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Abstract
A model of object shape by nets of medial and boundary primitivesisjustified asrichly capturing multiple aspects of shape
and yet requiring representation space and image analysis work proportional to the number of primitives. Metrics are
described that compute an object representation’s prior probability of local geometry by reflecting variabilitiesin the net's
node and link parameter values and that compute a likelihood function measuring the degree of match of an image to that
object representation. A paradigm for image analysis of deforming such a model to optimize a posterior probability is
described, and this paradigm is shown to be usable as a uniform approach for object definition, object-based registration
between images of the same or different imaging modalities, and measurement of shape variation of an abnormal anatomical
object compared with anormal. Examples of applications of these methods in radiotherapy, surgery, and psychiatry are given.

I ntroduction

Our intuition tells us that to segment, digplay, match, or andyze an object in a2D or 3D medica image, we
should look for aregion of the image that is consstent with what we know about the object's geometry. We
should be able, for example, to find a ventricle-shaped object in an MR image of the brain. This paper givesa
means of representing shape that alows the efficient, stable application of thisidea to problems of image
andyss.

We describe a representation that
1) richly and efficiently captures object geometry, and
2) alows measurement of the shape difference between two instances of an object, in the framework of
redigtic images, and thereby
3) provides acommon framework for the medicd image operations of segmentation, object-based
registration, measurement of shape variation, and indication of regions of pathologica shape change.
The generd paradigm for image andysis that we will present here involves two components. The first
component isto create amodd R comprised of interconnected figures, where afigure is either awhole object
or the main object part or aprotruson or indentation in another figure. It is this focus on the figure as the basic
unit of shape that distinguishes the gpproach that we will describe in this paper. The second component of the
gpproach is to determine a geometric transformation T that maps R into the most probable variant, given the
image data. The measure of probability involves two components:.
1) the probability Pyeom, Of observed change in the modeled shape, position, orientation, and size of the object;
2) the probability Py, that the image datawould arise from the object geometry. In this paper we decompose
Pgeom into the probability of the position, orientation, and size of the object and the probability Pshape of the
shape of the figures and in the interfigural spatia variables, and we focus on Pspape. Then
1) for a segmentation objective, R models the object over afamily of training images, and T(R) yiddsthe
segmented object;
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2) for aregidtration objective, R isthe object representation in the reference image, T(R) is the object
representation in the target image, and T isthe desired regidtration transformation;

3) for a shape variation measurement objective, R is the object representation at its base position, and -log
Pshape IS the measure of change in shape from Rto T(R).

Implementing this conceptua framework requires us to specify the representation R of object geometry and to
specify the formation of the probabilities Pyeom and Pimg. The remainder of this paper begins with a section on
representation of object geometry, leading to amultifigural tree of linked, coarsdly sampled media loci
augmented by a boundary displacement map on the medidly implied boundary. It is followed by a section on
measures of the probability of geometric change and a section on measures of the fit of image data to an object
representation. Sections follow indicating how these ideas can be used for image anaysis, in particular,
segmentation, registration, and measurement of shagpe anomaly or differences. However, since we wish to focus
here on the shape representation, we leave detalls of the dgorithms for these objectives to other papers on the
individua agorithms [Wilson 1995, Wilson 1996, Fritsch 1995, Fritsch 1997, Liu 1998]. In the discusson of
image andyds we give examples from radiotherapy planning, surgery planning, and psychiatric diagnos's, but we
leave fuller illudtration of these applications to other papers on theindividua clinica topics [Fritsch 1996, Clary
1997].

1. Alternativesfor Representing Object Shape

We take the common view that the shape of an object includes dl the spatia aspects of its layout that are
invariant to smilarity transforms, made from trandation, rotation, and uniform magnification. Thus an object in d-
pace isfully spatialy described by its shape together with its Smilarity transform parameters: its position,
orientation, and scde. We will cdl the shape together with these smilarity transform parameters of an object its
mor phography. But how can we represent the shapein away that richly captures the aspects that are visualy
important, alows efficient caculation of shape variation and location of regions of shepe variaion, and alows
dtable gpplication to image data, with dl their disturbances of intensity noise and blurring, boundary texture, and
especialy complexity of background?

Traditionaly shape has been derived from points with recognizable loca geometry called landmarks [Kendall
1989, Bookstein 1991] or from arepresentation of the boundary by sampled points [ Cootes 1993] or by
boundary-representing basis function coefficients [Staib 1992, 1996; Székely 1996, Kelemen 1998]. Hybrids
of boundary and other curveloci with landmarks, e.g., [Y uille 1992], and representations by sampling the full
gpace [Christensen 1997, Grenander 1994] have also been suggested. The methods with point primitives have
assumed that the boundary representations or landmarks could be accurately, homologoudy, reproducibly, and
conveniently extracted in sufficient number, but they have suffered from the fact thet dl of these assumptions are
frequently questionable in red images.

Efficiency isdso a concern. Given N shape primitives, if N isvery large, asin the number of pixesina2D
image or the number of voxesin a 3D image, the time for ingtantiating a shape representation based on an image
can be unacceptably large. If N issmdl, efficiency may not be a concern but the shape representation is
frequently not rich enough. If N isin the moderate range of some hundreds, the efficiency depends on whether
the required computation requires O(N) or O(N2) steps. The Smilarity transform parameters are easily

extracted in O(N) time. However, various methods have extracted shape from the relations between the
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aNo
primitives, of which there are ng = O(N 2), or they require multiplication of an O(N)-vector by a square
o)

matrix of side O(N), also requiring O(N2) steps. The minimal bending energy method of Bookstein [1991] falls
into this category.

Among O(N) methods, the Procrustes method has modeled shape by variations in the vectors from the point
primitives to their center of mass. Interrelationships among points are not modeled, so the measure of shape
produced is somewhat weak. The same can be said about methods based only on the loca relations between
adjacent boundary points, thus capturing only the loca curvatures of the boundary.

Another way of producing an O(N) method has been to take only a constant number of linear combinations of
the N primitives, as provided by Principa Component Andlysis of the primitive point positions or boundary
coefficients in training images after normalization for a smilarity transform [Cootes 1993; Kelemen 1998]. These
approaches yied shape parameters that reflect globa information and thus are week in their ability to capture
aspects of shape that are specific to a particular location, protrusion, or indentation.

We suggest that a method for providing O(N)-time shape analysis and the ability to capture both locd and
globa shape variationsin away stable againgt common image uncertainties and complexitiesliesin

a) recognizing that certain boundary points are related in speciad ways determined by figurd properties,

b) redizing that a shape is made up of related figures,

¢) focusing on the facts that shape is magnification invariant and that the tolerance of positions in object

representation primitivesisacritica factor (see Fg. 5, later), and

d) making coarse-to-fine analyss an inherent aspect of the shape description.
Thisleads usto arepresentation that is ahierarchy of coarse-to-fine collections of nets of medid primitives,
augmented by nets of boundary displacement primitives, al with associated probability distributions. We will
describe these ideas with examples in two spatiad dimensions. We have shown these ideas to work without
changein 3D aswell, but we leave the 3D aspects to another paper.

2. Figural Shape Representation
2.1. Medial Primitives and Nets of Medial Primitives

Having assumed that positiond toleranceis a centra aspect of shape [Morse 1996], we focus first on the large-
tolerance aspects of shape that alow usto say that the two objectsin Fig. 1 are the same figures but differ in the
texture, i.e., the smdl-tolerance detail, of the boundary. We suggest that these large tolerance aspects are those
involving cross-figura linking, which we represent viamedia primitives. Blum [1967] and Marr, among others,
redized early that cross-figura linking was an important aspect of shape, and Psotka [1978], Frome [1972],
and Burbeck & Pizer [1995, 1996] dicited psychophysica evidence of human vison's sensitivity to such linking.

While we wish to reverse the common view of media primitives that they are derived from a boundary to aview
inwhich they imply a boundary, with tolerance, for the next few sentences assume that the boundary is known.
Wefocusfirst on the specia relations between boundary points that a smple object, protrusion, or indentation
has. The two specid relations between boundary points are the adjacency relation traditionaly dedt with and
the symmetric relation of linking aboundary point across afigure with afiguradly opposing point, caled its
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medial involute (for example in Fig. 2a, each point A; and an opposing point B; are each other's medid
involutes). Theinvolution relationship has traditionally been defined by the fact that the normas to the boundary
a theinvolutes intersect a a so-caled medial point equidistant from the two involutes. However, we reverse
the process, defining amedia primitive as amedia point with two associated boundary-pointing vectors of
equal length (Fig. 2b) and taking the media involution relation between the points at the end of the two
boundary-pointing vectors to be a consequence of our primitive (Fig. 2c) rather than arelation defining it. The
sections of the boundary so defined are orthogonal to the respective boundary- pointing vectors and are taken to
have positiond tolerance in the directions of the respective vectors.

P

Fig. 1. Two instances of the same figure, one with smooth boundary texture and one with rough boundary texture.
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Fig. 2. @) A figure with pairs of media involutes (A,B). b) A medial primitive and itsimplied involutes, with tolerance.
¢) Thethree (A,B) medial involute pairs defined by three medial primitives. The dashed boundary should be thought of as
being interpolated through the implied boundary points.

Traditiondly, media information is given by the vaues of 1) the location x of the intersection of normasto the
boundary points and 2) the common distance r from thislocation to the two corresponding boundary involutes
[Blum 1978]. When the boundary points and boundary normals are to be implied by the medid primitive rather
then vice-versa, it is necessary to record as well the unit vectors i, and i, pointing from x toward the
respective boundary points. For reasons of geometric informativeness to be discussed later, we choose to
define amedia primitive by the medial position x, thewidth r, aunit vector b bisecting (averaging) the
boundary-pointing vectors, and an angle q between b and the two boundary-pointing vectors (haf the angle
between the boundary-pointing vectors). q is caled the object angle. The implied medid involutes are at
x+rR(g)b and x+rR(- q b, where R(q) isthe operator rotating its operand by g. The boundary-pointing
vectors are each taken to imply a boundary fragment normal to its vector, so these fragments are at angle p-2q
to each other.



Published in |EEE Transactions on Medical Imaging, 18(10): 851-865

We are now reaedy to more formadly define "figure’. Asillugtrated in Fig. 3, afigure is a geometric object
implied by a sequence of media primitives such that each of the two implied boundary point sequences
{x+rR@)p} and {x+ rR(- q)b} is ordered along the implied boundary in the same order as the primitives,

The sequence may be closed by an end primitive that hasarrowsto x +rR(g)b, x+rR(- q )b, and x+arb

[Clary 1997]. The sequence of boundary points on one sde of afigure can straddle an attached subfigure, i.e.,
aprotruson or indentation on one side of the figure. Fig. 3illustrates four figures: alarge "sweet potato”, a
protrusion on the sweet potato, an indentation in the sweet potato, and a nearby "bean”.

Medid primitives are associated using two types of links: intrafigural and interfigurd. An interfigurd link connects
aprimitive in asubfigure to a primitive in a parent figure. Intrafigurd links connect medid primitivesdong a
figure. The spacing of gpproximately r indicated in Fig. 3isintended to be typicd. In 3D the medid primitives
form anet, and we will use "net” to refer to the sequence of primitivesin 2D aswdll.

A net of primitives ends either with amedid primitive at the open end of a protrusion or indentation or with an
end primitive. Following Leyton [1992], we digtinguish end primitives as a pecid type of medid primitive.
According to Leyton, in anaogy to the importance of endstopping of linesin human vison, endstopping of
figures corresponding to the distal end of amedia locus is dso an important aspect of shape and happens at a
maximum curvature point on the boundary where a circle centered a the media locus end osculates the
boundary. Such apoint of maximum curvature of the appropriate senseis caled avertex.

Legend
o} medial primitive positions
— medial primitives or end primitives boundary -pointing vectors
— intrafigural links
- — interfigural links
— implied boundary

Fig. 3. Linked sequences of medial primitivesimplying four linked figures.

2.2. Figural Shape

Fgurd shepeis given by the rdaions among the medid primitives. We firg distinguish shape aspects within a
figure from those between figures. In our example in Fig. 3, the fact that the main sweet potato figure narrows
from bottom to top and curvesto the left asit nears the top will fal into the category of intrafigurd shape aswill
the facts that the protrusion on the right is gpproximately straight and of roughly constant width. The facts that
the protrusion is attached somewhat above the middle of the sweet potato, is oriented at around - 70 degrees
relaive to the sweet potato, and has awidth about a quarter of the width of the sweet potato will fal into the

category of interfigurd shape.
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Whileintrafigura shapeis fully described by the rdations among dl the medid primitives forming the figure, our
visua capabilities for comprehending shape seem limited to nearby primitives. For this reason and the desire to
produce an O(N) description, we will mostly limit the description of shape discussed in this paper to those given
by adjacent medid primitivesin the net. We will see later, when focusing on coarse-to-fine aspects of the
description, thet this need not limit us from capturing certain more globd figural shape aspects.

In describing interfigurd shape, we follow many othersin computer vison who have found that an important
shape relation is the graph relations between figures and their attached subfigures or neighboring or included
figures. We condder one of the figuresin this relaion the parent and one the child or subfigure, with the result
that the whole structure forms a directed acyclic graph, which in many casesis atree. The Structure of this graph
will be taken to indicate topology, whichin this paper will be treated as deterministic. The consequenceis that
we will be able to represent shapes such as livers, kidneys, cerebrad ventricles, and hippocampi but not be able
fully to represent shapes such as blood vessdl trees and the cerebrum with its sulci and gyri, Snce these laiter
examples vary among individuas in how many branches there are from a particular figure and in what branches
from what.

For now we take each relation between afigure and its subfigure to be represented by asingle link between a
media point on the parent figure and a proxima media endpoint of the subfigure. Including these links (dashed
in Fg. 3) dill leaves uswith O(N) linksfor N medid primitives.

Thelinks, both intrafigural and interfigura, between medid primitives (see Fig. 4) carry thefigurd shape
information. Specifically, the shape information isin the "shape tuple’ |Dx/r|,Dr /t,Db,q,Dq, Dx - b, where“~’
denotes normalization to a unit vector, D indicates a difference between the linked primitives, differences
between unit vectors denote an angle, and r and g are measured at the tail of the link. All of these measures are
dimensionless. If the link is between adjacent primitives within afigure, |[Dx/r| carriesinformation about the local

elongation of thefigure, Dr / r and g carry information about the local widening or narrowing rate of the figure,
Db carriesinformation about the local curvature of the figural (medial) axis, and Dq carries information about

the locd curvature of the boundary relaive to the axis [Blum & Nagd 1978]. Thedirection of Dx rediveto b
of the reference primitive carries information of spatid derivative order higher than two.

If the link is between a primitive in a parent figure and a primitive in asubfigure, Dr /r carries information about
the proximal width of the subfigure relative to the local width of its parent figure, Db carriesinformation about
the proximal orientation of the subfigure rdative to the locd width of its parent figure, and the direction of Dx

relativeto b of the parent primitive carries information on the location on the parent figure of the subfigure (eg.,
in Fig. 3 whether the protrusion is high on the sweet potato, towards the middle, or low).

The local shape related to a particular media primitive can be taken to be given by the set of shape parameters
of dl of the linksincident on that primitive. This set of dimensionless quantities and vectorsisinvariant to the
gmilarity transform operations of uniform magnification, trandation, and rotation. But
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Fig. 4. Two linked medial primitives, before and after figural deformation. Take the lower medial primitive to be the reference
primitive, and | et the upper one be either an adjacent primitive along the same figure (connected by agrey linein Fig. 3) or a
linked subfigural primitive (connected by adashed linein Fig. 3).

note with emphasis that we have taken the tolerance of the boundary fragments implied by amedid primitive to
be a sgnificant aspect of the primitive. The spacing of primitives (the length of the links between primitives) is
as0 an important aspect. In addition, we may follow the common wisdom that boundary radius of curvatureis
an important aspect, even when it is of the (fuzzy) boundary implied by the medid primitives. For medid width
(), tolerance, link length, and boundary radius of curvature dl to be variables associated with the media
primitives used to represent a shape locally, these distance-dimensioned variables must scae together. That is, if
we need to describe shape with locdity, then asilludtrated in Fig. 5a, tolerance, the digtribution of link length,
and the digtribution of 1/boundary curvature (i.e., radius of curvature) must scae localy with the loca vaue of r.
Thewider thefigureis, the larger the tolerance of the figuraly implied boundary must be, the smoother the
implied boundary must be, and the longer the intrafigura links must be.

Fig. 5. @) The net of medial primitives shown represents a figure and implies a boundary whose mean is shown by the curve
and whose tolerance, as a Gaussian probability distribution in the direction of the normal to the mean, is shown by the two
levels of shading. b) Boundary displacements. The boundary of small tolerance, indicated by the narrower curve, is
represented by displacements, at a fine sampling, from the mean curve implied by the medial primitivesin adirection normal to
that mean curve.

I nterpolation between adjacent medid primitives by interpolation in b, g, and log r is consstent with these
requirements. The resulting continuous locus of medid primitives implies a continuous boundary which isthe
boundary implied by the net of medid primitives.
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In the case of the root figure in the tree of figures, we can think of it having alink to the full image space. That is,
the spatid variables describing its link to the image are the globd amilarity transform variables of the whole
object. These are not shape variables but are also important in the object representation.

2.3. Boundary Displacement Shape

Figurd shape only implies a boundary with alarge tolerance and with restrictions on the range of curvaturesit
can have. Thislarge tolerance alows a coarse spacing of medid primitives and thus an efficient representation.

However, an object boundary certainly also has shape a asmaller scale. This aspect of shape information can
be determined more stably if, instead of following the common practice where the primitives are boundary
primitives containing a podition and normd that are located only in reation to the image space, the find
boundary location is located relative to the mean boundary implied by the medid primitives and is congtrained
by the tolerance of the boundary implied by the medid primitives. Thet is, we define the boundary a small scae
by displacements relative to and dong the normd to the mean boundary implied by the net of media primitives
(Fig. Bb). Thus these digplacements can be defined in one dimension, dong the norma direction to the medidly
implied mean boundary. Rdations among nearby displacements can reflect locd texturd properties of the
boundary.

Forming a net of boundary displacement primitives requires piecing together the boundary primitives between
subfigures and their parent figures. Chen [1998] has shown how to do thisin hiswork on object rendering via
the representations discussed in this paper.

Onwhat basisis a particular topology of medid primitives and boundary displacement primitives defined to be
the right set to represent the figura shape information in a particular population of objects relaive to a particular
set of images? We take this to depend on the task at hand and not to be somehow innate to the images. For
example, for apurpose in which finger shapeis to be studied, a hand might be modeled as apam figure, with 5
protrusion subfigures representing four fingers and athumb, and the extensions of the fingernails represented by
boundary displacements. For another purpose, the same hand might be modeled as a mitten, with 4 subfigures
being the between-finger and finger-thumb indentations. For yet another purpose the fingernail extensions might
be modded as subfigures of the fingers instead of by boundary displacements. For the time being, we take these
modeling decisions to be most gppropriately done by human intelligence, whereas the vaues of the primitives
ought to be extracted adgorithmicaly according to the values of training images. We leave the effect of these
modeling decisions to future work.

2.4. Coarse-to-Fine Representation

The principle that media primitives represent the object information a one scae, proportiona to the inter-
medid-primitive distances, and that boundary primitives represent the object information at asmaller scae,
proportiond to the inter-boundary-primitive distances, and that boundary primitive location is dependent on
boundary locations implied by the medid primitivesis an ingance of generd principle of coarse-to-fine
representations. For our purposes we will deal with four levels of coarseness (see Fig. 6): @) for the whole
object or group of objects, b) for each figure, c) for locdl intrafigural relations, and d) for boundary
displacements. These have interprimitive connections at successively smaller maxima distances (i.e., scae).
Such representations can leed Smultaneoudy to efficiency, to handling both long- and short-distance shape
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relations, and to stability of image andyss againg image disturbances. We leave to a future paper the mgor
discussion of this principle and its implementation and especialy the discussion of successvely diced nets of
medid primitives and of boundary primitives.

a) b)

Fig. 6. Coarseto-fine shape representations: a) Primitives at object level; all can interact with all others. b) Primitives at figural
level. Each figure is handled separately, except for itsinterfigural link to its parent. Within each figure all primitives can
interact. ¢) Individual medial primitives, each interacting only viaitsintrafigural links to adjacent primitives.

d) Boundary primitives (normals not shown); each can interact only with afew neighbors.

At each stage there are collections of media primitives that can interact (change in a correlated fashion). Put
another way, the shape-tuples formed from the interprimitive links described in section 2.2 can changein a
correlated fashion.

At the object stage (Fig. 6a), there are the most coarsaly spaced primitives, but al primitives can interact. At the
figurd sage (Fig. 6b), only primitives within the figure and between the figure and the object (the interfigurd

link) can interact, and these are a shorter distances than for the object. Thus the primitives are spaced more
finely than for the object stage. Moreover, at increasing levels of fineness we trest the parent figure, then its
subfigures, then their subfigures, etc. At the medid primitive stage (Fig. 6¢), there need be no interprimitive
interaction, but there is interaction between the primitive and the primitives at the figurd stage. At the boundary
primitive stage (Fig. 6d), the pacing is smaler than & the medid primitive stage, and while there can be
interaction between nearby boundary primitives, we now include only interaction between each boundary
primitive and the adjacent medid primitives. We refine these ideas further in Section 3.

At each stage, the principle of loca shape requires that tolerance be proportiond to primitive interaction
distance. Thus tolerance decreases as one moves through the stages of scale. The primitives at one scde are
taken as variaions from the vaues interpolated from the just larger-scale leve. The previous level can be
thought of as providing aprior for the next smdler leve of primitive values. In thisway, the coarsest medid nets
can represent shape relations at the full length of afigure while finer media nets represent more locd shape
relations. All thisis done with a representation that gill has O(N) links, over al levels of coarseness.
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The scheme just laid out may fail when smdl-scale boundary changesin an object are corrdlated a along
distance aong the figure. For example, the method may not be able to represent the case off aworm's head
aways twitching when itstail twitches. Representing such information will require either giving up shepe locdity
or finding another means of achieving an O(N) representation.

2.5. Measurement Aperture Sze and Magnification Invariance

We have seen that different aspects of our shape representations provide boundary information at different
tolerances, that is, at different scales. Accordingly, image information can be used to position primitives of an
object representation R at different scales by using proportionately sized apertures to measure the property of
being on the boundary or being normd to the boundary.

The width of the gperture used to locate alocusin an image is an important variable. In previous writings
Koenderink [1984], Lindeberg & ter Haar Romeny [1994], and we [Pizer 1996] have used the word scale for
this quantity and have gone as far asto say that thisis not a parameter but a variable as important as spatia
position in characterizing an image. In particular, the aperture width is proportiond to the tolerance with which
the locus, aboundary in our case, can be determined. Thus, for the object level of representation (see Fig. 6a),
the gperture width will be quite large. If measurements are to be made to determine the value of individua
media primitives, the aperture width must be proportiona to the r vaue of the primitive [Pizer 1996] and have
ggnificant extent. The gperture width determining boundary displacements must be much smaller.

Burbeck & Pizer [1995] have found that in human vison the aperture width s a which cross-figurd linking
(medid primitive location) is done is nearly in proportion to figurd radid width (s » 0.25r) and for al but the
thinnest of figuresis significantly greater than the scale a which boundary location and boundary shapeis
determined. With such a measurement scale and in figura components with boundaries not too far from parald,
sampling theory would suggest a sampling rate of approximately one media primitive per cr/3, wherecisthe
elongation of the gperture aong the boundary (see Fig. 7 in Section 4). This sampling rate leads to under 16
medid primitivesfor dl but the most dongated 2D figures, providing a consderable efficiency of representation.
In the coarse-to-fine regime that we have suggested, even coarser sampling would be used at earlier stages.

We now see that maximum interprimitive interaction distances, tolerance of the implied boundary, and aperture
width ought al to be proportiond. Therefore, we can broaden our use of the word "scal€' to mean any of these.

We close Section 2 with a summary: The representation of the morphography of an object that we are
proposing involves a) the smilarity transform parameters, b) alinked set of nets of mediad primitives, each net
possibly in a coarse-to-fine collection, and ) anet of boundary displacement primitives, possibly in a coarse-
to-fine collection. The linked nets of medid primitives soecify the interfigura relations and the genera shape of
each figure, and the net of boundary displacements specifies the boundary texture. A linked net of media
primitives, with or without a net of boundary displacements, form a geometric description that imply a boundary
with tolerance.

As suggested earlier, this representation can be used for image analysis to extract the most probable instance of
amodeled object from an image or to measure the degree of abnormality of thisinstance. To do this, one needs
to be able to measure both how abnormal a represented object is and how consigent it iswith a particular
image. The next two sections trest these two measurements.

10
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3. Measuring shape anomaly

We take a Bayesan point of view of image andlys's, designing methods that extract the most probable object
given theimage, i.e, that maximize the posterior probability p(object | image), or equivaently

log p(object | image). We will refer to the negetive of the log of a probability asa"metric”. For example, if a
probability isa Gaussan, the metric is proportional to a Mahaanobis distance.

Bayes Theorem impliesthat maximizing log p(object | image) extracts that object representation that minimizes
[-log p(image | object) + -log p(object)] . Thefird term, the log likelihood, isametric of the match between
the image data and the object representation. We treat this metric in Section 4 and continue here with -log
p(object). Thisisthe -log of the prior probability of this object representation's occurrence in the population of
al objects that might appear in the imaged region. It measures how anomaous a shape, pose, and szeisreative
to some standard.

There are two mgor issuesin this section on measuring shape anomaly. In Section 3.2 we explain how metrics
involving medid or boundary primitives can be ether satistical or geometric. The Satistical metrics measure -log
p(object | image) based on information extracted from training images. Geometric metrics measure how far the
object deviates from a reference object by some combination of spatia distances, size differences, and
orientation differences. Firg, in Section 3.1, we discuss how to find metrics by successive refinement of scae
and an associated factoring of the morphographic information into the information at alarger scale and the
information a asmdler scae, conditioned on the informetion at the larger scde.

3.1 Factoring morphographic probabilities coar se-to-fine

The overdl morphographic probability participating in the posterior optimization is-log p(object), i.e.,

-log p(all primitives at all scales). This metric can be smplified by probabilistic factoring by scae leve (where
levels are numbered by decreasing scale so that level 1 has the largest scale), in away smilar to that described
in [Grenander 1994]. There are anumber of scale levels, and a each scale level the boundary and alocus of
media primitivesisimplied at Some tolerance, decreasing in order of level. The primitives a each leve thus can
be considered as displacements from those implied at the previous, larger scale level. Because the information a
larger scde largely ignores information at significantly smaler scales, we can use the Markov assumption thet the
probabilistic dependence of information of displacements at asmdler scade on information at larger scaes can
be expressed entirdly through its dependence on the next larger scale. For example, the boundary displacements
are conditioned only on the local medid primitive locations and need not account for the object-leve or figura-
level information except transitivey through the local medid primitive level. While this hierarchicad modeing
assumption can be expected to be most often vaid for objects in medical images, it will fail in Stuations where
there is significant correlation between parameter values at widely different scale levels, e.g., where boundary
wrinkling texture is correlated with the position of one of the mgor figures on the object.

The probabilitic factoring is thus a successve gpplication of the factoring,

p(displacements at scale level k| info. at all larger scales) =

11
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p(displacements at scale level k fromrep'n interpolated at scale level k-1 | displacements at scale level k-
1)’

p(displacements at scale level k-1 | info. at all larger scales). This can be rewritten

-log p(displacements at scale level k| info. all larger scales) =

-log p(displacements at scale level k fromrep'n interpolated at scale level k-1 | tolerances implied by
scale leve k-1) +

-log p(displacements at scale level k-1 | info. at all larger scales) .

We will congder the successive refinement presented in Section 2.4: object, figure, medid primitive, and
boundary primitive. The posterior optimization at each level geometrically transforms the implied boundary and
leaves a smaller tolerance than before. The final tolerance is that associated with the boundary displacements.

The firgt coarse-to-fine stage factors -log p(all primitives at all scales) into-log p(level 1 primitives) +

-log p(displacements at scale level 2 | level 1 primitives). In the applications reported in Section 5 we have
found it possible to redtrict the transformation of the level 1 primitivesto a Smilarity transform, so that

-log p(level 1 primitives) = -log p(location, orientation, and size). Similarly, in these applications we have
found it possible to redtrict the transformation of the figural primitivesto a gmilarity transformation relaive to the
leve 1 primitives, so that -log p(displacements at scale level 2 | level 1 primitives) =

-log p(figural trangdlation, rotation, and size relative to the level 1 primitives).

It is possble to include a full-object warp at these two scales, but we leave such apossibility to alater paper.
With the formulation we have used, the first stage determines the probability of the smilarity transform and the
second and following stages determine Pspape.

The third stage of the factoring describes the displacement of the individud medid primitives reative to the
collection of medid primitives forming afigure. In the gpplications in Section 5, where the medid primitives
representing the figure at scale leve 2 are the same as those representing locd information et the scae leve 3,
we have handled the third scale level viaa Markov assumption, tresting each medid primitive as probabilisticaly
dependent only on the intrafiguraly adjacent medid primitives

-log p(displacement of a medial primitive at scale level 3 | level 2 primitives) =

-log p(displacement of the medial primitive | the intrafigurally adjacent medial primitives). The vaues of
this metric are discussed further in Section 3.2.

The fina stage of the factoring trests the boundary displacements aong the normd to the boundary interpolated
from the medid primitives as dependent only on the tolerance implied by the medid primitives. Chen [1998] has
assumed that for dl boundary postionsi,
boundary displacement; | linked medial primitives isindependent of al other displacements, and he has
modeled p(boundary displacement; | linked medial primitives) by a Gaussan with standard deviation equd
to the tolerance a implied boundary position i implied by the medid primitives (see Fig. 5). That is, if the
gtandard deviation giving the digplacement tolerance at implied boundary displacement i iss; p thefigurd radius
a the medidly-implied boundary position,
-log p(boundary displacements | linked medial primitives) =

- Sj log p(boundary displacement; | linked medial primitives) = 0.5 S; (displacement;)2/s ;2.
3.2 Satistical and geometric shape metrics for medial primitives

12
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To ease our discussion of metrics for media primitives, let us adopt the notation m; = (xi N li o} ) for theith
media primitive, [ :(Dx]. Ir,,Dr, [ ,DBJ. q;,Dq; ) for thejth link, and | ~ my for theindication that the jth link
involves the ith medid primitive. When the Markov assumptions leading to probabiligtic factoring are vaid,
Gibbs digtribution theory alows us to conclude that the shape probability a a media primitive is given by aloca
sum of thelink metric over the linksto the medial primitive: |m,|= &, |1, Thisisthelocalized shape metric

that we have been seeking. Even when combined with the metric components at larger scale, the result has only
O(N) terms.

We are working at present on generating satistica (i.e., -log probability) metrics ;|| from families of training
images using the principa components agpproach of Cootes et d. on the incident medid primitive linksto a
medid primitive. When combined with asimilar form of datistica analyss a the larger scaes, aglobd,
datitically trained morphographic metric, with explicit local aspects, results. However, the metrics that we have
used till now have been geometric indteed of Satigtica. That is, for the locad metric, relative to a reference link

vaue | j“’ alink ljis measured by its geometric difference from the reference, e.g., the differencein its object

ref
-1,

angle, rather than its degree of unusualness. With this assumption, |m;| = § !

Lj~m | geom

While we presently recommend that the geometric metric be aweighted sum of metrics on the components, all
dimensionless, of theincident | - | ;d , ome of the image andyss methods that are reported in Section 5
preceded medid primitives including orientation components. They thus used ametric that only involved the
position-offset and width- difference components of interprimitive links. This geometric metric was suggested by
Wilson [1995]. It usesthe size of avector in scale space, dSS(Dx, Dr, X, r) according to the scale space norm,

which takes sizes relative to scale, and the scale space cosine cosg(x, r; x + Dx,t + Dr) between two vectors
in scale space [Eberly, 1994].

The shagpe metric can be used to measure the geometric difference between alink connecting apair of media
primitives in a particular instance of the shgpe and the link connecting that pair in a tandard version of the
shape. It can aso be used to measure the difference between two homologous objects, e.g., between anorma
organ and the organ of a particular patient or between a patient's organ a one time and that patient's organ at
another time. Where the weighted difference is high can be identified to indicate pathology. In addition, the
shape metric can be used to measure the difference between the pair in amodel and its deformed versonin a
deformable loci method of segmentation (see Section 5.1). That is, we can produce aformal loca Markov
random field prior [Wilson 1995], which can be used via the Iterative Conditional Modes (ICM) [Besag 1986]
method to optimize the local posterior probability given the linked medid primitives present values.

4. M easuring accor dance of image with linked medial primitives

In this section we focus on the metric -log p(image | object), which measures how consgtent an image iswith a
particular object representation. For the purposes of this section the object representationis assumed to include
aset of medid primitives, dready placed, oriented, and sized according to vaues for the smilarity transform
parameters. Just as with the morphographic probability, the image match probability can be factored by scae if
we make a Markov inter-scale-level assumption, resulting in

13



Published in |EEE Transactions on Medical Imaging, 18(10): 851-865

-log p(image | object) = -Si log p(image at scale level k| object displacements at level k and below).
That is, the image match information needs to be provided at each of the scales at which the object
displacements are represented, conditioned on positions established at alarger scale of measurement. When
used in posterior optimization (see section 5), the morphographic metric, factored by scae level, and the image
match metric, factored by scae level produces and overal metric in which the morphographic and image match
terms at agiven leve are grouped: object | image metric =

Sk [-log p(object displacements at level k| object represented at scale k+1) +

-log p(image at scale level k| object displacements at level k and below)] . Each of the terms of the sum
are successively optimized, in order coarse to fine. In this section we focus on what happens at any particular
leve of refinement.

Firgt of dl, as discussed in section 2.5, the image measurement a any level must use gperture widths
proportiond to the inter-primitive distances a that level. The fact that successve scale levels will use derivatives
with successively smaller gpertures makes reasonable our assumption that the image information at successve
scae leves, conditioned on their respective object representations, are independent. Also, the aperture widths
at thefirg, full-object level will be quite large. The use of alarge aperture servesto give the first stage of the
method a large capture distance. That is, the mode may be placed quite far from itsfina position and il
converge to an optimum posterior. For example, if aggnificant portion of amgor figureiswithin 2 full gperture
standard widths away from itsfina postion, convergence to avisualy reasonable smilarity transform can be

expected.

Second, typicaly the information from the image telling how well it matches with amedid primitive hasto do
with the behavior of the image intensties near the boundary postionsimplied by the medid primitive. We
assume that thisinformation is probabilisticaly independent across the primitives, and we make the Markov
assumption that the loca intengity dependence on dl primitivesis only on the locd primitive. Stated
mathematicdly, -log p(image | collection of medial primitives) =

-S; log p(image at boundary positions implied by primitivei | collection of medial primitives). Thismetric
of the match between an image and a medid primitive is what we have caled “medidness’ in our previous
work.

Asdiscussed in section 2.5, at the stage of match a which the individuad medid primitives, rdative only to their
intrafigura neighbors, are being displaced, the metric of the match between an image and amedid primitive must
involve image information measured at a scae proportiona to the width parameter of the media primitive.
Moreover, we take it to involve only the image information at the two boundary positions and normalsimplied
by the medid primitive. We assume the image information in these two boundary regions are probabiligicaly
independent. This yidds the summary mathematical atement -log p(image | a medial primitivei or an end
primitivei) =

Si (-log p((image | 2 or 3 boundary positions and normalsi at scale i r;)), where the boundary positions,
normals, and scae are those implied by the respective medid or end primitive. We cal these summands
“boundariness’ or boundary strength metrics.

Aswith the shape metrics, there are both statistical and geometric image match metrics. The gatistica ones

derive from training images and measure the accordance of a particular loca digtribution of intengties with ones
in the homologous positions in the training images [ Cootes 1993]. While we are working toward using these, to
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date we have used geometric image match metrics, which measure the accordance of the locd image intensity
function with atemplate, eg., adirectional Gaussan derivative. Such measures of accordance are standard in
image andysis, normaly they are measured by treeting the template as a weighting function.

By the previous discussion, an image accords with amedid primitive to the degree that itsimplied boundary
points and normas behave in a boundary-like fashion. Using the directiond derivative of an gperture function
geometric metric, the medid strength of the medid primitivem = (x, r ,B,q) is given by the sum of two
boundary strength vaues:

M(m) = (R@)b)- NA(y.r)I (x +rR@)6 + y)+(R(- a)6)- RA(y.r)i (x +rR(- )6+ y), where A isthe
gperture function (Fig. 7a). The aperture function should have an eongation suitable to the medid primitive
sampling distance. By the theory given in Section 2.5, both the length and the width of the aperture should grow
in proportiontor.

If one has only the information in amedid primitive, the along-boundary ridge of each gperture function would
be gtraight and orthogond to the direction of differentiation, asin Fig. 7. Alternaively, one can usethe
information in the links from the medid primitive to derive boundary curvature and give this curvature to the
gperture function.

The image property whose difference determines the boundary can vary across the boundary points. For
example, the polarity of the intensity difference, whether the change at the boundary isin texture or luminance,
and whether aluminance change isSgnaled as an outline (abar) or agradua step, and the expected sharpness
of the step or bar can dl vary from point to point. The training can alow the particular boundary property which
isto be measured to be set at each boundary point.

At the endpoint medid primitives m, the medid strength M(m) adds to the aforementioned formula the property
of end gtrength (Fig. 7b). That is, these end primitives have not only two boundary- pointing vectors that behave
just like those in internal medid primitives, but dso an additiona vector b for which the two boundary strength
kernels have codesced into a single operator covering a sector of a circle with radius of curvature equd to the
radius of the primitive. Thereis an additiona gperture whose position and orientation isimplied by this vector.
The spatid gperture size normd to the circle at the implied position of this additiona aperture is proportiona to
the radius of the circle, and the template is differentiated in the b direction. Like boundary strength operators,
the end strength operator forms a sort of template of intengty variation to which the image dataiisfit.

For scde levels a which a collection of medid and end primitives are jointly being displaced, according to the
probabiligtic discusson earlier in this section and the overdl agreement of anet of media primitives{m;} is

N
Image match a medid locus= § M (m,)
i=1
Theitems of the sum which are especidly smdl indicate positions where the image information disagrees with
the locus.

15



Published in |EEE Transactions on Medical Imaging, 18(10): 851-865

Smilarly, the overdl agreement of a st of boundary primitives{by} derived from displacements from the

Np
medially implied boundary positions and normals, is § B(b, ), where B can be a statistical or geometric

k=1
measure of agreement of the image with the mode in the norma direction, at ascale smaler than that used in the
medid primitive match measurements.
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Fig. 7. @) Example of amedia strength kernel. b) Example of an end strength kernel.

5. Shape-based medical image analysis

The examples in the following are intended to give a sense of the possihilities of theimage andys's paradigm we
have described. Being from the pagt, they use only geometric image match and geometric shape metrics, and the
geometric metrics use only position and width values. Moreover, in some cases the media strength kerndls used
are isotropic, summing boundary strength over al object angles rather than just for two or three vector
directions.
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5.1 Segmentation and recognition

Consider the problem of the definition of anatomic objects, for example, to facilitate 3D radiation treatment
planning. Here the objective is to define the boundary of the object that most probably isthe organ of interest,
o that radiation beams can be positioned with respect to this boundary and dose to these hedlthy organs can be
minimized.

A method of Bayesian deformable loci which generdizes the deformable contours method to use a

media +boundary modd has been developed and tested for 2D images [Fritsch 1997]. Given amodd, the
method involves deforming the boundary and medid loci (moving the points defining these loci) to optimize the
Bayesian log posterior formed by summing the log likelihood given by the measure of image match and the log
prior giving the measure of morphographic match with the modd. This view of segmentation as the deformation
of the object representation hasled us to call an object represented in this way, Deformable Shape Loci (DSL).
The method can be considered not only amethod of segmentation, which yields the object boundary, but so a
method of recognition thet gives the probability that the segmented object is the one modeled and which also
provides an indication of pathology, indicating the places where the segmented object is particularly different in
shape or morphography from the modd.

Methods for firg interactively forming atemplate from a training image and then usng a st of training imagesto
determine the weights the modd are described in [Wilson 1996] and [Fritsch 1997]. Forming amodd, we
believe, must involve human interaction, to reflect understanding of which are the object figures that matter. The
method for forming amodd described in [Fritsch 1997] is based on core extraction (a core isaheight ridge of
media strength [Pizer 1996]) and a variation of deformable contours, followed by interactive postioning of
primitives.

Also described in [Fritsch 1997] isamethod for optimizing the log posterior for aparticular target image. The
method is based on treating the measure of image match described in Section 3 asalog likelihood and treating
the measure of morphographic difference from the modd described in Section 2 asalog prior. In thiswork the
object morphographic measure, the figural morphographic measure, and the boundary morphographic measure
were combined into a single morphographic measure, and the image match measures for these three scale levels
were aso combined, with the result that the objective function was

Ny N N6+l
-logP=w, g Bb)+w, g M(m,)-w ||Ii -1
i=1 i=1 i=1

where the weights wy,, Wi, and w; give the relative strength of the smdl- gpertured boundary match, the larger
apertured mediad match used to describe both object-scae and figurd scae match, and the image match, and
the link N;+1 is between the parent figure and the image space, i.e,, pecifiesthe smilarity transformation for
the whole object. Ultimately, as discussed in sections 3 and 4, forming the model must also involve a set of
training images to determine the variabilities of each term in the objective function. At this early dage, a
geometric image match and a geometric morphographic difference were used and the weights of each sum were
st to interactively defined congtants.

Briefly, the ssgmentation method uses the modd itsdlf is used to start the optimization, and the location,
orientation, and magnification parameters of firgt the full modd and then successive figures are fird iteratively
modified to optimize the pogterior. At this stage the part of the prior reflecting intrafigurd links (media-medid,
media-boundary, and boundary-boundary) does not change as the figura shapes are not changed. Then dl of
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the points on the figurd loci are iteratively moved to optimize the posterior, moving medid points and their
associated boundary involutes before moving the boundary points themselves. This strategy is particularly
effective because the large apertures used for the media match adlow the mode to conform to large-scale object
changes and, moreover, serve to abilize the finding of the boundary by the smal-aperture boundary points.

All of the previous stages were done with rather coarsely sampled media and boundary loci. A fina stage uses
acongrained deformable contours method to fill in boundary points between the coarsaly sampled boundary
points, which are congtrained to their positions at the end of the previous stage.

A series of extractions of the ventricle from 2D MRI dices, usng a 2-figure mode, has shown the DSL
segmentation to be robust againgt deformation and intengity noise [Fritsch 1997]. A 5-figure modd of the
ventricle has aso been used to automatically segment from 2D MRI images of patients with quite avariety of
ventricle shapes [Fritsch 1997]. The modd and some results are shown in Figs. 8 and 9, respectively.
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Fig. 8. A five-figure model of aventricle, with Fig. 9. Final position of the deformed template sites on ventricles taken
inter-figural links, superimposed onitstraining from a population of images Fig. 9. Final position of the deformed template
image. sites on ventricles taken from a population of images from different patients.

The model template used in the optimization is shown in Figure 7.

More recently, this segmentation strategy has been modified to explicitly use the concept of linked medid
primitives described in this paper. Here, during the loca stage of media primitive optimization, eech medid
primitive unit (the media point and its two associated boundary involutes) move together as afunction of
position X, orientation b , object angle g, and radius r. An example mode is shown in Fig. 10.

Shown in Fig. 11 is an example of gpplying the brainstem modd to a target image that was generated viathin-
plate spline warping of the mode image in Fig. 10. The segmentation agorithm operates as follows: Firg, the
mode isinitidized by placing it a gpproximately the right position, orientation, and size in the target image (Fig.
114). Next, the modd is registered with the image by optimizing the image match over the amilarity transform
parameters (which do not result in shgpe change pendty) using large-tolerance apertures at the boundary
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primitives. Findly, the registered modd is warped using an iterative conditional modes (ICM) dgorithm where,
during an iteration, one after the other each

Fig. 10. Training MR brain image and model of brainstem designed fromiit.

primitive unit is optimized over its parameters (x, r.b,g ) Due to the efficiency of the representation, the
optimization program requires only O(N) time for N boundary points, and in our experience frequently fewer
than a hdf dozen iterations of the optimization are typicaly required. For atypica anatomic Sructure an iteration
cdculating new vaues for the whole set of media primitives requires about a second a present on a high-end

Fig. 11. Segmentation produced from aMR brain images. a) Initial placement of model. b) First-level registration of model with
image. c) Final configuration of primitives.

We have aso performed segmentations using a hierarchy of objects where the more stably found objects are
used to initidize and congtrain the positions, sizes, and orientations of subobjects. An example usng aCT dice
through the abdomen is shown in Fig. 12. Here, only the linearly interpolated boundary primitives are shown.
The procedure operates as follows. Firgt, only the large-scde modd for the entire abdomen isfit to the image
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data via a amilarity trandformation. This determined transformation is then applied to each of the srdler-scde
objects (kidneys, vertebra, and spina cord). Next, each of the smaller-scae objectsis registered viaasmilarity
transformation with the image data but is congtrained in trandation, orientation, and size change by alink to the
large-scale abdomen modd . Finally, each of the objects is allowed to deform according to the paradigm
outlined at the beginning of this section.

Fig. 12. Use of an object hierarchy to segment structuresin an axial CT dslice through the abdomen. (a) Original configur-
ation of object models on an unclassified image. (b) Final template configurations following hierarchical segmentation.

Asafind example, Fig. 13 illugrates the ability of the mode to interpolate across sections of boundary with little
or no image contrast. The shape term dominates the objective function when there islittle change in the contrast
a the medidly implied boundary as the medid primitives are trandated.

Fig. 13. A model fit to akidney inaCT dlice.

5.2 Registration
In object-based regigration the modd is extracted from a single reference image of the patient in question,

dthough this mode may in turn be the result of a segmentation based on amore highly trained model, as
discussed earlier in this paper. After the regisiration’s model extraction, one or more target images may be
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registered. For example, to verify the postioning of the trestment beam in radiotherapy with respect to the
patient, a portal image obtained during each treatment needs to be registered with a planning imege such asa
smulator radiograph or aradiograph digitaly recongtructed from aCT image.

Firgt assume that the two images to be registered are both in 2D (or both in 3D) and that the registration
transformation T does not change shape (i.e., the images may be registered viaa smilarity trandformation).
Furthermore, assume that there is no warp between the images to be registered. For this registration objective,
the globa magnification, trandation, and rotation may be chosen as the most probable, given the image data,
and thus it might reflect aprior on these trandformations. In many Stuations it may be that knowledge of the
prior is not present, so a uniform prior, and thus a maximum likelihood approach ought to be used. In this case
the morphographic choice, i.e., the choice of T, is not to be pendized. Thus the objective function, -log P,
condsts only of theimage metch terms.

Np N
w3 B(b)+w,a M(m;).
i=1 i=1
The weights are interactively set, because there is only one reference image and thus no measurement of
vaiability over family of images.

Because of the stability of medid strength measurement, we have found good success in registering 2D portd

Nm
images, determining arotation and trandation only, by optimizing é_ M (mi ) (usng medid grength kernels for
i=1
which the two normals were in opposite directions and the response was optimized over the normal direction).
In fact, Fritsch [1995] shows this registration can be done automatically and produces an accuracy superior to
manua regigration. For the examplein Fig. 14 the registration requires around 10 seconds at present on a high-
end PC.
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Fig. 14. Registration of 2D radiotherapy portal and simulation images viamedial strength in portal image on coresin simulation
image. Left: simulationimage digitally reconstructed from CT. Right: portal image registered with the simulation image.

In some regigrations the geometric trandformation alowed may consst not only of asmilarity transform but dso
awarp. Inthat case, the probability distribution should cover not only the coefficients of the smilarity transform,
but dso the coefficient of the warp terms. Then the Situation becomes the same as with segmentation, and dl of
the discussion of sections 2-4 apply to the regigtration.

5.3 Measuring shape variation and recognition of pathology

Asmentioned at the end of Section 3, the andysis of the sublocus of pathological shape change of an organ can

N
be determined by locating especially largetermsin - logP,.,., = & Hh -
i=1

Thisexpression for -10g Ryeom Or other expressonsfor -10g Ry, reflecting afull training set and hierarchical

modeling, as discussed in Section 3, can dso be used as a measure of shape variation from normal. Thus, for
example, in psychiary it isimportant to correate the shape change of various components of the brain: the
ventricle, the hippocampus, and putamen to name a few, with schizophrenic disease. Others have used shape
models based on boundary primitives [Cootes 1993] or on boundary representation in terms of cyclic bass
functions [Székely 1996] for this purpose, with principa component andysis providing the satistical means for
turning interactively segmented training images into ameasure of shape variation based on Gaussian probability
digtributions. This measure is then gpplicable to measure the Mahalanobis distance of an object in a patient
image from the mean object shape.

We are gpplying this same idea to models based on medid primitives. In an early atempt afamily of 20 random
corpus callosum MR images was created by Aylward as follows. From a corpus calosum in an MR image 5
(x,y,r) medid values approximately equally spaced aong the structure were measured. These formed the mean
of a 15-variable Gaussan probability distribution. The sandard deviations of the distribution were chosen to
reflect two independent changes: bulging/narrowing toward the anterior portion and a swing of the tail. Twenty
samples from that probability distribution were taken, and each sample, comprising 5 (x,y,r) vaues, was used
asthe knots forming splines of X, y, and r, respectively. For each such spline triple, a binary image was formed
asthe union of the disks of radiusr at position X,y, and this image was superimposed on alow contrast
midsagittal MRI dice.

Wefitted a set of medid primitives to the corpus callosum in each of these 20 smulated images. We sarted by
extracting a core (height ridgein (x,y,r,q) of media strength) from each training image. We then gpproximated
the medid primitive postion, radius, and bisector direction at 16 equally spaced positions along the core, fixing
the object angle at p/2. Findly, we optimized each primitive' s medid strength by modifying its object angle, dso
alowing dight variation in position perpendicular to the core, bisector direction, and radius.

The resulting set of medid primitive parameters were analyzed by principa component andyss— thiswould be
the first (full object) stage of a coarse-to-fine shgpe analys's according to our overal theory. The full coarse-to-
fineandyssis part of ongoing research. Fig. 15 shows the first two principa modes of variation of the one-
gsage andyss. These modes respectively capture the very two independent variations that were inserted to form
the training data.
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Fig 15. Principal shape variations of a corpus callosum from simulated training images. The center column shows the mean
medial primitive set, and the left and right columns show respectively +/- two standard deviations of variation of the medial
primitives according to that eigenmode.

6. Summary and Discussion

The principa objective of this paper has been to show how to congtruct a sable, efficiently caculable

measure of shape and other geometric object properties and how to use this measure in a uniform method for
segmentation and recognition of image objects, object-based registration, and object shape measurement that
has alarge capture distance. The abilities of this method have been illustrated by examples. A more detailed
description of the segmentation programs and a presentation of the segmentation results of these methods can
be found in [Fritsch 1997]. For some of the clinica uses described in Section 4 the method has been vdidated
by clinical usefulness or accuracy [Fritsch 1995, Fritsch 1997). In others, this validation is yet to be done.

The measure of shape thet we have constructed is dependent on a variety of reasonable probabilistic
assumptions of the hierarchical dependence of information &t the collection of scde levels and of the
independence and Markov properties of intengity vs. primitive-implied positions and directions. A careful study
of the redlizability and uniqueness of these intengity states remains to be done. Such hierarchical modeling is not
new to shape based image analys's, having been gpplied to voxe-flow descriptions of shape by Christensen
[1997] and Grenander [1994], aswdll asby McCulloch et d. [Laading 1998] in author Vaen Johnson's
laboratory. However, our gpplication of hierarchica modeling to the richer media and boundary primitives
appears to add capability and efficiency to the approach, and it brings a deegp understanding of the ideas of
scae in shape theory to bear. At the sametime, it raisesissues of how to handle abutment relations between
modd figures (e.g., adjacent organs).

One area of promise of the representation that we have described isin achieving homology between primitives
as the representation deforms. With the rich collection of parameters contained in mediad primitives and their
relaion to boundary primitives, not only the loci of vertices (extremaof boundary curvature; crests and troughs
in 3D) but aso figura loci such as end points (curvesin 3D), pinch points (curvesin 3D), and medid axis
vertices (articulations?) can be designated. However, it remains to future research to measure the extent to
which the present metrics cause correspondences at such loci to be maintained and to design metrics that
accomplish this god. Moreover, because it is not dways the case that biologica homology corresponds to
geometric homology, the import of the promise to achieve geometric homology of primitivesisyet to be
understood.
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Compared to a deformable model based on boundary points done and only on the relations between adjacent
boundary points, our experience isthat the DSL segmentation method much more reliably convergesto a
satisfactory result. A major advantage appears to be in the first stages of the segmentation, in which the capture
distance from an initid placement, orientation, and scading of the modd is congderably greater than methods
based on boundary points with smd| apertures. A capture distance of about haf the width of the parent figureis
typicd. As compared to methods using dl O(N2) relations between the N boundary points, the DS method is
very much fagter.

This paper's first motivation of DSLs as shape models was that both model formation and segmentation take
time O(N). But the method of Cootes & Taylor [1993] requires only time O(N) if afixed number of
elgenvectors of shape change are sdlected, and in many casesit has rather good capture distance. DSLs have a
different advantage over this method. The firgt isthat the training requires only O(N) time, as compared to the
minimum of O(N2) and O(the number of training images) for the Cootes & Taylor method. Second, and more
importantly, the training requires fewer training images because the number of variables at each scae stage, and
thus the number of mgor modes of variation at each scae stage is few. Third, whereas the Cootes & Taylor
method uses the prior information as to shape to congtrain the deformation, DSL. segmentation usesthe prior in
aweighted fashion. As areault, the DSL method has the possibility of converging to a pathological verson (one
with low prior probability) of the DSL modd if the image information is convincing enough. Fourth, the DSL
method has the advantage of being able to determine the locality of a shape difference (or medid strength or
boundary difference), compared to the training set. The DSL method has the disadvantage that, unlike the
boundary based methods, medid primitives cannot handle sections of boundary without aso handling their
involutiond partners. However, dl of this comparison is hypothetical; the Cootes & Taylor method has been
found successful on avery large number of segmentation problems, whereas the DSL method has been tested
on rather few problems.

A difficulty with the expressions for Rye,, that we have discussed is that interfigural homology is required

between amodel and anindividud. While many organs that retain such homology over normd patients exi<,
many, such as blood vessdl trees and the cerebra cortex, do not. In these the figure-subfigure structure is not
deterministic but stochastic. Smilar differences in the figure- subfigure structure may occur with pathology. A
theory for the geometric difference between figura graphs with different and possibly stochastic structures
remains to be devel oped.

We have generdized to 3D of the DSL representation, the measure of image match, the modd creetion tools,
and the optimization of the posterior, and we have implemented both mode building and posterior optimization
tools. Themodd differs only by the boundary and medid loci forming 2-manifolds rather than 1- manifolds, with
the consequence that the intra- media-locus links form amesh except a endpoints, and by the medid primitive
benefiting from having the norma to the media locus as an additional component. The morphographic difference
measure does not change at dl, except that the number of dimensionsin links, trandation, and orientation is one
higher than with 2D images. The measure of image match differs only in the boundary strength kerndls
contributing to both boundary strength and media strength are one dimension higher than with 2D images. A
paper describing this 3D medid primitive based deformable modd s method awaits our carrying out a
satisfactory evaluation of its performance.

25



Published in |EEE Transactions on Medical Imaging, 18(10): 851-865

Acknowledgments

Many people have contributed to thiswork by programming, testing, and development of concepts. We
gratefully acknowledge Stephen Aylward, Jacob Furst, Chenwel Gu, Jacob Laading, Alan Liu, KahChan Low,
Colin McCullough, Alyson Wilson, and Liyun Y u. Others have contributed by providing clinical problems that
have been used as examplesin this paper. For this we thank Elizabeth Bullitt, Nilesh Dubd, and Jeffrey
Lieberman. Thiswork was done under the partial support of NIH grant# PO1 CA47982.

Refer ences

Besag, JE. (1986). On the statigtical anadlysis of dirty pictures. J. Royal Satistical Society, Series B, 48: 259-
302.

Blum, H (1967). A new mode of globa brain function. Perspectivesin Biology & Medicine, 10: 381-407.

Blum, H & RN Nagd (1978). Shape description using weighted symmetric axis fegtures. Pattern
Recognition, 10: 167-180.

Bookstein, FL (1991). Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge
Univerdty Press.

Burbeck, C.A., Pizer, SM (1995). Object representation by cores:. Identifying and representing primitive spatial
regions. Vision Research, 35,13:1917-1930, 1995.

Burbeck, C.A., Pizer, SM, Morse, BS, Aridly, D, Zauberman, G, Rolland, J (1996). Linking object boundaries at
scale: a common mechanism for size and shape judgements. Vision Research., 36, 3:361-372, 1996.

Chen, D (1998). Volume Rendering Guided by Multiscale Medial Models. PhD dissertation, Univ. of NC
Dept. of Computer Science.

Chrigtensen, G, S Joshi, M Miller (1997). Volumetric transformation of brain anatomy. IEEE Trans. Med.
Imaging 16(6): 864-867.

Clary, GJ, SM Pizer, DS Fritsch, JR Perry (1997). Left ventricular wall motion tracking via deformable shape
loci. In HU Lemke, MW Vannier, K Inamura, eds., CAR '97, Computer Assisted Radiology and
Surgery, Elsevier Science, Amgterdam: 271-276.

Cootes, TF, A Hill, CJ Taylor, JHadam (1993). The use of active shape modes for locating structuresin
medica images. Information Processing in Medical Imaging, HH Barrett & AF Gmitro, eds., Lecture
Notes in Computer Science 687: 33-47, Springer-Verlag, Berlin.

Eberly, D (1994). Chapter 14: A differentid approach to anisotropic diffusion, Chapter 4, Geometry-Driven
Diffusion in Computer Vision:, Kluwer Academic Publishers, Dordrecht: 371-392.

Fritsch, DS, EL Chaney, A Boxwala, MJMCcAUliffe, S Raghavan, A Thdl, JRD Earnhart (1995). Core-based
portal image regigtration for automatic radiotherapy trestment verification. International Journal of
Radiation, Oncology, Biology, Physics; specid issue on Conforma Therapy, 33(5): 1287-1300.

Fritsch, DS, Yu L, Johnson V, McAuliffe MJ, Pizer SM, and Chaney EL (1996). A probabilistic approach
using deformable organ models for automatic definition of norma anatomica structures for 3D trestment
planning. International Journal of Radiation, Oncology, Biology, Physics, 36 (Supp. 1):187 (Abstract).

Fritsch DS, Pizer SM, Yu L, and Chaney EL (1997). Segmentation of medical image objects using deformable
shapeloci. Proc. Information Processing in Medical Imaging (IPM197), J Duncan and G Gindi, eds,,
Springer-Verlag, Lecture Notes in Computer Science 1230:127-140.

Frome, FS (1972). A psychophysica study of shape dignment. Technical Report TR-198, University of
Maryland, Computer Science Center.

26



Published in |EEE Transactions on Medical Imaging, 18(10): 851-865

Grenander, U & MI Miller (1994). Representations of knowledge in complex systems. J. Royal Satistics
Soc. 56: 549-603.

Kelemen, A, G Székdy, G Gerig (1998). Three-dimensond mdodd- based segmentation. In B Vemuri, ed.,

Proc. Workshop on Biomedical Image Analysis, IEEE Computer Science Press: 4-13.

Kendall, DG (1984). A survey of the gatigtica theory of shape, Statistical Science 4. 87-120.

Koenderink, J (1984). The structure of images. Bio.. Cybernetics 50:363-370.

Laading, J, C McCulloch, V Johnson, D Gilland and R Jasczak (1998). A hierarchica feature based
deformation model applied to 4d cardiac SPECT data. Discussion paper, Duke U. Ingt for Statistics &
Decisons Scis., www.isds.duke.edu, 98-33.

Leyton, M. (1992). Symmetry, Causality, Mind, The MIT Press, Cambridge, Massachusetts.

Lindeberg, T, BM ter Haar Romeny (1994). Chapter 1: Linear scae-space |: Basic theory, and Chapter 2:

Linear scae-space I1: Early visud operations, Geometry-Driven Diffusion in Computer Vision:, Kluwer
Academic Publishers, Dordrecht: 1-72.

Liu, A., Bullitt, E., Pizer, S. M. (1998). 3D/2D regigtration via skeleta near-projective invariance in tubular objects.
In WM Weélls, A Colchester, S Delp eds., Medical Image Computing and Computer-Assistend
Intervention — MICCAI '98. Lecture Notes in Computer Science 1496: 953-963, Springer.

Liu, A, E Bullitt, S. M. Fizer (1997). Surgicd ingtrument guidance using synthesized anatomical structures.
CVRMed-MRCAS'97, J Troccaz, E Grimson, R M&sges, eds., Lecture Notesin Computer Science 1205: 99-
108.

Morse, BS, SM Pizer, DT Puff, C Gu (1996). Zoom-invariant vision of figurd shape: effects on cores of
image disturbances. Computer Vision and Image Understanding, 69:72-86, 1998.

Pizer, SM, D Eberly, BS Morse, DS Fritsch (1996). Zoom+Invariant Vison of Figura Shepe The Mathematics of
Cores. Computer Vision and Image Under standing, 69:55-71, 1998.

Pizer, SM, Fritsch, DS, Low, KC, Furst, JD (1998). 2D & 3D figura models of anatomic objects from medica
images. Mathematical Morphology and Its Applications to Image Processing, HJAM Heljmans, JBTM
Roerdink, eds. (invited paper, Proc. ISMM '98), Kluwer Computationa Imaging and Vision Series: 139
150.

Psotka, J (1978). Perceptua processes that may create stick figures and balance. Journal of Psychology:

Human Perception & Performance 4: 101-111.

Staib LH. JS Duncan (1992). Boundary Finding with Parametricaly Deformable Models, |IEEE Trans PAMI
14(11):1061-1075

Staib LH, JS Duncan (1996). Modd- based Deformable Surface Finding for Medica Images, |EEE Trans
Med Img. 15: 720-731.

Székely, G, A Kelemen, C Brechbihler, G Gerig (1996). Segmentation of 2-D and 3-D objects from MRI
volume data using congtrained dastic deformations of flexible Fourier contour and surface models. Medical
Image Analysis 1(1): 19-34.

Wilson, A, V Johnson, SM Pizer, D Fritsch, L Yu, E Chaney (1996 ). Towards a Framework for Automated
Image Analysis, Proc. 16th Leeds Annual Statistical Workshop:  Image Fusion and Shape Variability
Techniques. Univ. of Leeds Press, Leeds, England.

Wilson, AG (1995). Satistical models for shapes and deformations. Ph.D. dissertation, Ingtitute of Statistics
and Decison Sciences, Duke University, Durham, North Carolina.

Yuille, AL, PW Hallinan, DS Cohen (1992). Festure extraction from faces using deformable templates. 1J
Comp Vis 8(2): 99-111.

27



