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Abstract 
A model of object shape by nets of medial and boundary primitives is justified as richly capturing multiple aspects of shape 
and yet requiring representation space and image analysis work proportional to the number of primitives. Metrics are 
described that compute an object representation's prior probability of local geometry by reflecting variabilities in the net's 
node and link parameter values and that compute a likelihood function measuring the degree of match of an image to that 
object representation. A paradigm for image analysis of deforming such a model to optimize a posterior probability is 
described, and this paradigm is shown to be usable as a uniform approach for object definition, object-based registration 
between images of the same or different imaging modalities, and measurement of shape variation of an abnormal anatomical 
object compared with a normal. Examples of applications of these methods in radiotherapy, surgery, and psychiatry are given. 
 
Introduction 
 
Our intuition tells us that to segment, display, match, or analyze an object in a 2D or 3D medical image, we 
should look for a region of the image that is consistent with what we know about the object's geometry. We 
should be able, for example, to find a ventricle-shaped object in an MR image of the brain. This paper gives a 
means of representing shape that allows the efficient, stable application of this idea to problems of image 
analysis. 
 
We describe a representation that  

1) richly and efficiently captures object geometry, and  
2) allows measurement of the shape difference between two instances of an object, in the framework of 

realistic images, and thereby  
3) provides a common framework for the medical image operations of segmentation, object-based 

registration, measurement of shape variation, and indication of regions of pathological shape change.  
The general paradigm for image analysis that we will present here involves two components. The first 
component is to create a model R comprised of interconnected figures, where a figure is either a whole object 
or the main object part or a protrusion or indentation in another figure. It is this focus on the figure as the basic 
unit of shape that distinguishes the approach that we will describe in this paper. The second component of the 
approach is to determine a geometric transformation T that maps R into the most probable variant, given the 
image data. The measure of probability involves two components:  
1) the probability Pgeom, of observed change in the modeled shape, position, orientation, and size of the object; 
2) the probability Pimg, that the image data would arise from the object geometry. In this paper we decompose 
Pgeom into the probability of the position, orientation, and size of the object and the probability Pshape of the 
shape of the figures and in the interfigural spatial variables, and we focus on Pshape. Then  

1) for a segmentation objective, R models the object over a family of training images, and T(R) yields the 
segmented object;  
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2) for a registration objective, R is the object representation in the reference image, T(R) is the object 
representation in the target image, and T is the desired registration transformation; 

3) for a shape variation measurement objective, R is the object representation at its base position,  and -log 
Pshape is the measure of change in shape from R to T(R).  

 
Implementing this conceptual framework requires us to specify the representation R of object geometry and to 
specify the formation of the probabilities Pgeom  and Pimg. The remainder of this paper begins with a section on 
representation of object geometry, leading to a multifigural tree of linked, coarsely sampled medial loci 
augmented by a boundary displacement map on the medially implied boundary. It is followed by a section on 
measures of the probability of geometric change and a section on measures of the fit of image data to an object 
representation. Sections follow indicating how these ideas can be used for image analysis, in particular, 
segmentation, registration, and measurement of shape anomaly or differences. However, since we wish to focus 
here on the shape representation, we leave details of the algorithms for these objectives to other papers on the 
individual algorithms [Wilson 1995, Wilson 1996, Fritsch 1995, Fritsch 1997, Liu 1998]. In the discussion of 
image analysis we give examples from radiotherapy planning, surgery planning, and psychiatric diagnosis, but we 
leave fuller illustration of these applications to other papers on the individual clinical topics [Fritsch 1996, Clary 
1997]. 
 
1. Alternatives for Representing Object Shape  
  
We take the common view that the shape of an object includes all the spatial aspects of its layout that are 
invariant to similarity transforms, made from translation, rotation, and uniform magnification. Thus an object in d-
space is fully spatially described by its shape together with its similarity transform parameters: its position, 
orientation, and scale. We will call the shape together with these similarity transform parameters of an object its 
morphography.  But how can we represent the shape in a way that richly captures the aspects that are visually 
important, allows efficient calculation of shape variation and location of regions of shape variation, and allows 
stable application to image data, with all their disturbances of intensity noise and blurring, boundary texture, and 
especially complexity of background? 
 
Traditionally shape has been derived from points with recognizable local geometry called landmarks [Kendall 
1989, Bookstein 1991] or from a representation of the boundary by sampled points [Cootes 1993] or by 
boundary-representing basis function coefficients [Staib 1992, 1996; Székely 1996, Kelemen 1998]. Hybrids 
of boundary and other curve loci with landmarks, e.g., [Yuille 1992], and representations by sampling the full 
space [Christensen 1997, Grenander 1994] have also been suggested. The methods with point primitives have 
assumed that the boundary representations or landmarks could be accurately, homologously, reproducibly, and 
conveniently extracted in sufficient number, but they have suffered from the fact that all of these assumptions are 
frequently questionable in real images.  
 
Efficiency is also a concern. Given N shape primitives, if N is very large, as in the number of pixels in a 2D 
image or the number of voxels in a 3D image, the time for instantiating a shape representation based on an image 
can be unacceptably large. If N is small, efficiency may not be a concern but the shape representation is 
frequently not rich enough. If N is in the moderate range of some hundreds, the efficiency depends on whether 
the required computation requires O(N) or O(N2) steps. The similarity transform parameters are easily 
extracted in O(N) time. However, various methods have extracted shape from the relations between the 
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matrix of side O(N), also requiring O(N2) steps. The minimal bending energy method of Bookstein [1991] falls 
into this category.  
 
Among O(N) methods, the Procrustes method has modeled shape by variations in the vectors from the point 
primitives to their center of mass. Interrelationships among points are not modeled, so the measure of shape 
produced is somewhat weak. The same can be said about methods based only on the local relations between 
adjacent boundary points, thus capturing only the local curvatures of the boundary.  
 
Another way of producing an O(N) method has been to take only a constant number of linear combinations of 
the N primitives, as provided by Principal Component Analysis of the primitive point positions or boundary 
coefficients in training images after normalization for a similarity transform [Cootes 1993; Kelemen 1998]. These 
approaches yield shape parameters that reflect global information and thus are weak in their ability to capture 
aspects of shape that are specific to a particular location, protrusion, or indentation.  
 
We suggest that a method for providing O(N)-time shape analysis and the ability to capture both local and 
global shape variations in a way stable against common image uncertainties and complexities lies in  

a) recognizing that certain boundary points are related in special ways determined by figural properties,  
b) realizing that a shape is made up of related figures,  
c) focusing on the facts that shape is magnification invariant and that the tolerance of positions in object 

representation primitives is a critical factor (see Fig. 5, later), and  
d) making coarse-to-fine analysis an inherent aspect of the shape description.  

This leads us to a representation that is a hierarchy of coarse-to-fine collections of nets of medial primitives, 
augmented by nets of boundary displacement primitives, all with associated probability distributions. We will 
describe these ideas with examples in two spatial dimensions. We have shown these ideas to work without 
change in 3D as well, but we leave the 3D aspects to another paper. 
 
2. Figural Shape Representation 
 
2.1. Medial Primitives and Nets of Medial Primitives 
 
Having assumed that positional tolerance is a central aspect of shape [Morse 1996], we focus first on the large-
tolerance aspects of shape that allow us to say that the two objects in Fig. 1 are the same figures but differ in the 
texture, i.e., the small-tolerance detail, of the boundary. We suggest that these large tolerance aspects are those 
involving cross-figural linking, which we represent via medial primitives. Blum [1967] and Marr, among others, 
realized early that cross-figural linking was an important aspect of shape, and Psotka [1978], Frome [1972], 
and Burbeck & Pizer [1995, 1996] elicited psychophysical evidence of human vision's sensitivity to such linking.  
 
While we wish to reverse the common view of medial primitives that they are derived from a boundary to a view 
in which they imply a boundary, with tolerance, for the next few sentences assume that the boundary is known. 
We focus first on the special relations between boundary points that a simple object, protrusion, or indentation 
has. The two special relations between boundary points are the adjacency relation traditionally dealt with and 
the symmetric relation of linking a boundary point across a figure with a figurally opposing point, called its 
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medial involute (for example in Fig. 2a, each point Ai and an opposing point Bi are each other's medial 
involutes). The involution relationship has traditionally been defined by the fact that the normals to the boundary 
at the involutes intersect at a so-called medial point equidistant from the two involutes. However, we reverse 
the process, defining a medial primitive as a medial point with two associated boundary-pointing vectors of 
equal length (Fig. 2b) and taking the medial involution relation between the points at the end of the two 
boundary-pointing vectors to be a consequence of our primitive (Fig. 2c) rather than a relation defining it. The 
sections of the boundary so defined are orthogonal to the respective boundary-pointing vectors and are taken to 
have positional tolerance in the directions of the respective vectors. 
 

 
Fig. 1. Two instances of the same figure, one with smooth boundary texture and one with rough boundary texture. 
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Fig. 2. a) A figure with pairs of medial involutes (A,B).   b) A medial primitive and its implied involutes, with tolerance. 
c) The three (A,B) medial involute pairs defined by three medial primitives. The dashed boundary should be thought of as 
being interpolated through the implied boundary points. 
 
Traditionally, medial information is given by the values of 1) the location x of the intersection of normals to the 
boundary points and 2) the common distance r from this location to the two corresponding boundary involutes 
[Blum 1978]. When the boundary points and boundary normals are to be implied by the medial primitive rather 
than vice-versa, it is necessary to record as well the unit vectors 1n

r
 and 2n

r
 pointing from x toward the 

respective boundary points. For reasons of geometric informativeness to be discussed later, we choose to 
define a medial primitive by the medial position x, the width r, a unit vector b

r
 bisecting (averaging) the 

boundary-pointing vectors, and an angle θ between  b
r

 and the two boundary-pointing vectors (half the angle 
between the boundary-pointing vectors). θ is called the object angle. The implied medial involutes are at 

( )brR
r

θ+x  and ( )brR
r

θ−+x , where ( )θR  is the operator rotating its operand by θ. The boundary-pointing 
vectors are each taken to imply a boundary fragment normal to its vector, so these fragments are at angle π-2θ 
to each other. 
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We are now ready to more formally define "figure".  As illustrated in Fig. 3, a figure is a geometric object 
implied by a sequence of medial primitives such that each of the two implied boundary point sequences 

( ){ }brR
r

θ+x   and ( ){ }brR
r

θ−+x  is ordered along the implied boundary in the same order as the primitives. 

The sequence may be closed by an end primitive that has arrows to ( )brR
r

θ+x , ( )brR
r

θ−+x , and br
r

α+x  
[Clary 1997]. The sequence of boundary points on one side of a figure can straddle an attached subfigure, i.e., 
a protrusion or indentation on one side of the figure. Fig. 3 illustrates four figures: a large "sweet potato", a 
protrusion on the sweet potato, an indentation in the sweet potato, and a nearby "bean".  
 
Medial primitives are associated using two types of links: intrafigural and interfigural. An interfigural link connects 
a primitive in a subfigure to a primitive in a parent figure. Intrafigural links connect medial primitives along a 
figure. The spacing of approximately r  indicated in Fig. 3 is intended to be typical. In 3D the medial primitives 
form a net, and we will use "net" to refer to the sequence of primitives in 2D as well.  
 
A net of primitives ends either with a medial primitive at the open end of a protrusion or indentation or with an 
end primitive. Following Leyton [1992], we distinguish end primitives as a special type of medial primitive. 
According to Leyton, in analogy to the importance of endstopping of lines in human vision, endstopping of 
figures corresponding to the distal end of a medial locus is also an important aspect of shape and happens at a 
maximum curvature point on the boundary where a circle centered at the medial locus end osculates the 
boundary. Such a point of maximum curvature of the appropriate sense is called a vertex.   
 

o

o

oo
o

o

o

o

o o

 
 

Fig. 3. Linked sequences of medial primitives implying four linked figures.  
  
2.2. Figural Shape 
 
Figural shape is given by the relations among the medial primitives. We first distinguish shape aspects within a 
figure from those between figures. In our example in Fig. 3, the fact that the main sweet potato figure narrows 
from bottom to top and curves to the left as it nears the top will fall into the category of intrafigural shape as will 
the facts that the protrusion on the right is approximately straight and of roughly constant width.  The facts that 
the protrusion is attached somewhat above the middle of the sweet potato, is oriented at around -70 degrees 
relative to the sweet potato, and has a width about a quarter of the width of the sweet potato will fall into the 
category of interfigural shape. 
 

Legend  
  o  medial primitive positions 
    medial primitives' or end primitives' boundary-pointing vectors 
    intrafigural links 
   interfigural links  
    implied boundary  
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While intrafigural shape is fully described by the relations among all the medial primitives forming the figure, our 
visual capabilities for comprehending shape seem limited to nearby primitives. For this reason and the desire to 
produce an O(N) description, we will mostly limit the description of shape discussed in this paper to those given 
by adjacent medial primitives in the net. We will see later, when focusing on coarse-to-fine aspects of the 
description, that this need not limit us from capturing certain more global figural shape aspects. 
 
In describing interfigural shape, we follow many others in computer vision who have found that an important 
shape relation is the graph relations between figures and their attached subfigures or neighboring or included 
figures. We consider one of the figures in this relation the parent and one the child or subfigure, with the result 
that the whole structure forms a directed acyclic graph, which in many cases is a tree. The structure of this graph 
will be taken to indicate topology, which in this paper will be treated as deterministic. The consequence is that 
we will be able to represent shapes such as livers, kidneys, cerebral ventricles, and hippocampi but not be able 
fully to represent shapes such as blood vessel trees and the cerebrum with its sulci and gyri, since these latter 
examples vary among individuals in how many branches there are from a particular figure and in what branches 
from what. 
 
For now we take each relation between a figure and its subfigure to be represented by a single link between a 
medial point on the parent figure and a proximal medial endpoint of the subfigure. Including these links (dashed 
in Fig. 3) still leaves us with O(N) links for N medial primitives.  
 
The links, both intrafigural and interfigural, between medial primitives (see Fig. 4) carry the figural shape 
information. Specifically, the shape information is in the "shape tuple" bbrrr

rr
-xx/ ∆∆∆∆∆ ˆ,,,,/, θθ , where “^” 

denotes normalization to a unit vector, ∆ indicates a difference between the linked primitives, differences 
between unit vectors denote an angle, and r and θ are measured at the tail of the link. All of these measures are 
dimensionless. If the link is between adjacent primitives within a figure, rx/∆  carries information about the local 

elongation of the figure, rr /∆  and θ carry information about the local widening or narrowing rate of the figure, 
b
r

∆  carries information about the local curvature of the figural (medial) axis, and θ∆  carries information about 

the local curvature of the boundary relative to the axis [Blum & Nagel 1978]. The direction of x∆  relative to b
r

 
of the reference primitive carries information of spatial derivative order higher than two.  
 
If the link is between a primitive in a parent figure and a primitive in a subfigure, rr /∆  carries information about 
the proximal width of the subfigure relative to the local width of its parent figure, b

r
∆  carries information about 

the proximal orientation of the subfigure relative to the local width of its parent figure, and the direction of x∆  
relative to b

r
 of the parent primitive carries information on the location on the parent figure of the subfigure (e.g., 

in Fig. 3 whether the protrusion is high on the sweet potato, towards the middle, or low).  
 
The local shape related to a particular medial primitive can be taken to be given by the set of shape parameters 
of all of the links incident on that primitive. This set of dimensionless quantities and vectors is invariant to the 
similarity transform operations of uniform magnification, translation, and rotation. But 
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Fig. 4. Two linked medial primitives, before and after figural deformation. Take the lower medial primitive to be the reference 
primitive, and let the upper one be either an adjacent primitive along the same figure (connected by a grey line in Fig. 3) or a 
linked subfigural primitive (connected by a dashed line in Fig. 3). 
 
note with emphasis that we have taken the tolerance of the boundary fragments implied by a medial primitive to 
be a significant aspect of the primitive. The spacing of primitives (the length of the links between primitives) is 
also an important aspect. In addition, we may follow the common wisdom that boundary radius of curvature is 
an important aspect, even when it is of the (fuzzy) boundary implied by the medial primitives. For medial width 
(r), tolerance, link length, and boundary radius of curvature all to be variables associated with the medial 
primitives used to represent a shape locally, these distance-dimensioned variables must scale together. That is, if 
we need to describe shape with locality, then as illustrated in Fig. 5a, tolerance, the distribution of link length, 
and the distribution of 1/boundary curvature (i.e., radius of curvature) must scale locally with the local value of r. 
The wider the figure is, the larger the tolerance of the figurally implied boundary must be, the smoother the 
implied boundary must be, and the longer the intrafigural links must be.      
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Fig. 5. a) The net of medial primitives shown represents a figure and implies a boundary whose mean is shown by the curve 
and whose tolerance, as a Gaussian probability distribution in the direction of the normal to the mean, is shown by the two 
levels of shading. b) Boundary displacements. The boundary of small tolerance, indicated by the narrower curve, is 
represented by displacements, at a fine sampling, from the mean curve implied by the medial primitives in a direction normal to 
that mean curve. 
 
Interpolation between adjacent medial primitives by interpolation in b

r
, θ , and log r is consistent with these 

requirements. The resulting continuous locus of medial primitives implies a continuous boundary which is the 
boundary implied by the net of medial primitives. 
 

a) b) 
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In the case of the root figure in the tree of figures, we can think of it having a link to the full image space. That is, 
the spatial variables describing its link to the image are the global similarity transform variables of the whole 
object. These are not shape variables but are also important in the object representation. 
 
2.3. Boundary Displacement Shape 
 
Figural shape only implies a boundary with a large tolerance and with restrictions on the range of curvatures it 
can have. This large tolerance allows a coarse spacing of medial primitives and thus an efficient representation. 
 
However, an object boundary certainly also has shape at a smaller scale. This aspect of shape information can 
be determined more stably if, instead of following the common practice where the primitives are boundary 
primitives containing a position and normal that are located only in relation to the image space, the final 
boundary location is located relative to the mean boundary implied by the medial primitives and is constrained 
by the tolerance of the boundary implied by the medial primitives. That is, we define the boundary at small scale 
by displacements relative to and along the normal to the mean boundary implied by the net of medial primitives 
(Fig. 5b). Thus these displacements can be defined in one dimension, along the normal direction to the medially 
implied mean boundary. Relations among nearby displacements can reflect local textural properties of the 
boundary. 
 
Forming a net of boundary displacement primitives requires piecing together the boundary primitives between 
subfigures and their parent figures. Chen [1998] has shown how to do this in his work on object rendering via 
the representations discussed in this paper.  
 
On what basis is a particular topology of medial primitives and boundary displacement primitives defined to be 
the right set to represent the figural shape information in a particular population of objects relative to a particular 
set of images? We take this to depend on the task at hand and not to be somehow innate to the images. For 
example, for a purpose in which finger shape is to be studied, a hand might be modeled as a palm figure, with 5 
protrusion subfigures representing four fingers and a thumb, and the extensions of the fingernails represented by 
boundary displacements. For another purpose, the same hand might be modeled as a mitten, with 4 subfigures 
being the between-finger and finger-thumb indentations. For yet another purpose the fingernail extensions might 
be modeled as subfigures of the fingers instead of by boundary displacements. For the time being, we take these 
modeling decisions to be most appropriately done by human intelligence, whereas the values of the primitives 
ought to be extracted algorithmically according to the values of training images. We leave the effect of these 
modeling decisions to future work.  
 
2.4. Coarse-to-Fine Representation 
 
The principle that medial primitives represent the object information at one scale, proportional to the inter-
medial-primitive distances, and that boundary primitives represent the object information at a smaller scale, 
proportional to the inter-boundary-primitive distances, and that boundary primitive location is dependent on 
boundary locations implied by the medial primitives is an instance of general principle of coarse-to-fine 
representations. For our purposes we will deal with four levels of coarseness (see Fig. 6): a) for the whole 
object or group of objects, b) for each figure, c) for local intrafigural relations, and d) for boundary 
displacements. These have interprimitive connections at successively smaller maximal distances (i.e., scale). 
Such representations can lead simultaneously to efficiency, to handling both long- and short-distance shape 
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relations, and to stability of image analysis against image disturbances. We leave to a future paper the major 
discussion of this principle and its implementation and especially the discussion of successively diced nets of 
medial primitives and of boundary primitives. 
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a)   b)    c)   d)    

 
Fig. 6.  Coarse-to-fine shape representations: a) Primitives at object level; all can interact with all others. b) Primitives at figural 
level. Each figure is handled separately, except for its interfigural link to its parent. Within each figure all primitives can 
interact. c)  Individual medial primitives, each interacting only via its intrafigural links to adjacent primitives.  
d) Boundary primitives (normals not shown); each can interact only with a few neighbors. 
 
At each stage there are collections of medial primitives that can interact (change in a correlated fashion). Put 
another way, the shape-tuples formed from the interprimitive links described in section 2.2 can change in a 
correlated fashion. 
 
At the object stage (Fig. 6a), there are the most coarsely spaced primitives, but all primitives can interact. At the 
figural stage (Fig. 6b), only primitives within the figure and between the figure and the object (the interfigural 
link) can interact, and these are at shorter distances than for the object. Thus the primitives are spaced more 
finely than for the object stage. Moreover, at increasing levels of fineness we treat the parent figure, then its 
subfigures, then their subfigures, etc. At the medial primitive stage (Fig. 6c), there need be no interprimitive 
interaction, but there is interaction between the primitive and the primitives at the figural stage. At the boundary 
primitive stage (Fig. 6d), the spacing is smaller than at the medial primitive stage, and while there can be 
interaction between nearby boundary primitives, we now include only interaction between each boundary 
primitive and the adjacent medial primitives. We refine these ideas further in Section 3. 
 
At each stage, the principle of local shape requires that tolerance be proportional to primitive interaction 
distance. Thus tolerance decreases as one moves through the stages of scale. The primitives at one scale are 
taken as variations from the values interpolated from the just larger-scale level. The previous level can be 
thought of as providing a prior for the next smaller level of primitive values. In this way, the coarsest medial nets 
can represent shape relations at the full length of a figure while finer medial nets represent more local shape 
relations. All this is done with a representation that still has O(N) links, over all levels of coarseness. 
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The scheme just laid out may fail when small-scale boundary changes in an object are correlated at a long 
distance along the figure. For example, the method may not be able to represent the case off a worm's head 
always twitching when its tail twitches. Representing such information will require either giving up shape locality 
or finding another means of achieving an O(N) representation. 
 
2.5. Measurement Aperture Size and Magnification Invariance 
 
We have seen that different aspects of our shape representations provide boundary information at different 
tolerances, that is, at different scales. Accordingly, image information can be used to position primitives of an 
object representation R at different scales by using proportionately sized apertures to measure the property of 
being on the boundary or being normal to the boundary. 
 
The width of the aperture used to locate a locus in an image is an important variable. In previous writings 
Koenderink [1984], Lindeberg & ter Haar Romeny [1994], and we [Pizer 1996] have used the word scale for 
this quantity and have gone as far as to say that this is not a parameter but a variable as important as spatial 
position in characterizing an image. In particular, the aperture width is proportional to the tolerance with which 
the locus, a boundary in our case, can be determined. Thus, for the object level of representation (see Fig. 6a), 
the aperture width will be quite large. If measurements are to be made to determine the value of individual 
medial primitives, the aperture width must be proportional to the r value of the primitive [Pizer 1996] and have 
significant extent. The aperture width determining boundary displacements must be much smaller. 
 
Burbeck & Pizer [1995] have found that in human vision the aperture width σ  at which cross-figural linking 
(medial primitive location) is done is nearly in proportion to figural radial width (σ ≈ 0.25r ) and for all but the 
thinnest of figures is significantly greater than the scale at which boundary location and boundary shape is 
determined. With such a measurement scale and in figural components with boundaries not too far from parallel, 
sampling theory would suggest a sampling rate of approximately one medial primitive per cr/3, where c is the 
elongation of the aperture along the boundary (see Fig. 7 in Section 4). This sampling rate leads to under 16 
medial primitives for all but the most elongated 2D figures, providing a considerable efficiency of representation. 
In the coarse-to-fine regime that we have suggested, even coarser sampling would be used at earlier stages. 
 
We now see that maximum interprimitive interaction distances, tolerance of the implied boundary, and aperture 
width ought all to be proportional. Therefore, we can broaden our use of the word "scale" to mean any of these.  
 
We close Section 2 with a summary: The representation of the morphography of an object that we are 
proposing involves a) the similarity transform parameters, b) a linked set of nets of medial primitives, each net 
possibly in a coarse-to-fine collection, and c) a net of boundary displacement primitives, possibly in a coarse-
to-fine collection. The linked nets of medial primitives specify the interfigural relations and the general shape of 
each figure, and the net of boundary displacements specifies the boundary texture. A linked net of medial 
primitives, with or without a net of boundary displacements, form a geometric description that imply a boundary 
with tolerance. 
  
As suggested earlier, this representation can be used for image analysis to extract the most probable instance of 
a modeled object from an image or to measure the degree of abnormality of this instance. To do this, one needs 
to be able to measure both how abnormal a represented object is and how consistent it is with a particular 
image. The next two sections treat these two measurements.  
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3. Measuring shape anomaly 
 
We take a Bayesian point of view of image analysis, designing methods that extract the most probable object 
given the image, i.e., that maximize the posterior probability p(object | image), or equivalently  
log p(object | image). We will refer to the negative of the log of a probability as a "metric". For example, if a 
probability is a Gaussian, the metric is proportional to a Mahalanobis distance. 
 
Bayes' Theorem implies that maximizing log p(object | image) extracts that object representation that minimizes 
[-log p(image | object) + -log p(object)]. The first term, the log likelihood, is a metric of the match between 
the image data and the object representation. We treat this metric in Section 4 and continue here with  -log 
p(object). This is the -log of the prior probability of this object representation's occurrence in the population of 
all objects that might appear in the imaged region. It measures how anomalous a shape, pose, and size is relative 
to some standard.  
 
There are two major issues in this section on measuring shape anomaly. In Section 3.2 we explain how metrics 
involving medial or boundary primitives can be either statistical or geometric. The statistical metrics measure -log 
p(object | image) based on information extracted from training images. Geometric metrics measure how far the 
object deviates from a reference object by some combination of spatial distances, size differences, and 
orientation differences. First, in Section 3.1, we discuss how to find metrics by successive refinement of scale 
and an associated factoring of the morphographic information into the information at a larger scale and the 
information at a smaller scale, conditioned on the information at the larger scale. 
 
3.1 Factoring morphographic probabilities coarse-to-fine 
 
The overall morphographic probability participating in the posterior optimization is -log p(object), i.e.,  
-log p(all primitives at all scales). This metric can be simplified by probabilistic factoring by scale level (where 
levels are numbered by decreasing scale so that level 1 has the largest scale), in a way similar to that described 
in [Grenander 1994]. There are a number of scale levels, and at each scale level the boundary and a locus of 
medial primitives is implied at some tolerance, decreasing in order of level. The primitives at each level thus can 
be considered as displacements from those implied at the previous, larger scale level. Because the information at 
larger scale largely ignores information at significantly smaller scales, we can use the Markov assumption that the 
probabilistic dependence of information of displacements at a smaller scale on information at larger scales can 
be expressed entirely through its dependence on the next larger scale. For example, the boundary displacements 
are conditioned only on the local medial primitive locations and need not account for the object-level or figural-
level information except transitively through the local medial primitive level. While this hierarchical modeling 
assumption can be expected to be most often valid for objects in medical images, it will fail in situations where 
there is significant correlation between parameter values at widely different scale levels, e.g., where boundary 
wrinkling texture is correlated with the position of one of the major figures on the object. 
 
The probabilistic factoring is thus a successive application of the factoring,  
 
 
p(displacements at scale level k | info. at all larger scales) =  
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p(displacements at scale level k from rep'n interpolated at scale level k-1 | displacements at scale level k-
1)  ×  
p(displacements at scale level k-1 | info. at all larger scales). This can be rewritten  
-log p(displacements at scale level k | info. all larger scales) =  
-log p(displacements at scale level k from rep'n interpolated at scale level k-1 | tolerances implied by 
scale level k-1)  +  
-log p(displacements at scale level k-1 | info. at all larger scales) .  
 
We will consider the successive refinement presented in Section 2.4: object, figure, medial primitive, and 
boundary primitive. The posterior optimization at each level geometrically transforms the implied boundary and 
leaves a smaller tolerance than before. The final tolerance is that associated with the boundary displacements.  
 
The first coarse-to-fine stage factors -log p(all primitives at all scales)  into -log p(level 1 primitives)  +  
-log p(displacements at scale level 2 | level 1 primitives). In the applications reported in Section 5 we have 
found it possible to restrict the transformation of the level 1 primitives to a similarity transform, so that  
-log p(level 1 primitives)  = -log p(location, orientation, and size).  Similarly, in these applications we have 
found it possible to restrict the transformation of the figural primitives to a similarity transformation relative to the 
level 1 primitives, so that -log p(displacements at scale level 2 | level 1 primitives)  =  
-log p(figural translation, rotation, and size relative to the level 1 primitives). 
It is possible to include a full-object warp at these two scales, but we leave such a possibility to a later paper. 
With the formulation we have used, the first stage determines the probability of the similarity transform and the 
second and following stages determine Pshape.  
 
The third stage of the factoring describes the displacement of the individual medial primitives relative to the 
collection of medial primitives forming a figure. In the applications in Section 5, where the medial primitives 
representing the figure at scale level 2 are the same as those representing local information at the scale level 3, 
we have handled the third scale level via a Markov assumption, treating each medial primitive as probabilistically 
dependent only on the intrafigurally adjacent medial primitives:  
-log p(displacement of a medial primitive at scale level 3 | level 2 primitives)  =  
-log p(displacement of the medial primitive | the intrafigurally adjacent medial primitives).  The values of 
this metric are discussed further in Section 3.2. 
 
The final stage of the factoring treats the boundary displacements along the normal to the boundary interpolated 
from the medial primitives as dependent only on the tolerance implied by the medial primitives. Chen [1998] has 
assumed that for all boundary positions i,  
boundary displacementi | linked medial primitives is independent of all other displacements, and he has 
modeled p(boundary displacementi | linked medial primitives) by a Gaussian with standard deviation equal 
to the tolerance at implied boundary position i implied by the medial primitives (see Fig. 5). That is, if the 
standard deviation giving the displacement tolerance at implied boundary displacement i is σi ∝ the figural radius 
at the medially-implied boundary position, 
-log p(boundary displacements | linked medial primitives) =  

−Σi log p(boundary displacementi | linked medial primitives) = 0.5 Σi (displacementi)2/σi2.  
3.2 Statistical and geometric shape metrics for medial primitives 
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To ease our discussion of metrics for medial primitives, let us adopt the notation mi = ( )iiii br θ,,,
r

x  for the ith 

medial primitive, lj = ( )jjjjjjj brrr θθ ∆∆∆∆ ,,,/,/
r

x  for the jth link, and lj ~ mi  for the indication that the jth link 
involves the ith medial primitive. When the Markov assumptions leading to probabilistic factoring are valid, 
Gibbs distribution theory allows us to conclude that the shape probability at a medial primitive is given by a local 
sum of the link metric over the links to the medial primitive: ∑=

ij
ji ml

lm
~

. This is the localized shape metric 

that we have been seeking. Even when combined with the metric components at larger scale, the result has only 
O(N) terms.  
 
We are working at present on generating statistical (i.e., -log probability) metrics ||lj|| from families of training 
images using the principal components approach of Cootes et al. on the incident medial primitive links to a 
medial primitive. When combined with a similar form of statistical analysis at the larger scales, a global, 
statistically trained morphographic metric, with explicit local aspects, results.  However, the metrics that we have 
used till now have been geometric instead of statistical. That is, for the local metric, relative to a reference link 
value ref

jl  a link lj is measured by its geometric difference from the reference, e.g., the difference in its object 

angle, rather than its degree of unusualness. With this assumption, 
geom

ji
ij

∑ −=
ml

llm
~

ref
j . 

 
While we presently recommend that the geometric metric be a weighted sum of metrics on the components, all 
dimensionless, of the incident ref

jll −j , some of the image analysis methods that are reported in Section 5 
preceded medial primitives including orientation components. They thus used a metric that only involved the 
position-offset and width-difference components of interprimitive links. This geometric metric was suggested by 
Wilson [1995].  It uses the size of a vector in scale space, ( )rrd ss ,,, xx ∆∆  according to the scale space norm, 
which takes sizes relative to scale, and the scale space cosine ( )rrrss ∆+∆+ ,;,cos xxx  between two vectors 
in scale space [Eberly, 1994].  
 
The shape metric can be used to measure the geometric difference between a link connecting a pair of medial 
primitives in a particular instance of the shape and the link connecting that pair in a standard version of the 
shape. It can also be used to measure the difference between two homologous objects, e.g., between a normal 
organ and the organ of a particular patient or between a patient's organ at one time and that patient's organ at 
another time. Where the weighted difference is high can be identified to indicate pathology. In addition, the 
shape metric can be used to measure the difference between the pair in a model and its deformed version in a 
deformable loci method of segmentation (see Section 5.1). That is, we can produce a formal local Markov 
random field prior [Wilson 1995], which can be used via the Iterative Conditional Modes (ICM) [Besag 1986] 
method to optimize the local posterior probability given the linked medial primitives' present values.  
 
4. Measuring accordance of image with linked medial primitives 
 
In this section we focus on the metric -log p(image | object), which measures how consistent an image is with a 
particular object representation. For the purposes of this section the object representation is assumed to include 
a set of medial primitives, already placed, oriented, and sized according to values for the similarity transform 
parameters. Just as with the morphographic probability, the image match probability can be factored by scale if 
we make a Markov inter-scale-level assumption, resulting in  
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-log p(image | object)  =  -Σk  log p(image at scale level k | object displacements at level k and below).  
That is, the image match information needs to be provided at each of the scales at which the object 
displacements are represented, conditioned on positions established at a larger scale of measurement. When 
used in posterior optimization (see section 5), the morphographic metric, factored by scale level, and the image 
match metric, factored by scale level produces and overall metric in which the morphographic and image match 
terms at a given level are grouped: object | image metric =  
Σk   [-log p(object displacements at level k | object represented at scale k+1) + 
 -log p(image at scale level k | object displacements at level k and below)]. Each of the terms of the sum 
are successively optimized, in order coarse to fine. In this section we focus on what happens at any particular 
level of refinement. 
 
First of all, as discussed in section 2.5, the image measurement at any level must use aperture widths 
proportional to the inter-primitive distances at that level. The fact that successive scale levels will use derivatives 
with successively smaller apertures makes reasonable our assumption that the image information at successive 
scale levels, conditioned on their respective object representations, are independent. Also, the aperture widths 
at the first, full-object level will be quite large. The use of a large aperture serves to give the first stage of the 
method a large capture distance. That is, the model may be placed quite far from its final position and still 
converge to an optimum posterior. For example, if a significant portion of a major figure is within 2 full aperture 
standard widths away from its final position, convergence to a visually reasonable similarity transform can be 
expected. 
 
Second, typically the information from the image telling how well it matches with a medial primitive has to do 
with the behavior of the image intensities near the boundary positions implied by the medial primitive. We 
assume that this information is probabilistically independent across the primitives, and we make the Markov 
assumption that the local intensity dependence on all primitives is only on the local primitive. Stated 
mathematically,  -log p(image | collection of medial primitives) =   
-Σi log p(image at boundary positions implied by primitive i | collection of medial primitives).  This metric 
of the match between an image and a medial primitive is what we have called “medialness” in our previous 
work.  
 
As discussed in section 2.5, at the stage of match at which the individual medial primitives, relative only to their 
intrafigural neighbors, are being displaced, the metric of the match between an image and a medial primitive must 
involve image information measured at a scale proportional to the width parameter of the medial primitive.  
Moreover, we take it to involve only the image information at the two boundary positions and normals implied 
by the medial primitive. We assume the image information in these two boundary regions are probabilistically 
independent. This yields the summary mathematical statement  -log p(image | a medial primitive i or an end 
primitive i) =   
Σi (-log p((image |  2 or 3 boundary positions and normals i at scale ∝  ri)), where the boundary positions, 
normals, and scale are those implied by the respective medial or end primitive. We call these summands 
“boundariness” or boundary strength metrics. 
 
As with the shape metrics, there are both statistical and geometric image match metrics. The statistical ones 
derive from training images and measure the accordance of a particular local distribution of intensities with ones 
in the homologous positions in the training images [Cootes 1993]. While we are working toward using these, to 
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date we have used geometric image match metrics, which measure the accordance of the local image intensity 
function with a template, e.g., a directional Gaussian derivative. Such measures of accordance are standard in 
image analysis; normally they are measured by treating the template as a weighting function. 
 
By the previous discussion, an image accords with a medial primitive to the degree that its implied boundary 
points and normals behave in a boundary-like fashion. Using the directional derivative of an aperture function 
geometric metric, the medial strength of the medial primitive m = ( )θ,,, br

r
x  is given by the sum of two 

boundary strength values: 
M(m) = ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )yxIyyxIy +−+∇•−+++∇• brRAbRbrRAbR

rrrr
θθθθ r,r, , where A is the 

aperture function (Fig. 7a). The aperture function should have an elongation suitable to the medial primitive 
sampling distance. By the theory given in Section 2.5, both the length and the width of the aperture should grow 
in proportion to r.  
   
If one has only the information in a medial primitive, the along-boundary ridge of each aperture function would 
be straight and orthogonal to the direction of differentiation, as in Fig. 7. Alternatively, one can use the 
information in the links from the medial primitive to derive boundary curvature and give this curvature to the 
aperture function.  
 
The image property whose difference determines the boundary can vary across the boundary points. For 
example, the polarity of the intensity difference, whether the change at the boundary is in texture or luminance, 
and whether a luminance change is signaled as an outline (a bar) or a gradual step, and the expected sharpness 
of the step or bar can all vary from point to point. The training can allow the particular boundary property which 
is to be measured to be set at each boundary point.  
 
At the endpoint medial primitives m, the medial strength M(m) adds to the aforementioned formula the property 
of end strength (Fig. 7b). That is, these end primitives have not only two boundary-pointing vectors that behave 
just like those in internal medial primitives, but also an additional vector b

r
 for which the two boundary strength 

kernels have coalesced into a single operator covering a sector of a circle with radius of curvature equal to the 
radius of the primitive. There is an additional aperture whose position and orientation is implied by this vector. 
The spatial aperture size normal to the circle at the implied position of this additional aperture is proportional to 
the radius of the circle, and the template is differentiated in the b

r
 direction.  Like boundary strength operators, 

the end strength operator forms a sort of template of intensity variation to which the image data is fit.   
 
For scale levels at which a collection of medial and end primitives are jointly being displaced, according to the 
probabilistic discussion earlier in this section and the overall agreement of a net of medial primitives {mi} is  
  

Image match at medial locus = ( )∑
=

N

i
iM

1

m  

The items of the sum which are especially small indicate positions where the image information disagrees with 
the locus. 
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Similarly, the overall agreement of a set of boundary primitives {bk} derived from displacements from the 

medially implied boundary positions and normals, is ( )∑
=

bN

k
kB

1

b , where B can be a statistical or geometric 

measure of agreement of the image with the model in the normal direction, at a scale smaller than that used in the 
medial primitive match measurements.  

a) 

physical horizontal

b

object 
angle θ

level curve of  
aperture

direction of derivative 
 = R(θ)b

direction of derivative 
 = R(- θ)b

 

b) 

direction of derivative 
 = R( θ)b

physical horizontal

level curve of  
Gaussian aperture

direction of  
derivative = b

direction of derivative 
 = R(- θ)b

 
Fig. 7. a) Example of a medial strength kernel. b)  Example of an end strength kernel. 
 
5. Shape-based medical image analysis 
 
The examples in the following are intended to give a sense of the possibilities of the image analysis paradigm we 
have described. Being from the past, they use only geometric image match and geometric shape metrics, and the 
geometric metrics use only position and width values. Moreover, in some cases the medial strength kernels used 
are isotropic, summing boundary strength over all object angles rather than just for two or three vector 
directions. 
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5.1 Segmentation and recognition 
 
Consider the problem of the definition of anatomic objects, for example, to facilitate 3D radiation treatment 
planning. Here the objective is to define the boundary of the object that most probably is the organ of interest, 
so that radiation beams can be positioned with respect to this boundary and dose to these healthy organs can be 
minimized. 
 
A method of Bayesian deformable loci which generalizes the deformable contours method to use a 
medial+boundary model has been developed and tested for 2D images [Fritsch 1997].  Given a model, the 
method involves deforming the boundary and medial loci (moving the points defining these loci) to optimize the 
Bayesian log posterior formed by summing the log likelihood given by the measure of image match and the log 
prior giving the measure of morphographic match with the model. This view of segmentation as the deformation 
of the object representation has led us to call an object represented in this way, Deformable Shape Loci (DSL). 
The method can be considered not only a method of segmentation, which yields the object boundary, but also a 
method of recognition that gives the probability that the segmented object is the one modeled and which also 
provides an indication of pathology, indicating the places where the segmented object is particularly different in 
shape or morphography from the model. 
 
Methods for first interactively forming a template from a training image and then using a set of training images to 
determine the weights the model are described in [Wilson 1996] and [Fritsch 1997]. Forming a model, we 
believe, must involve human interaction, to reflect understanding of which are the object figures that matter. The 
method for forming a model described in [Fritsch 1997] is based on core extraction (a core is a height ridge of 
medial strength [Pizer 1996]) and a variation of deformable contours, followed by interactive positioning of 
primitives.  
 
Also described in [Fritsch 1997] is a method for optimizing the log posterior for a particular target image.  The 
method is based on treating the measure of image match described in Section 3 as a log likelihood and treating 
the measure of morphographic difference from the model described in Section 2 as a log prior. In this work the 
object morphographic measure, the figural morphographic measure, and the boundary morphographic measure 
were combined into a single morphographic measure, and the image match measures for these three scale levels 
were also combined, with the result that the objective function was  

( ) ( ) ∑∑∑
+

===

−−+=−
1
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where the weights wb, wm, and wl give the relative strength of the small-apertured boundary match, the larger 
apertured medial match used to describe both object-scale and figural scale match, and the image match, and 
the link Nl+1 is between the parent figure and the image space, i.e.,  specifies the similarity transformation for 
the whole object. Ultimately, as discussed in sections 3 and 4, forming the model must also involve a set of 
training images to determine the variabilities of each term in the objective function. At this early stage, a 
geometric image match and a geometric morphographic difference were used and the weights of each sum were 
set to interactively defined constants. 
 
Briefly, the segmentation method uses the model itself is used to start the optimization, and the location, 
orientation, and magnification parameters of first the full model and then successive figures are first iteratively 
modified to optimize the posterior. At this stage the part of the prior reflecting intrafigural links (medial-medial, 
medial-boundary, and boundary-boundary) does not change as the figural shapes are not changed. Then all of 
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the points on the figural loci are iteratively moved to optimize the posterior, moving medial points and their 
associated boundary involutes before moving the boundary points themselves. This strategy is particularly 
effective because the large apertures used for the medial match allow the model to conform to large-scale object 
changes and, moreover, serve to stabilize the finding of the boundary by the small-aperture boundary points. 
 
All of the previous stages were done with rather coarsely sampled medial and boundary loci. A final stage uses 
a constrained deformable contours method to fill in boundary points between the coarsely sampled boundary 
points, which are constrained to their positions at the end of the previous stage. 
 
A series of extractions of the ventricle from 2D MRI slices, using a 2-figure model, has shown the DSL 
segmentation to be robust against deformation and intensity noise [Fritsch 1997]. A 5-figure model of the 
ventricle has also been used to automatically segment from 2D MRI images of patients with quite a variety of 
ventricle shapes [Fritsch 1997]. The model and some results are shown in Figs. 8 and 9, respectively. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
More recently, this segmentation strategy has been modified to explicitly use the concept of linked medial 
primitives described in this paper. Here, during the local stage of medial primitive optimization, each medial 
primitive unit (the medial point and its two associated boundary involutes) move together as a function of 
position x, orientation b

r
, object angle θ, and radius r. An example model is shown in Fig. 10.  

 
Shown in Fig. 11 is an example of applying the brainstem model to a target image that was generated via thin-
plate spline warping of the model image in Fig. 10. The segmentation algorithm operates as follows: First, the 
model is initialized by placing it at approximately the right position, orientation, and size in the target image (Fig. 
11a). Next, the model is registered with the image by optimizing the image match over the similarity transform 
parameters (which do not result in shape change penalty) using large-tolerance apertures at the boundary 

Fig. 8. A five-figure model of a ventricle, with 
inter-figural links, superimposed on its training 
image. 
 

 

 
 Fig. 9.  Final position of the deformed template sites on ventricles taken 
from a population of images Fig. 9.  Final position of the deformed template 
sites on ventricles taken from a population of images from different patients. 
The model template used in the optimization is shown in Figure 7. 
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primitives. Finally, the registered model is warped using an iterative conditional modes (ICM) algorithm where, 
during an iteration, one after the other each 

 
Fig. 10. Training MR brain image and model of brainstem designed from it. 

 

primitive unit is optimized over its  parameters ( )θ,,, br
r

x . Due to the efficiency of the representation, the 
optimization program requires only O(N) time for N boundary points, and in our experience frequently fewer 
than a half dozen iterations of the optimization are typically required. For a typical anatomic structure an iteration 
calculating new values for the whole set of medial primitives requires about a second at present on a high-end 
PC. 
 

   
 a b c    
Fig. 11. Segmentation produced from a MR brain images. a) Initial placement of model. b) First-level registration of model with 
image. c) Final configuration of primitives.  
 
We have also performed segmentations using a hierarchy of objects where the more stably found objects are 
used to initialize and constrain the positions, sizes, and orientations of subobjects. An example using a CT slice 
through the abdomen is shown in Fig. 12. Here, only the linearly interpolated boundary primitives are shown. 
The procedure operates as follows. First, only the large-scale model for the entire abdomen is fit to the image 
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data via a similarity transformation. This determined transformation is then applied to each of the smaller-scale 
objects (kidneys, vertebra, and spinal cord). Next, each of the smaller-scale objects is registered via a similarity 
transformation with the image data but is constrained in translation, orientation, and size change by a link to the 
large-scale abdomen model. Finally, each of the objects is allowed to deform according to the paradigm 
outlined at the beginning of this section.  
 

 
 Fig. 12.  Use of an object hierarchy to segment structures in an axial CT slice through the abdomen. (a) Original configur-
ation of object models on an unclassified image. (b) Final template configurations following hierarchical segmentation. 

 
As a final example, Fig. 13 illustrates the ability of the model to interpolate across sections of boundary with little 
or no image contrast. The shape term dominates the objective function when there is little change in the contrast 
at the medially implied boundary as the medial primitives are translated. 
 

 
Fig. 13. A model fit to a kidney in a CT slice. 

 
5.2 Registration 
 
In object-based registration the model is extracted from a single reference image of the patient in question, 
although this model may in turn be the result of a segmentation based on a more highly trained model, as 
discussed earlier in this paper. After the registration’s model extraction, one or more target images may be 
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registered. For example, to verify the positioning of the treatment beam in radiotherapy with respect to the 
patient, a portal image obtained during each treatment needs to be registered with a planning image such as a 
simulator radiograph or a radiograph digitally reconstructed from a CT image. 
 
First assume that the two images to be registered are both in 2D (or both in 3D) and that the registration 
transformation T does not change shape (i.e., the images may be registered via a similarity transformation). 
Furthermore, assume that there is no warp between the images to be registered. For this registration objective, 
the global magnification, translation, and rotation may be chosen as the most probable, given the image data, 
and thus it might reflect a prior on these transformations. In many situations it may be that knowledge of the 
prior is not present, so a uniform prior, and thus a maximum likelihood approach ought to be used. In this case 
the morphographic choice, i.e., the choice of T, is not to be penalized. Thus the objective function, -log P, 
consists only of the image match terms:  
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The weights are interactively set, because there is only one reference image and thus no measurement of 
variability over family of images.  
 
Because of the stability of medial strength measurement, we have found good success in registering 2D portal 

images, determining a rotation and translation only, by optimizing ( )∑
=

mN

i
iM

1

m  (using medial strength kernels for 

which the two normals were in opposite directions and the response was optimized over the normal direction). 
In fact, Fritsch [1995] shows this registration can be done automatically and produces an accuracy superior to 
manual registration. For the example in Fig. 14 the registration requires around 10 seconds at present on a high-
end PC. 
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Fig. 14. Registration of 2D radiotherapy portal and simulation images via medial strength in portal image on cores in simulation 
image. Left:  simulation image digitally reconstructed from CT. Right: portal image registered with the simulation image.  
 
In some registrations the geometric transformation allowed may consist not only of a similarity transform but also 
a warp. In that case, the probability distribution should cover not only the coefficients of the similarity transform, 
but also the coefficient of the warp terms. Then the situation becomes the same as with segmentation, and all of 
the discussion of sections 2-4 apply to the registration. 
 
5.3 Measuring shape variation and recognition of pathology 
 
As mentioned at the end of Section 3, the analysis of the sublocus of pathological shape change of an organ can 

be determined by locating especially large terms in ∑
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This expression for - log Pgeom  or other expressions for - log Pgeom  reflecting a full training set and hierarchical 
modeling, as discussed in Section 3, can also be used as a measure of shape variation from normal. Thus, for 
example, in psychiatry it is important to correlate the shape change of various components of the brain: the 
ventricle, the hippocampus, and putamen to name a few, with schizophrenic disease.  Others have used shape 
models based on boundary primitives [Cootes 1993] or on boundary representation in terms of cyclic basis 
functions [Székely 1996] for this purpose, with principal component analysis providing the statistical means for 
turning interactively segmented training images into a measure of shape variation based on Gaussian probability 
distributions.  This measure is then applicable to measure the Mahalanobis distance of an object in a patient 
image from the mean object shape. 
 
We are applying this same idea to models based on medial primitives. In an early attempt a family of 20 random 
corpus callosum MR images was created by Aylward as follows. From a corpus callosum in an MR image 5 
(x,y,r) medial values approximately equally spaced along the structure were measured.  These formed the mean 
of a 15-variable Gaussian probability distribution. The standard deviations of the distribution were chosen to 
reflect two independent changes: bulging/narrowing toward the anterior portion and a swing of the tail. Twenty 
samples from that probability distribution were taken, and each sample, comprising 5 (x,y,r) values, was used 
as the knots forming splines of x, y, and r, respectively. For each such spline triple, a binary image was formed 
as the union of the disks of radius r at position x,y, and this image was superimposed on a low contrast 
midsagittal MRI slice.  
 
We fitted a set of medial primitives to the corpus callosum in each of these 20 simulated images. We started by 
extracting a core (height ridge in (x,y,r,θ) of medial strength) from each training image. We then approximated 
the medial primitive position, radius, and bisector direction at 16 equally spaced positions along the core, fixing 
the object angle at π/2. Finally, we optimized each primitive’s medial strength by modifying its object angle, also 
allowing slight variation in position perpendicular to the core, bisector direction, and radius. 
 
The resulting set of medial primitive parameters were analyzed by principal component analysis – this would be 
the first (full object) stage of a coarse-to-fine shape analysis according to our overall theory. The full coarse-to-
fine analysis is part of ongoing research. Fig. 15 shows the first two principal modes of variation of the one-
stage analysis. These modes respectively capture the very two independent variations that were inserted to form 
the training data. 
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Fig 15. Principal shape variations of a corpus callosum from simulated training images. The center column shows the mean 
medial primitive set, and the left and right columns show respectively  +/- two standard deviations of variation of the medial 
primitives according to that eigenmode. 
 
6. Summary and Discussion 
 
The principal objective of this paper has been to show how to construct a stable, efficiently calculable 
measure of shape and other geometric object properties and how to use this measure in a uniform method for 
segmentation and recognition of image objects, object-based registration, and object shape measurement that 
has a large capture distance. The abilities of this method have been illustrated by examples. A more detailed 
description of the segmentation programs and a presentation of the segmentation results of these methods can 
be found in [Fritsch 1997].  For some of the clinical uses described in Section 4 the method has been validated 
by clinical usefulness or accuracy [Fritsch 1995, Fritsch 1997]. In others, this validation is yet to be done. 
 
The measure of shape that we have constructed is dependent on a variety of reasonable probabilistic 
assumptions of the hierarchical dependence of information at the collection of scale levels and of the 
independence and Markov properties of intensity vs. primitive-implied positions and directions. A careful study 
of the realizability and uniqueness of these intensity states remains to be done. Such hierarchical modeling is not 
new to shape based image analysis, having been applied to voxel-flow descriptions of shape by Christensen 
[1997] and Grenander [1994], as well as by McCulloch et al. [Laading 1998] in author Valen Johnson's 
laboratory. However, our application of hierarchical modeling to the richer medial and boundary primitives 
appears to add capability and efficiency to the approach, and it brings a deep understanding of the ideas of 
scale in shape theory to bear. At the same time, it raises issues of how to handle abutment relations between 
model figures (e.g., adjacent organs). 
 
One area of promise of the representation that we have described is in achieving homology between primitives 
as the representation deforms. With the rich collection of parameters contained in medial primitives and their 
relation to boundary primitives, not only the loci of vertices (extrema of boundary curvature; crests and troughs 
in 3D) but also figural loci such as end points (curves in 3D), pinch points (curves in 3D), and medial axis 
vertices (articulations?) can be designated. However, it remains to future research to measure the extent to 
which the present metrics cause correspondences at such loci to be maintained and to design metrics that 
accomplish this goal. Moreover, because it is not always the case that biological homology corresponds to 
geometric homology, the import of the promise to achieve geometric homology of primitives is yet to be 
understood. 
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Compared to a deformable model based on boundary points alone and only on the relations between adjacent 
boundary points, our experience is that the DSL segmentation method much more reliably converges to a 
satisfactory result. A major advantage appears to be in the first stages of the segmentation, in which the capture 
distance from an initial placement, orientation, and scaling of the model is considerably greater than methods 
based on boundary points with small apertures. A capture distance of about half the width of the parent figure is 
typical. As compared to methods using all O(N2) relations between the N boundary points, the DSL method is 
very much faster. 
 
This paper's first motivation of DSLs as shape models was that both model formation and segmentation take 
time O(N). But the method of Cootes & Taylor [1993] requires only time O(N) if a fixed number of 
eigenvectors of shape change are selected, and in many cases it has rather good capture distance. DSLs have a 
different advantage over this method. The first is that the training requires only O(N) time, as compared to the 
minimum of O(N2) and O(the number of training images) for the Cootes & Taylor method. Second, and more 
importantly, the training requires fewer training images because the number of variables at each scale stage, and 
thus the number of major modes of variation at each scale stage is few. Third, whereas the Cootes & Taylor 
method uses the prior information as to shape to constrain the deformation, DSL segmentation uses the prior in 
a weighted fashion. As a result, the DSL method has the possibility of converging to a pathological version (one 
with low prior probability) of the DSL model if the image information is convincing enough. Fourth, the DSL 
method has the advantage of being able to determine the locality of a shape difference (or medial strength or 
boundary difference), compared to the training set. The DSL method has the disadvantage that, unlike the 
boundary based methods, medial primitives cannot handle sections of boundary without also handling their 
involutional partners. However, all of this comparison is hypothetical; the Cootes & Taylor method has been 
found successful on a very large number of segmentation problems, whereas the DSL method has been tested 
on rather few problems. 
 
A difficulty with the expressions for Pgeom  that we have discussed is that interfigural homology is required 
between a model and an individual. While many organs that retain such homology over normal patients exist, 
many, such as blood vessel trees and the cerebral cortex, do not. In these the figure-subfigure structure is not 
deterministic but stochastic. Similar differences in the figure-subfigure structure may occur with pathology. A 
theory for the geometric difference between figural graphs with different and possibly stochastic structures 
remains to be developed. 
 
We have generalized to 3D of the DSL representation, the measure of image match, the model creation tools, 
and the optimization of the posterior, and we have implemented both model building and posterior optimization 
tools.  The model differs only by the boundary and medial loci forming 2-manifolds rather than 1-manifolds, with 
the consequence that the intra-medial-locus links form a mesh except at endpoints, and by the medial primitive 
benefiting from having the normal to the medial locus as an additional component. The morphographic difference 
measure does not change at all, except that the number of dimensions in links, translation, and orientation is one 
higher than with 2D images. The measure of image match differs only in the boundary strength kernels 
contributing to both boundary strength and medial strength are one dimension higher than with 2D images. A 
paper describing this 3D medial primitive based deformable models method awaits our carrying out a 
satisfactory evaluation of its performance. 
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