-likelihood func-
tion [9], [17] leads to the WLS objective functioh™5()
of the form (6) with 80

100

1 A 1
Y >0
hzm(z,yn):{ pU=l) 5z wm>0 g
0’ Un <0

wherel, = log(b,, /yn) is the method-of-moments estimate 120
of I,(u). The weighting factot? = ((y, + 2r,)/y2) is an
estimate of the va[iance (fz(yn) based on a second-order
Taylor expansion of(-) aroundy. The residuals correspondingrig. 1. Reconstruction of attenuation map for the slice of interest from 5-h
to projections with large values of,, are weighted more transmission scan.
heavily in (10). These rays pass through less dense objects
and, consequently, have higher SNR values. Alternatively, the
choice of52 = 1 would result in the unweighted least-squares IV. EXPERIMENTAL RESULTS
(ULS) approach, which would lead to estimates with much we applied penalized-likelihood estimators, based on the
higher variance. above approximations, to reconstruct attenuation maps from
transmission scans acquired with a Siemens/CTI 931 PET
B. Ordinary Poisson (OP) Approximation scanner. To study the bias and variance properties of these
gstimators, we collected 100 2-min transmission scans of
an anthropomorphic thorax phantom (Data Spectrum, North
Carolina). Fig. 1 shows the reconstructed attenuation map
I;,of the slice of interest from a 5-h transmission scan. In
each 2-min scan, there were about 4.5M prompt coincidence
events and 0.7M delayed events for the slice of interest.
RO (1, ) = yn log(bne™t) — bpe~. (11) The sinograms had 192 radial bins and 256 angles uniformly
sampled over 180 We approximated the system geometry
with 3.1-mm-wide strip integrals and 3.1-mm ray spacing. The
reconstructed images were 128 by 128 with 4.7-mm pixels.
A better approach is to match both the first and second noer regularization, we used the modified quadratic penalty,
ments by approximating the random variab{&$, +2r,,})_, as described by (30) and (35) in [18]. This penalty improves
as having Poisson distributions with meaf®(1:) + 2r,.}. the resolution uniformity and enables matching of the spatial
This idea leads to the SP approximatib”™ () [13]-[15] of resolutions of different methods. We matched the resolution

20 40 60 80 100 120

The conventional approach is to ignore the random c
incidences by assuming th4t;,}_, are distributed as in-
dependent Poisson random variables with megps given
by (6). The log likelihoodZ®T (1) corresponding to this O
approximation is of the form (6) with

C. Shifted Poisson (SP) Approximation

the form (6) with of the reconstructed transmission images for all methods to
b . . 2.65-pixels FWHM.
R (Lyn) = (yn + 27n) log(bpe™ + 2rn) — (bpe™ + 27p). Previously, we have shown that a time-scaled version of

(12) delayed-coincidence events acquired during the blank scan is
a good estimate for the, factors. (Even using a single scalar
Although both LWL and LS match two moments of the constant works fairly well [15].) Note that these estimates of
measurement distribution, in WLS the second moment tifer,, factors are used, essentially, for estimating the variance
I.(yn) is fixed to 42 independently ofx, whereas in the SP of the randoms precorrected data in (5), not for performing
model the moments vary withi(y:) appropriately. randoms precorrection. In our experiments thdactors were
We have previously shown, both analytically and empitnavailable for both the transmission and blank scans because
ically in simulations, that the SP model better agrees withe data was precorrected for randoms. Thus, to estimate the
the exact log likelihood than either the WLS or OP model, factors for use in (12), we simply scaled the blank scan so
[13] and results in lower variance [14], [15]. Next, we preserhat its sum corresponded to the total number of AC events
experimental results, using estimators based on the abdtrés scalar is available in the transmission scan file header)
approximations. with no additional processing. Despite this possibly being
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Fig. 2. Horizontal profile 66 through the sample mean images for an

abdomen phantom. The WLS method has a systematic negative bias. The

OP and SP methods appear free of this systematic negative bias. Fig. 3. Sample standard deviation image of the SP method from 100
transmission scans.

a suboptimal approach, the SP method still yielded lower
variance attenuation maps than the OP method.

For each transmission scan, an estimate of the attenuatio
map was reconstructed, using 20 iterations of the grouped-
coordinate ascent algorithms [15], [19] applied to the objective
functions (10)—(12). AlthoughZL®T(.) is globally convex,

LS (1) is only locally convex [9]. This problem is not unique
to the SP method; it is a general problem with transmission
reconstruction (with nonzero background), even when prompt
and delayed events are available separately [9]. Recently,
monotonic algorithm has been developed that is also suitable
for the SP objective function [20]. In our simulations, we
initialized the iterations with a resolution-matched FBP image
and always observed monotonic increaseiffor all cases.

We computed both the sample mean and sample standarg
deviation images for all methods. Fig. 2 shows horizontal
profiles of the sample mean images. These profiles sho
that WLS is systematically negatively biased [9], whereas
the OP and SP models appear free of such systematic bias.
As explained in [9, App. A], the logarithm required by theFig. 4. Ratio of sample standard deviation images of the OP method to the
WLS method negatively biases the reconstructed transmission™ethod from 100 transmission scans.
images, and this bias increases as counts decrease. Since the
rays traversing the center of the transmission phantom have #g¥iation of different estimators remains constant, independent
lowest counts, these regions show the largest negative bia8f total counts.

Fig. 3 shows the sample standard deviation image for the
SP method. To study the variance, we computed the ratio of V. COVARIANCE APPROXIMATIONS
the sample standard deviation image of the OP method to the FOR TRANSMISSION TOMOGRAPHY

SP method, shown in Fig. 4. Fig. 5 shows the histogram of theone can use analytic approximations proposed in [16] to

standard deviation ratios over all interior pixels. The OP modgtedict the covariance of penalized-likelihood reconstruction

yields, on the average, about 11% higher standard deviatipethods, without exhaustive simulations. In [16], these ap-

than the SP model. Although the absolute standard deviatigfoximations were shown to agree with empirical results

values could be decreased by using longer scan durations,frisen computer-simulated PET scans (without randoms pre-
expect relative standard deviations of OP and SP estimatosrection), even for the highly nonlinear transmission recon-

to remain approximately constant for higher counts [15], [16$truction methods. Here, we apply the covariance approxi-
This follows from the fact that analytic approximations (15jnation presented in [16] to the OP and SP methods and
and (16) in [15] become more accurate with increasing count@mpare the results with experimental randoms precorrected
and these approximations predict that the ratio of standardnsmission data.

Ratio of standard deviation of OP method to SP method
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Fig. 5. Histogram of the ratio of standard deviations in reconstructed atteritig. 6. Empirical standard deviation (with error bars) and the approximate
ation maps. The OP method yields, on the average, about 11% higher standtaddard deviation of the OP method for pixels along horizontal profile 90
deviation than the proposed SP method. through the attenuation map.

We can express both the OP (11) and SP (12) log-likelihoggth
approximations in the form (6) with

ha(lsyn) = (Yn +dn) log(bne_l +dn) — (bne_l + dy) @) +dn)?

(13) For the experimental transmission data we predicted the
and variance of 2°T and /" using the above approximations.
L (0 op Following the plug-in approach of [16], we replaced egth)

d, = {2’) sp (14) andy(p**¥) in (21) with the corresponding sample mean of
T ' the 100 transmission sinograrhVe used the preconditioned
Combining the log-likelihood approximation with a roughnessonjugate gradient method [21], [22] to compute selected
penalty forms the penalized log-likelihood objective functiodiagonal elements of (21). Overall computation for computing
®(u), as in (8). the variance of each pixel was roughly equivalent to one
Afirst-order Taylor expansion ofi(Y)=argmax,>o® maximization of®(yx). Figs. 6 and 7 show the comparison of

(1,Y) aroundY 2 E{Y} leads to the following approx- the empirical standard deviation and the approximate standard

s PADE) + 2r)

Un

imation for the covariance of; [16]: deviation of pixels through a horizontal cross section through
_ _ the attenuation map for the OP method and the SP method. The

Cov{ji} =[-V*0®(j1, V)] 7V ®(ji,Y)Cov{Y} predicted variance agrees well with the empirical results both
VRO V) [V, V) (15) for the OP and SP methods. These results show that, even for

two-minute transmission scans, analytical approximations can

where be used reliably. For longer scans, with higher transmission

I 2 argmax ®(;,Y). (16) counts, the agreement should be even better [16].
1
Following [16] VI. NOISE PROPAGATION INTO EMISSION RECONSTRUCTION

—V2(,Y)=H 2 4 diag{u, YA+ BR(j1) (17) In this section we derive approximate expressions to analyze
g/r VY A A the propagation of noise from the attenuation maps through
V(R Y) = —A diag{en} (18) the ACF’s into reconstructed emission images. This analysis
where A = {a,;} is the sparse system matrix and describes the effects of transmission noise on the final emission
/ o (G + ) images, which may assist studies of the tradeoff between emis-

un 2 <1 YA - )y(ﬂ), (19) sion and transmission scan times, e.g., [23] and [24]. Dahlbom

(@) + dn) and Hoffman [11] have analyzed emission image noise for the

e A (?)(ll)d (20) special case of uniform density disk phantom (assuming both

- yR) +dn

1Although replacingg(ji) andg(x'""¢) in (21) with the sample mean of
andR(u) — VQR(LL). Substituting (17), (18), an@ov{Y} _ the transmission sinograms is impractical, it enables us to compute quickly

- =t ey - . . the approximations for many pixels in the reconstructed image. In Section VI
diag{g(1"") + 2r,} into (15) yields the following approxi- ¢ present the results of variance approximations for a set of pixels for noise

mation for the estimator covariance: propagation into emission images, using the true plug-in approach (where we
Lar g 1 replacey(j) and y(x**1°) with noisy measurements). There, we show that
Cov{ji} = H " A diag{v, }AH~ (21) the predictions again agree well with empirical standard deviation values.
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ofsP tor For FBP reconstruction of the emission images, we consider
’ f ? f f the constrained least-squares (CLS) window corresponding to

0.01-

sinc{ku} /sinc{u} we [07 %} (24)

sinc?{ku} + au3’

ooos - wherew denotes spatial frequency in cycles per radial sample,
k is the ratio of the strip width to the pixel size of the system
model, andx is linearly related tg3 below [25]. (The detector
response is a rectangular function with frequency response
sinc(kw).) Dividing by sinc(w) in the numerator compensates
for the linear interpolation step of the FBP method. The
FBP algorithm with the above smoothing window (24) is
essentially equivalent to a quadratically penalized unweighted
least-squares (QPULS) estimator without the nonnegativity
constraint [25]. The QPULS estimator is defined as [26]

2 — GA|]? + BN R\

0.006

0.004

Approximation
Emprical

0.002|-

1
40 80 80
Pixels

AQPULS — arg min
A

Fig. 7. Empirical standard deviation (with error bars) and the approximate
standard deviation of the SP method for pixels along horizontal profile 90

through the attenuation map. = [G/G + /3Ro]7lG/7:’ (25)

with
emission and transmission images are reconstructed using the .
FBP method). The covariance approximations presented here R[j.K| = zl:wﬂa k=j (26)
apply to arbitrary objects for attenuation maps reconstructed by ’ —wik, k# j
penalized-likelihood estimators with quadratic regularization.

wherew;;, = 1 for horizontal and vertical neighboring pixels
A. Theory and zero otherwise. Since this estimator is linear, its covariance

To isolate the effects of transmission noise on the resulta{?lt .
emission images, we consider noiseless emission measure-  Cov{A"V'} = [G'G + BR,) ' G’ Cov{#}
ments and we consider the FBP method for reconstructing -G[G'G + BR, . (27)
emission images after correcting for attenuation using nois
attenuation maps. We assume the noiseless emission meas‘&%mUSt findCov{2} to complete the above approximation.

ments are For simplicity we first make the following approximation:
= el (22) smootHe ¢+ Vp. } x et smootp, } (28)
where wherej: is defined in (16). We plug this into (23)
M 2y~ W=t smootHp,, } (29)
Pn = Zgnk)\k _ A
=1 and approximate&Cov{z} as
is the attenuation-free projection of the emission image and Cov{z} = D Cov{t(jx)} D’ (30)

where A = [A; --- Ap] denotes the vector of radio-isotope A _ i _
concentration.G = {g,x} represents the tomographic syswWheret(ii) = [ti(f) -~ tn ()] with £, (1) = et (W=
tem response, including the geometric system model, ragndz 2 E{i} andD 2 diag{ smootH{p, }}.
dependent factors (e.g., detector efficiency factors, dead timeUsing first-order Taylor expansion aroufd we approxi-
radio-isotope decay), and pixel-dependent factors such raate Cov{¢(ji)} as

spatial variations in sensitivity. Ane—t ") (with 7(ztvee o A

= Ap'™"®) represents the survival probability for tln;h ra)a. Cov{t(j)} ~ ACov{ii} A, (31)
The noiseless emission measurements(22) are corrected Finally, plugging (30) and (31) into (27) yields
for attenuation, using ACF’s based on the attenuation-map es- {QPULS , P .
timatesj:. If one directly corrects the emission measurements CoviA t =[G G+ R G DACoviji}

for attenuation by multiplication, the resultant images have -A'DGIG'G+ BR,|™". (32)
sonje.artlfacts b ecause of Fhe resolution mismatch betw e variance of the estimated total activity within a region of
emission and transmission sinograms [6], [7]. Thus, one neeas (ROI), i.e f. = /AQPULS g simply

to smooth the emission sinogram to the same resolution as the T ’

survival probabilities. We can write the attenuation-corrected Var{f.} = ¢ Cov{\? 5} (33)

emission sinogram as follows: . .
where ¢ is a column vector of lengthM/ that equals unity
2 1

%, = ™ smootH{ e~ p, 1. (23) for the pixels in the region of interest and zero elsewhere.
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Fig. 8. Emission phantom with several rectangular regions for noise cofmig- 9. Empirical sample mean of emission images reconstructed with ACF’s
putation. based on 100 different estimates of".

To within the accuracy of the preceding approximations, (32)
shows the first-order propagation of the noise from the atten-
uation mapj: into the emission reconstruction and (30) also
shows thaCov{i} is scaled quadratically by the attenuation-
free emission projectiong, (22) before propagating into
emission image covariance (since it is sandwiched betwee
D matrices).

Standard deviatlon image of SP method

07

B. Results

We simulated noiseless emission measurements (22) for thg
emission phantom shown in Fig. 8, using the same syste
specifications as the experimental transmission data. (Thq
rectangular regions numbered 1-5 are regions of interest use
at the end of this section). The spine, lungs, soft tissue, ang
heart had relative radioactivity concentrations of zero, one,
two, and four, respectively. The effects of attenuation were
included (22) by calculating survival probabilities from an
attenuation map reconstructed from a 5-h transmission sca
To reconstruct this attenuation map, we used the very precﬁ& 10. Sample standard deviation image of emission reconstruction with
saddle point (SD) approximation that we introduced previoushCF's based on the SP method.

[14], [15], along with an edge-preserving penalty function
[19]. This attenuation map was also used to generate th

simulated emission phantom in Fig. 8 (by segmentation), %g. 10 shows the sample standard deviation image of

0 o . . :
that the computer simulated emission activity and experimen?gia 100 emission reconstructlpns with ACF.S based on the
attenuation maps were well aligned. SP method. To study the noise due to dlffere_znt_ me_thods,
After smoothing the noiseless emission measurements'{§ computed the ratio of sample standard deviation images
match the resolution of the transmission data [6], [7], wef emission reconstruction with ACF's, based on the OP
applied ACF’'s computed from the noisy attenuation mdﬁ]ethod and SP method shown in Fig. 11. Fig. 12 shows the
estimates/i®” and 5T that were reconstructed from eacHuistogram of the standard deviation ratios over all interior
experimental transmission scan. We reconstructed emissRixels. Attenuation correction based on the OP model yielded
images, using FBP with the CLS window (24). Fig. 9 showgbout 20% higher standard deviation than the SP model, on
the sample mean emission image with ACF’s based on tA¥erage.
SP method computed from 100 2-min transmission scans, aJo assess the accuracy of our analytical approximations,
explained in Section V. (The mean image of the OP methodviee compared the empirical variances described above to
not shown, since it was very similar to that of the SP methodhe variances predicted by (33). We used the preconditioned
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Fig. 13. Empirical standard deviation (with error bars) and the approximate
standard deviation of the OP method (using both empirical transmission

Fig. 11. Ratio of sample standard deviation images of emission reconstrjgliance and approximate transmission variance) for pixels along horizontal
tion with ACF’s based on the OP method and the SP method. profile 90 through the reconstructed emission images.
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Fig. 12. Histogram of the ratio of standard deviations in the reconstructed . . . .
emission images with ACF's based on the OP model and the SP mo 0 14. Empirical standard deviation (with error bars) and the approximate

Attenuation correction factors based on the OP model yielded about 2¢9andard deviation of the SP method (using both empirical transmission
higher standard deviation than the SP model, on average. variance and approximate transmission \(arl_anc_e) for pixels along a horizontal
' profile 90 through the reconstructed emission images.

) i NN . ndard deviations and the approximate standard deviations
pixels in the reconstructed emission image. We determined PP

elements oCov {2} in (32) two different ways. One way used pixels along a horizontal profile through the emission
S ) . images. The analytical approximations for transmission noise

the approximation (21) and the other used the empirical covari- i Il with th irical it q f.

ance of the 100 independent attenuation map reconstruétiong_Padation agree weli wi € empirical resutts, and contirm

Although replacingCov{/i} with an empirical covariance is the reduction in noise for the SP method compared to the OP

impractical for routine use, it helps establish the accuracy method. L .
approximation (33). Figs. 13 and 14 compare the empiricaI,T"’}ble I shows'the percent ste}ndard deviation of the. activity
within the five different 3x 3-pixel ROI's shown in Fig. 8

Instead of_ computing the empﬂlncal covariance dlrectly_from the |nd_epe r the reconstructed images, with ACF’s based on the OP
dent attenuation map reconstructions, we used the following computationally

more efficient method. It can be seen from (32) and (33) that{d.} = Mmethod and SP method. For each ROI, we also implemented
Var{S} whereS 2 ¢ andd 2 ¢[G'G + BR,]"'G'DA. Using the practical plug-in approach for computing (21) in which we
the precono!itiorlled conjug%tehgradient methr?d [Zalcg]éfE)ZZ], wr:a‘p(rjecomgute theplaced eacl(jz) andz(***) in (21) with the corresponding
row vectore’ only once, and then compute the scafafor each independent noisy sinogram elemeny,. We computed variance approxi-

attenuation map reconstruction. Then, finally, the sample variancg isf . X
computed. mation (33) for each of the 100 sinograms. Table | shows the

conjugate gradient method to compute (33) for a set %S
t
0
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EMPIRICAL PERCENT STANDARD DEVIATION AND THE APPROXIMATE ANALYTICAL PERCENT STANDARD DEVIATION OF EMISSION RECONSTRUCTION

UsINg ACF's BASED oN THE OP METHOD AND THE SP METHOD (USING BOTH EMPIRICAL TRANSMISSION VARIANCE AND APPROXIMATE

TRANSMISSION VARIANCE AND PLUG-IN TRANSMISSION VARIANCE) FOR DIFFERENT REGIONS SHOWN IN FIG. 8. LAST COLUMN SHOWS THE
EmPIRICAL PERCENT NOISE OF THE REGIONS DUE TO ONLY EMISSION NOISE FOR TwWO MILLION COUNTS PEREMISSION SCAN

Region OP Method SP Method Emission Noise

Empr. Std. App. Std. App. Std. App. Std. Empr. Std. App Std. App. Std. App. Std.
(emp tr var) | (app tr var) (plug-in ) (emp tr var) | (app tr var) (plug-in )

1 11.35 11.56 12.28 12.23 +£0.14 10.20 10.39 11.34 10.88 £0.10 2.60

2 12.04 12.14 10.82 10.74 £0.14 10.93 10.98 9.80 9.39 £0.09 2.12

3 16.87 17.09 14.74 15.07 £0.22 15.68 1591 14.32 13.99 £0.16 2.79

4 25.55 25.72 23.86 23.59 £0.27 24.85 25.34 23.53 22.54 £0.20 4.66

5 8.89 8.89 9.63 9.74 +0.10 7.30 7.35 7.61 7.49 £0.07 247

sample means (and standard errors) of the plug-in predictBaese approximations can be used to determine the variance
variances for each ROI. The OP model yields 8-23% highef transmission reconstruction to investigate parameters of
standard deviation than the SP model and all the analytigalerest (e.g., regularization parameters) and can supplement
approximations agree well with empirical standard deviatisimulations.

values. We also developed approximations to analyze the propa-

For comparison purposes, we simulated 100 noisy emissigation of noise from attenuation maps into emission recon-
sinograms having an average of 2M counts per scan, astduction. For this purpose, we assumed noiseless emission
performed FBP reconstruction of the emission images. For tireasurements and developed approximations for the covari-
ACF’s, we used the empirical mean of the transmission scaasce of emission reconstruction with ACF's computed from
to ensure that only emission noise affected the reconstructionsisy attenuation maps. The approximations agree with the
(Since the emission noise is inversely proportional to thempirical results and describe the propagation of noise from
square root of the total counts per scan, one could alatienuation maps into emission reconstruction.
predict emission noise for other count levels.) Table | showsBoth approximations and empirical results showed the in-
the empirical standard deviations for different ROI's due tteresting property that when the transmission scan noise was
emission noise. These simulations illustrate the relative effegiopagated into the emission images, the relative differences in
of emission and transmission noise. variances between the OP model and the SP model can be even
greater than when one considers the noise in the attenuation
VI maps alone. The ACF’s computed from the OP model yielded,

' on the average, about 20% higher standard deviation than the

AC events are a primary source of background noise &P model in the reconstructed emission images, compared with
positron emission tomography. After the AC events are pre41% differences in the attenuation maps.
corrected, the measurement statistics are no longer Poissope plan to apply the proposed methods to emission to-
and the exact log likelihood is complicated. We compara@iography, where even higher AC rates than the transmission
different approximations for the exact log likelihood, usingomography are common, particularly in three-dimensional
experimental PET transmission scans. The WLS method leggdsD) PET. Moreover, in 3-D PET, very large data sets may
to systematic bias and penalized-likelihood methods, basggter separate acquisition of prompt and delayed coincidences,
on the OP model, lead to higher standard deviation (on tBg the real-time subtraction methods are usually used. The
average about 11%) than our SP model, which matches bgtitential benefit of the proposed models may be even greater
the first and second moments of the measurement statisticgy emission studies.

We also investigated the reconstruction results for the SD
approximation that we introduced previously [14], [15]. We
observed very close agreement between the SD method a
truncated exact log likelihood for each reconstruction in ou
simulations. However, for the transmission scans reported
here, the difference between the SD and the SP meth%
was not statistically significant. Thus, we did not include
the reconstruction results from the SD method in this paper.
The SP method is particularly attractive since it requireﬁ3
comparable computation to the OP method, but has reduce
variance. We plan to compare the SD and SP methods to the
uniform Cramer—Rao bounds [27]. 4]

We applied the covariance approximations to the attenu-
ation map estimates from the OP method and SP metho'[l%
and demonstrated that these approximations agree with t
empirical results from experimental PET transmission scans.

CONCLUSIONS
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