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Penalized-Likelihood Estimators and Noise Analysis
for Randoms-Precorrected PET Transmission Scans
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Abstract—This paper analyzes and compares image reconstruc-
tion methods based on practical approximations to the exact log
likelihood of randoms-precorrected positron emission tomogra-
phy (PET) measurements. The methods apply to both emission
and transmission tomography, however, in this paper we focus
on transmission tomography. The results of experimental PET
transmission scans and variance approximations demonstrate
that the shifted Poisson (SP) method avoids the systematic bias of
the conventional data-weighted least squares (WLS) method and
leads to significantly lower variance than conventional statistical
methods based on the log likelihood of the ordinary Poisson (OP)
model. We develop covariance approximations to analyze the
propagation of noise from attenuation maps into emission images
via the attenuation correction factors (ACF’s). Empirical pixel
and region variances from real transmission data agree closely
with the analytical predictions. Both the approximations and the
empirical results show that the performance differences between
the OP model and SP model are even larger, when considering
noise propagation from the transmission images into the final
emission images, than the differences in the attenuation maps
themselves.

Index Terms—Covariance approximations, penalized max-
imum likelihood image reconstruction, randoms-precorrected
PET, statistical approximations.

I. INTRODUCTION

TO obtain accurate images of the radioactivity distribution
within a patient, using emission computed tomography,

one must correct for the effects of attenuation [1] and acci-
dental coincidences [2]. The measured attenuation correction
method is routinely performed in positron emission tomog-
raphy (PET) centers, where transmission scans are used to
measure the unique attenuation characteristic of each patient
over the slices of interest [3]. Since PET transmission scans
are performed, essentially, to compute attenuation correction
factors, rather than being the primary medical interest, it is
desirable to minimize their durations. Short scans suffer from a
limited number of counts, especially for the projections passing
through high attenuation regions of the patient, which results
in propagation of unwanted errors and artifacts into emission
images [4], [5]. Smoothing of the transmission data before
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computing the attenuation correction factors leads to resolution
mismatch between transmission and emission data [6], [7].
Reconstructing images of attenuation distributions (attenuation
maps) from noisy transmission scans has desirable properties,
such as better noise performance [4], [5] and anatomical
localization [8]. These attenuation maps are usually reprojected
to form attenuation correction factors. Using the conventional
filtered back projection (FBP) method for reconstruction of
attenuation maps results in biased estimates when the trans-
mission counts are small [9]. Penalized-likelihood methods,
which incorporate the measurement statistics appropriately,
avoid this bias problem.

In PET, accidental coincidence (AC) events occur when two
photons that originate in separate annihilations are detected
within the coincidence timing window [2], [10]. In transmis-
sion scans, photons that originate from different transmission
sources (rod or ring sources) cause most AC events. The effect
of AC events is most severe for rays with low true-coincidence
rates [11], such as those traversing the thorax. Most PET scans
are compensated for AC events by real-time subtraction of
delayed-window coincidences. This precorrection yields the
proper ensemble mean, but destroys the Poisson measurement
statistics [10]. To preserve Poisson measurements, one should
acquire separate transmission and randoms sinograms [5], [12].
However, because of hardware and data storage space limita-
tions (and historical momentum), most PET centers currently
collect and archive only the randoms-precorrected data.

The exact log likelihood for randoms-precorrected data
contains infinite summations, so we have previously developed
a few practical approximations [13]–[15]. The three simplest
of these approximations are the focus of this paper: the data-
weighted least squares (WLS) method, the ordinary Poisson
(OP) model (which ignores the AC corrections), and the
shifted Poisson (SP) model, which matches both the first-
and second-order moments of the model to the underlying
statistics of the precorrected data [13]–[15]. Previous two-
dimensional (2-D) computer simulation studies of penalized-
likelihood estimators, based on these approximations, showed
that the WLS method leads to a large systematic negative
bias and the SP method yields attenuation maps with lower
reconstructed image variance than the OP method at matched
spatial resolutions [15].

In this paper, we compare the WLS, OP, and SP methods,
using 100 experimental PET transmission scans of an an-
thropomorphic thorax phantom acquired with a Siemens/CTI
931 PET scanner. The empirical results from this study are
consistent with the previous simulation results: a large bias for

0278–0062/99$10.00 1999 IEEE



666 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 18, NO. 8, AUGUST 1999

the WLS method, and lower variance for the SP method. We
also implemented and evaluated an extremely precise approx-
imation to the exact statistical model, based on truncating the
infinite summations in the log likelihood. Although the individ-
ual images reconstructed by the SP method and the truncated
exact log-likelihood method differed slightly, the differences
in the ensemble means and variances were insignificant. We
also investigated the reconstruction results for the saddle-point
(SD) approximation that we introduced previously [14], [15].
We observed very close agreement between the SD method
and truncated exact log likelihood for each reconstruction in
our simulations. However, for the transmission scans reported
here the difference between the SD and the SP method were
not statistically significant, so we did not include the SD
reconstruction results in this paper. Thus, the simple and
practical SP approximation appears adequate for routine use
on randoms-precorrected PET transmission data.

In addition to evaluating the attenuation maps themselves,
we also investigated the propagation of noise from the recon-
structed attenuation maps into emission images reconstructed
using the FBP method. Again, the SP method leads to lower
variance than the OP method. Interestingly, the difference in
variances in the emission images was even greater than in the
attenuation maps.

To corroborate the empirical studies described above, we
have also developed analytical approximations to the recon-
structed image covariance based on the techniques developed
in [16]. The covariance approximations for the OP and SP
methods, which had previously been evaluated only with sim-
ulated data in [16], were found to agree well with the empirical
variance computed from the experimental PET transmission
scans.

In this paper we also develop analytical approximations for
the propagation of noise from attenuation maps into recon-
structed emission images. To isolate the effect of transmission
noise in the resultant emission image, we consider noise-
free emission measurements and develop approximations for
the covariance of emission images reconstructed using ACF’s
computed from noisy attenuation maps. These approximations
describe the propagation of noise from attenuation maps into
emission reconstruction. We also show that the predicted vari-
ances agree with the empirical results from the experimental
PET transmission scans.

Section II reviews the measurement model and exact log
likelihood, and Section III describes the log-likelihood ap-
proximations. Section IV describes the empirical results for
attenuation map reconstruction. Sections V and VI describe
the covariance approximations and examine the propagation
of noise into the emission images.

II. M EASUREMENT MODEL AND EXACT LOG LIKELIHOOD

In conventional PET scans, the system detects coincidence
events during two time windows, the prompt window and the
delayed window, and the data are precorrected for AC events
by real-time subtraction of delayed window coincidences [10].
Each such precorrected measurement is the difference of two
independent Poisson random variables, which compensates in

mean for AC events, but which also increases the measurement
variance.

Let denote the vector of precorrected
measurements, wheredenotes the vector and matrix trans-
pose. The precorrected measurement for theth coincidence
detector pair is

(1)

where and are the number of coincidences
within the prompt and delayed windows, respectively. Let

denote the vector of unknown linear
attenuation coefficients. For transmission scans, we assume
that and are statistically independent Poisson
random variables with means and , respectively, as

(2)

(3)

where is the total attenuation between
th detector pair. The factors have units of length

and describe the tomographic system geometry. The
factors denote the blank scan counts and the factors
denote the mean of AC events.

Since and are statistically independent and
Poisson

(4)

(5)

Let be an observed realization of in (1).
Since the measurements are independent, one can express the
exact log likelihood as follows [15]:

(6)

where, ignoring constants independent ofthroughout

(7)

where if and is zero otherwise.
Since image reconstruction is ill conditioned, we combine

a roughness penalty with the log likelihood to form a
penalized-likelihood objective function

(8)

The goal is to estimate by maximizing over the
nonnegative cone

(9)

Since the exact log-likelihood function (7) is complicated, we
describe approximations to the exact log likelihood.
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III. A PPROXIMATIONS TO THEEXACT LOG LIKELIHOOD

In this section, we review three practical approximations to
the WLS model, the conventional OP model, and the SP

model approximation that we introduced previously [13]–[15].
All three log-likelihood approximations have the form (6) for
different choices for .

A. Quadratic Approximations

A quadratic approximation to the exact log-likelihood func-
tion [9], [17] leads to the WLS objective function
of the form (6) with

(10)

where is the method-of-moments estimate
of . The weighting factor is an
estimate of the variance of based on a second-order
Taylor expansion of around . The residuals corresponding
to projections with large values of are weighted more
heavily in (10). These rays pass through less dense objects
and, consequently, have higher SNR values. Alternatively, the
choice of would result in the unweighted least-squares
(ULS) approach, which would lead to estimates with much
higher variance.

B. Ordinary Poisson (OP) Approximation

The conventional approach is to ignore the random co-
incidences by assuming that are distributed as in-
dependent Poisson random variables with means given
by (6). The log likelihood corresponding to this OP
approximation is of the form (6) with

(11)

C. Shifted Poisson (SP) Approximation

A better approach is to match both the first and second mo-
ments by approximating the random variables
as having Poisson distributions with means
This idea leads to the SP approximation [13]–[15] of
the form (6) with

(12)

Although both and match two moments of the
measurement distribution, in WLS the second moment of

is fixed to independently of , whereas in the SP
model the moments vary with appropriately.

We have previously shown, both analytically and empir-
ically in simulations, that the SP model better agrees with
the exact log likelihood than either the WLS or OP model
[13] and results in lower variance [14], [15]. Next, we present
experimental results, using estimators based on the above
approximations.

Fig. 1. Reconstruction of attenuation map for the slice of interest from 5-h
transmission scan.

IV. EXPERIMENTAL RESULTS

We applied penalized-likelihood estimators, based on the
above approximations, to reconstruct attenuation maps from
transmission scans acquired with a Siemens/CTI 931 PET
scanner. To study the bias and variance properties of these
estimators, we collected 100 2-min transmission scans of
an anthropomorphic thorax phantom (Data Spectrum, North
Carolina). Fig. 1 shows the reconstructed attenuation map
of the slice of interest from a 5-h transmission scan. In
each 2-min scan, there were about 4.5M prompt coincidence
events and 0.7M delayed events for the slice of interest.
The sinograms had 192 radial bins and 256 angles uniformly
sampled over 180. We approximated the system geometry
with 3.1-mm-wide strip integrals and 3.1-mm ray spacing. The
reconstructed images were 128 by 128 with 4.7-mm pixels.
For regularization, we used the modified quadratic penalty,
as described by (30) and (35) in [18]. This penalty improves
the resolution uniformity and enables matching of the spatial
resolutions of different methods. We matched the resolution
of the reconstructed transmission images for all methods to
2.65-pixels FWHM.

Previously, we have shown that a time-scaled version of
delayed-coincidence events acquired during the blank scan is
a good estimate for the factors. (Even using a single scalar
constant works fairly well [15].) Note that these estimates of
the factors are used, essentially, for estimating the variance
of the randoms precorrected data in (5), not for performing
randoms precorrection. In our experiments thefactors were
unavailable for both the transmission and blank scans because
the data was precorrected for randoms. Thus, to estimate the

factors for use in (12), we simply scaled the blank scan so
that its sum corresponded to the total number of AC events
(this scalar is available in the transmission scan file header)
with no additional processing. Despite this possibly being
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Fig. 2. Horizontal profile 66 through the sample mean images for an
abdomen phantom. The WLS method has a systematic negative bias. The
OP and SP methods appear free of this systematic negative bias.

a suboptimal approach, the SP method still yielded lower
variance attenuation maps than the OP method.

For each transmission scan, an estimate of the attenuation
map was reconstructed, using 20 iterations of the grouped-
coordinate ascent algorithms [15], [19] applied to the objective
functions (10)–(12). Although is globally convex,

is only locally convex [9]. This problem is not unique
to the SP method; it is a general problem with transmission
reconstruction (with nonzero background), even when prompt
and delayed events are available separately [9]. Recently, a
monotonic algorithm has been developed that is also suitable
for the SP objective function [20]. In our simulations, we
initialized the iterations with a resolution-matched FBP image
and always observed monotonic increase infor all cases.

We computed both the sample mean and sample standard
deviation images for all methods. Fig. 2 shows horizontal
profiles of the sample mean images. These profiles show
that WLS is systematically negatively biased [9], whereas
the OP and SP models appear free of such systematic bias.
As explained in [9, App. A], the logarithm required by the
WLS method negatively biases the reconstructed transmission
images, and this bias increases as counts decrease. Since the
rays traversing the center of the transmission phantom have the
lowest counts, these regions show the largest negative bias.

Fig. 3 shows the sample standard deviation image for the
SP method. To study the variance, we computed the ratio of
the sample standard deviation image of the OP method to the
SP method, shown in Fig. 4. Fig. 5 shows the histogram of the
standard deviation ratios over all interior pixels. The OP model
yields, on the average, about 11% higher standard deviation
than the SP model. Although the absolute standard deviation
values could be decreased by using longer scan durations, we
expect relative standard deviations of OP and SP estimators
to remain approximately constant for higher counts [15], [16].
This follows from the fact that analytic approximations (15)
and (16) in [15] become more accurate with increasing counts,
and these approximations predict that the ratio of standard

Fig. 3. Sample standard deviation image of the SP method from 100
transmission scans.

Fig. 4. Ratio of sample standard deviation images of the OP method to the
SP method from 100 transmission scans.

deviation of different estimators remains constant, independent
of total counts.

V. COVARIANCE APPROXIMATIONS

FOR TRANSMISSION TOMOGRAPHY

One can use analytic approximations proposed in [16] to
predict the covariance of penalized-likelihood reconstruction
methods, without exhaustive simulations. In [16], these ap-
proximations were shown to agree with empirical results
from computer-simulated PET scans (without randoms pre-
correction), even for the highly nonlinear transmission recon-
struction methods. Here, we apply the covariance approxi-
mation presented in [16] to the OP and SP methods and
compare the results with experimental randoms precorrected
transmission data.
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Fig. 5. Histogram of the ratio of standard deviations in reconstructed attenu-
ation maps. The OP method yields, on the average, about 11% higher standard
deviation than the proposed SP method.

We can express both the OP (11) and SP (12) log-likelihood
approximations in the form (6) with

(13)

and

OP
SP.

(14)

Combining the log-likelihood approximation with a roughness
penalty forms the penalized log-likelihood objective function

, as in (8).
A first-order Taylor expansion of

around leads to the following approx-
imation for the covariance of [16]:

(15)

where

(16)

Following [16]

(17)

(18)

where is the sparse system matrix and

(19)

(20)

and . Substituting (17), (18), and
into (15) yields the following approxi-

mation for the estimator covariance:

(21)

Fig. 6. Empirical standard deviation (with error bars) and the approximate
standard deviation of the OP method for pixels along horizontal profile 90
through the attenuation map.

with

For the experimental transmission data we predicted the
variance of and using the above approximations.
Following the plug-in approach of [16], we replaced each
and in (21) with the corresponding sample mean of
the 100 transmission sinograms.1 We used the preconditioned
conjugate gradient method [21], [22] to compute selected
diagonal elements of (21). Overall computation for computing
the variance of each pixel was roughly equivalent to one
maximization of . Figs. 6 and 7 show the comparison of
the empirical standard deviation and the approximate standard
deviation of pixels through a horizontal cross section through
the attenuation map for the OP method and the SP method. The
predicted variance agrees well with the empirical results both
for the OP and SP methods. These results show that, even for
two-minute transmission scans, analytical approximations can
be used reliably. For longer scans, with higher transmission
counts, the agreement should be even better [16].

VI. NOISE PROPAGATION INTO EMISSION RECONSTRUCTION

In this section we derive approximate expressions to analyze
the propagation of noise from the attenuation maps through
the ACF’s into reconstructed emission images. This analysis
describes the effects of transmission noise on the final emission
images, which may assist studies of the tradeoff between emis-
sion and transmission scan times, e.g., [23] and [24]. Dahlbom
and Hoffman [11] have analyzed emission image noise for the
special case of uniform density disk phantom (assuming both

1Although replacingy(��) andy(�true) in (21) with the sample mean of
the transmission sinograms is impractical, it enables us to compute quickly
the approximations for many pixels in the reconstructed image. In Section VI
we present the results of variance approximations for a set of pixels for noise
propagation into emission images, using the true plug-in approach (where we
replacey(��) andy(�true) with noisy measurements). There, we show that
the predictions again agree well with empirical standard deviation values.
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Fig. 7. Empirical standard deviation (with error bars) and the approximate
standard deviation of the SP method for pixels along horizontal profile 90
through the attenuation map.

emission and transmission images are reconstructed using the
FBP method). The covariance approximations presented here
apply to arbitrary objects for attenuation maps reconstructed by
penalized-likelihood estimators with quadratic regularization.

A. Theory

To isolate the effects of transmission noise on the resultant
emission images, we consider noiseless emission measure-
ments and we consider the FBP method for reconstructing
emission images after correcting for attenuation using noisy
attenuation maps. We assume the noiseless emission measure-
ments are

(22)

where

is the attenuation-free projection of the emission image and
where denotes the vector of radio-isotope
concentration. represents the tomographic sys-
tem response, including the geometric system model, ray-
dependent factors (e.g., detector efficiency factors, dead time,
radio-isotope decay), and pixel-dependent factors such as
spatial variations in sensitivity. And (with

represents the survival probability for theth ray.
The noiseless emission measurements(22) are corrected
for attenuation, using ACF’s based on the attenuation-map es-
timates If one directly corrects the emission measurements
for attenuation by multiplication, the resultant images have
some artifacts because of the resolution mismatch between
emission and transmission sinograms [6], [7]. Thus, one needs
to smooth the emission sinogram to the same resolution as the
survival probabilities. We can write the attenuation-corrected
emission sinogram as follows:

smooth (23)

For FBP reconstruction of the emission images, we consider
the constrained least-squares (CLS) window corresponding to
(50) of [25]

(24)

where denotes spatial frequency in cycles per radial sample,
is the ratio of the strip width to the pixel size of the system

model, and is linearly related to below [25]. (The detector
response is a rectangular function with frequency response

.) Dividing by in the numerator compensates
for the linear interpolation step of the FBP method. The
FBP algorithm with the above smoothing window (24) is
essentially equivalent to a quadratically penalized unweighted
least-squares (QPULS) estimator without the nonnegativity
constraint [25]. The QPULS estimator is defined as [26]

(25)

with

(26)

where for horizontal and vertical neighboring pixels
and zero otherwise. Since this estimator is linear, its covariance
is

(27)

We must find to complete the above approximation.
For simplicity we first make the following approximation:

smooth smooth (28)

where is defined in (16). We plug this into (23)

smooth (29)

and approximate as

(30)

where with

and and smooth .
Using first-order Taylor expansion around, we approxi-

mate as

(31)

Finally, plugging (30) and (31) into (27) yields

(32)

The variance of the estimated total activity within a region of
interest (ROI), i.e., is simply

(33)

where is a column vector of length that equals unity
for the pixels in the region of interest and zero elsewhere.
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Fig. 8. Emission phantom with several rectangular regions for noise com-
putation.

To within the accuracy of the preceding approximations, (32)
shows the first-order propagation of the noise from the atten-
uation map into the emission reconstruction and (30) also
shows that is scaled quadratically by the attenuation-
free emission projections (22) before propagating into
emission image covariance (since it is sandwiched between

matrices).

B. Results

We simulated noiseless emission measurements (22) for the
emission phantom shown in Fig. 8, using the same system
specifications as the experimental transmission data. (The
rectangular regions numbered 1–5 are regions of interest used
at the end of this section). The spine, lungs, soft tissue, and
heart had relative radioactivity concentrations of zero, one,
two, and four, respectively. The effects of attenuation were
included (22) by calculating survival probabilities from an
attenuation map reconstructed from a 5-h transmission scan.
To reconstruct this attenuation map, we used the very precise
saddle point (SD) approximation that we introduced previously
[14], [15], along with an edge-preserving penalty function
[19]. This attenuation map was also used to generate the
simulated emission phantom in Fig. 8 (by segmentation), so
that the computer simulated emission activity and experimental
attenuation maps were well aligned.

After smoothing the noiseless emission measurements to
match the resolution of the transmission data [6], [7], we
applied ACF’s computed from the noisy attenuation map
estimates and that were reconstructed from each
experimental transmission scan. We reconstructed emission
images, using FBP with the CLS window (24). Fig. 9 shows
the sample mean emission image with ACF’s based on the
SP method computed from 100 2-min transmission scans, as
explained in Section V. (The mean image of the OP method is
not shown, since it was very similar to that of the SP method.)

Fig. 9. Empirical sample mean of emission images reconstructed with ACF’s
based on 100 different estimates of�̂

SP
:

Fig. 10. Sample standard deviation image of emission reconstruction with
ACF’s based on the SP method.

Fig. 10 shows the sample standard deviation image of
the 100 emission reconstructions with ACF’s based on the
SP method. To study the noise due to different methods,
we computed the ratio of sample standard deviation images
of emission reconstruction with ACF’s, based on the OP
method and SP method shown in Fig. 11. Fig. 12 shows the
histogram of the standard deviation ratios over all interior
pixels. Attenuation correction based on the OP model yielded
about 20% higher standard deviation than the SP model, on
average.

To assess the accuracy of our analytical approximations,
we compared the empirical variances described above to
the variances predicted by (33). We used the preconditioned
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Fig. 11. Ratio of sample standard deviation images of emission reconstruc-
tion with ACF’s based on the OP method and the SP method.

Fig. 12. Histogram of the ratio of standard deviations in the reconstructed
emission images with ACF’s based on the OP model and the SP model.
Attenuation correction factors based on the OP model yielded about 20%
higher standard deviation than the SP model, on average.

conjugate gradient method to compute (33) for a set of
pixels in the reconstructed emission image. We determined the
elements of in (32) two different ways. One way used
the approximation (21) and the other used the empirical covari-
ance of the 100 independent attenuation map reconstructions.2

Although replacing with an empirical covariance is
impractical for routine use, it helps establish the accuracy of
approximation (33). Figs. 13 and 14 compare the empirical

2Instead of computing the empirical covariance directly from the indepen-
dent attenuation map reconstructions, we used the following computationally
more efficient method. It can be seen from (32) and (33) thatVarf�̂eg =

VarfSg whereS
�
= c0�̂ and c0

�
= e0[GGG0GGG + �RRRo]�1GGG0DDDAAA. Using

the preconditioned conjugate gradient method [21], [22], we precompute the
row vectorc0 only once, and then compute the scalarS for each independent
attenuation map reconstruction. Then, finally, the sample variance ofS is
computed.

Fig. 13. Empirical standard deviation (with error bars) and the approximate
standard deviation of the OP method (using both empirical transmission
variance and approximate transmission variance) for pixels along horizontal
profile 90 through the reconstructed emission images.

Fig. 14. Empirical standard deviation (with error bars) and the approximate
standard deviation of the SP method (using both empirical transmission
variance and approximate transmission variance) for pixels along a horizontal
profile 90 through the reconstructed emission images.

standard deviations and the approximate standard deviations
of pixels along a horizontal profile through the emission
images. The analytical approximations for transmission noise
propagation agree well with the empirical results, and confirm
the reduction in noise for the SP method compared to the OP
method.

Table I shows the percent standard deviation of the activity
within the five different 3 3-pixel ROI’s shown in Fig. 8
for the reconstructed images, with ACF’s based on the OP
method and SP method. For each ROI, we also implemented
the practical plug-in approach for computing (21) in which we
replaced each and in (21) with the corresponding
noisy sinogram element We computed variance approxi-
mation (33) for each of the 100 sinograms. Table I shows the



YAVUZ AND FESSLER: PENALIZED-LIKELIHOOD ESTIMATORS 673

TABLE I
EMPIRICAL PERCENT STANDARD DEVIATION AND THE APPROXIMATE ANALYTICAL PERCENT STANDARD DEVIATION OF EMISSION RECONSTRUCTION

USING ACF’S BASED ON THE OP METHOD AND THE SP METHOD (USING BOTH EMPIRICAL TRANSMISSION VARIANCE AND APPROXIMATE

TRANSMISSION VARIANCE AND PLUG-IN TRANSMISSION VARIANCE) FOR DIFFERENT REGIONS SHOWN IN FIG. 8. LAST COLUMN SHOWS THE

EMPIRICAL PERCENT NOISE OF THEREGIONS DUE TO ONLY EMISSION NOISE FORTWO MILLION COUNTS PEREMISSION SCAN

sample means (and standard errors) of the plug-in predicted
variances for each ROI. The OP model yields 8–23% higher
standard deviation than the SP model and all the analytical
approximations agree well with empirical standard deviation
values.

For comparison purposes, we simulated 100 noisy emission
sinograms having an average of 2M counts per scan, and
performed FBP reconstruction of the emission images. For the
ACF’s, we used the empirical mean of the transmission scans,
to ensure that only emission noise affected the reconstructions.
(Since the emission noise is inversely proportional to the
square root of the total counts per scan, one could also
predict emission noise for other count levels.) Table I shows
the empirical standard deviations for different ROI’s due to
emission noise. These simulations illustrate the relative effects
of emission and transmission noise.

VII. CONCLUSIONS

AC events are a primary source of background noise in
positron emission tomography. After the AC events are pre-
corrected, the measurement statistics are no longer Poisson
and the exact log likelihood is complicated. We compared
different approximations for the exact log likelihood, using
experimental PET transmission scans. The WLS method leads
to systematic bias and penalized-likelihood methods, based
on the OP model, lead to higher standard deviation (on the
average about 11%) than our SP model, which matches both
the first and second moments of the measurement statistics.

We also investigated the reconstruction results for the SD
approximation that we introduced previously [14], [15]. We
observed very close agreement between the SD method and
truncated exact log likelihood for each reconstruction in our
simulations. However, for the transmission scans reported
here, the difference between the SD and the SP method
was not statistically significant. Thus, we did not include
the reconstruction results from the SD method in this paper.
The SP method is particularly attractive since it requires
comparable computation to the OP method, but has reduced
variance. We plan to compare the SD and SP methods to the
uniform Cramer–Rao bounds [27].

We applied the covariance approximations to the attenu-
ation map estimates from the OP method and SP method
and demonstrated that these approximations agree with the
empirical results from experimental PET transmission scans.

These approximations can be used to determine the variance
of transmission reconstruction to investigate parameters of
interest (e.g., regularization parameters) and can supplement
simulations.

We also developed approximations to analyze the propa-
gation of noise from attenuation maps into emission recon-
struction. For this purpose, we assumed noiseless emission
measurements and developed approximations for the covari-
ance of emission reconstruction with ACF’s computed from
noisy attenuation maps. The approximations agree with the
empirical results and describe the propagation of noise from
attenuation maps into emission reconstruction.

Both approximations and empirical results showed the in-
teresting property that when the transmission scan noise was
propagated into the emission images, the relative differences in
variances between the OP model and the SP model can be even
greater than when one considers the noise in the attenuation
maps alone. The ACF’s computed from the OP model yielded,
on the average, about 20% higher standard deviation than the
SP model in the reconstructed emission images, compared with
11% differences in the attenuation maps.

We plan to apply the proposed methods to emission to-
mography, where even higher AC rates than the transmission
tomography are common, particularly in three-dimensional
(3-D) PET. Moreover, in 3-D PET, very large data sets may
deter separate acquisition of prompt and delayed coincidences,
so the real-time subtraction methods are usually used. The
potential benefit of the proposed models may be even greater
in emission studies.
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