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Abstract—Echo-planar imaging (EPI) is a fast nuclear mag-
netic resonance imaging (MRI) method. Unfortunately, local mag-
netic field inhomogeneities induced mainly by the subject’s pres-
ence cause significant geometrical distortion, predominantly along
the phase-encoding direction, which must be undone to allow for
meaningful further processing. So far, this aspect has been too often
neglected.

In this paper, we suggest a new approach using an algorithm
specifically developed for the automatic registration of distorted
EPI images with corresponding anatomically correct MRI images.
We model the deformation field with splines, which gives us a great
deal of flexibility, while comprising the affine transform as a special
case. The registration criterion is least squares. Interestingly, the
complexity of its evaluation does not depend on the resolution of
the control grid. The spline model gives us good accuracy thanks
to its high approximation order. The short support of splines leads
to a fast algorithm. A multiresolution approach yields robustness
and additional speedup.

The algorithm was tested on real as well as synthetic data, and
the results were compared with a manual method. A wavelet-based
Sobolev-type random deformation generator was developed for
testing purposes. A blind test indicates that the proposed auto-
matic method is faster, more reliable, and more precise than the
manual one.

Index Terms—Geometrical distortion, image registration,
splines, unwarping.

I. INTRODUCTION

A. EPI Features

ECHO planar imaging (EPI) [1] is a fast magnetic reso-
nance imaging (MRI) technique permitting an acquisition

of a two-dimensional (2-D) slice using a single excitation, which
leads to very short scan times. It is used mainly for functional
imaging (fMRI), thein vivo noninvasive study of the temporal,
spatial, and behavioral dependencies of brain activations. The
basis of fMRI lies in the fact that deoxyhemoglobin (the he-
moglobin without a bound oxygen molecule) is paramagnetic.
Neural activation in the cerebral cortex leads to an increase of
blood flow and, hence, to a decrease of deoxyhemoglobin con-
centration.1 This results in a measurable alteration of the mag-
netic field and in a consequent increase of signal intensity in
the appropriately weighted MRI images [blood oxygen-level de-
pendent (BOLD)]. It is therefore difficult to compensate for the
unwanted magnetic field inhomogeneities induced mainly by
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1This effect prevails over the increase of oxygen consumption.

the spatially varying magnetic susceptibility of the subject [2].
In contrast to conventional MRI, where the number of excita-
tions per slice is equal to the number of scan lines, in EPI the
magnetic field gradients must encode two coordinates simulta-
neously in one excitation. As one of the gradients (the so-called
phase-encoding gradient) is several orders of magnitude weaker
than the other, the inhomogeneous magnetic field will manifest
itself mainly as a geometrical distortion of the 2-D slice image
along the direction of this gradient. This effect is clearly visible
in Fig. 1. Since the stronger gradient is less affected, the dis-
tortion is essentially unidirectional. Lettingbe the unknown
warping (deformation) function, we have

(1)

where is the observed EPI image and is the hypothetical
ideal undistorted EPI image. We can consider each slice sepa-
rately, as the shift in the axis due to patient’s movement is in-
significant because his head is attached. Should there be such a
displacement, it can by readily corrected by existing algorithms
[3].

B. The Reasons to Unwarp

The amplitude of the deformationcan be as large as 3–5
mm [4] (confirmed by our own observations), which typically
amounts to several pixels. In some cases, as in Fig. 1, specifi-
cally intended to illustrate EPI distortion, the deformation can be
even more pronounced. Moreover,can vary significantly from
slice to slice and from acquisition to acquisition. For localization
applications like stereotactic surgery, this inaccuracy is much
larger than the required limit of 1 mm and therefore EPI cannot
currently be used to this end. It also severely hinders the perfor-
mance of the statistical processing of sets of fMRI images used
to obtain activation information. Since the task-induced signal
changes represent typically only 5–10% of the mean signal in-
tensity in fMRI [1], [5], they will not stand out clearly unless
the perturbations caused by the deformationare undone.

C. Existing Distortion Correction Techniques

One approach consists in changing the acquisition procedure
[2], [4], [6]. However, this is often not practical due to tech-
nical or organizational limitations, for example, lack of support
or approval. Furthermore, while the alternative acquisition se-
quences reduce the distortion, the distortion is never removed
completely and the methods usually sacrifice either sensitivity
or acquisition speed.

The second group of methods uses a two-step procedure [4],
[7]. First, a field map or a deformation map is obtained, e.g.,
from an image of a phantom. In the second step this informa-
tion is used to compensate for the deformation on real images.
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Fig. 1. Demonstration of EPI distortion. Selected EPI brain slices taken with two different phase-encoding gradient orientations. (Top) Anterior–posterior.
(Bottom) Left–right. The vertical, respectively, horizontal deformation of the upper, respectively, bottom row images is clearly visible.

The major drawback of these methods is that it is impractical
to build a phantom that would exactly duplicate the biological
system being imaged [4], which limits the compensation only to
field distortions other than those caused by the individual sub-
ject. Moreover, these other distortions are most likely already
compensated for by the scanner manufacturer or operator.2

D. Unwarping by Registration

We propose a third approach which, to the best of our knowl-
edge, has never been applied to this particular problem. It con-
sists of registering the distorted EPI image with a corresponding
geometrically correct anatomical MRI image. In this way, we
can recover the deformationfrom a single EPI slice obtained
by an unaltered standard procedure. The registration can be per-
formed manually [8], but this is tedious, time consuming, and
prone to errors. An automatic procedure is advantageous be-
cause it is faster, more precise, and does not require an expert.

Our goal in this paper is to present an automatic registration
algorithm we have developed specifically for this problem; i.e.,
identifying a nonlinear unidirectional 2-D warping. More pre-
cisely, given the observed EPI slice and the corresponding
undistorted anatomical MRI reference slice, the task is to
find a warping so that the warped test image
matches as well as possible (in a sense defined later) the refer-
ence image .

II. PROPOSEDALGORITHM

We categorize registration algorithms according to the warp
space used. In general, a deformation functionfrom a warp

2This procedure is called shimming and is generally repeated before each
series of acquisitions.

space is described by a finite set of parametersby means
of a warping model.

At one end of the scale we have nonparametric local methods.
These methods are formulated either as variational, defining a
scalar criterion to minimize, or (more generally) using PDE’s.
The continuously defined correspondence function that mini-
mizes a given criterion (respectively, that solves a given PDE) is
sought for in a very large and unrestrictive function space, e.g.,
the Sobolev space . The essence of these methods is entirely
in the criterion (respectively, PDE). The PDE come from the op-
tical flow approach (gradient methods) [9], viscous fluid model
[10]–[12], elastic deformations with physical analogs [13], [14],
or without [15]. Some elastic deformations can also be modeled
as potential fields [16].

At the other end, we have parametric global methods that
describe the correspondence function using a global model with
a relatively small number of parameters [17]. The model mostly
consists of expressing the warping function in a linear [3],
global polynomial [18], [19], or harmonic basis [20]. For these
methods, the deformation model corresponding to a specific
warp space is as important as the criterion being minimized.

In this article, we consider mainly intensity-based registration
methods, which directly take into account the voxel values (c.f.,
[21]). Other methods are based on matching surfaces [21]–[23],
curves [24], or interpolating landmarks using radial basis func-
tions, especially thin-plate splines [21], [25], [27].

A. Semilocal Model

The model proposed in this article is situated between the
above-mentioned local and global methods, combining the ad-
vantages of both.

We parametrize the warp space by a scale parameterand
denote it . The scale parameter corresponds loosely to the
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density of knots or landmarks. By changing, we can approach
either of the two limit cases or choose a compromise offering
the best tradeoff. Big yields a global model which has just a
few parameters. Such a model is rather constrained, which is
approximatively equivalent to strong explicit regularization. On
the other hand, a small gives a local model with many pa-
rameters, which generally leads to more complicated optimiza-
tion. In exchange, a small generally permits one to approxi-
mate any given in well, because the space is big. (Arbi-
trarily small precision can be achieved as .) This roughly
corresponds to weak explicit regularization. Thus, the scale pa-
rameter can partly assume the role of an explicit regularization
factor, unlike in local methods where the regularization is a part
of the criterion.

In the next section, we give our motivation for the algorithm
and for our particular choice of the warp model—uniformcubic
splinesrepresented by a linear combination of cubicB-splines
[28], [29].

B. Univariate Case

For the sake of explanation, let us begin with the one-dimen-
sional case (1-D), i.e., with the task of recovering an univariate
warping function . An example of such a function
could be the affine map . Such linear depen-
dence is rather frequently encountered in practice; for example,
it arises when the acquisition techniques use different coordinate
systems or when there is a movement between acquisitions.

The univariate equivalent of our matching problem becomes
. The landmark method would consist of (ei-

ther manually or automatically) identifying a set of landmark
pairs so that a feature found at location in
the reference image can be found (or associated with) a loca-
tion in the observed test image. For interpolation, this gives
a set of constraints for : . To get a well-posed
problem we shall require to minimize some criterion . We
do not want to penalize linear dependencies, i.e., we want
to be zero for linear . We want the resulting to
be linear with respect to the landmark coordinates and in-
variant with respect to a linear (affine) transformation of ,
which means that if we take a linear combination of two sets of
landmark coordinates then the resultingshould be the same
linear combination of the solutions corresponding to the two
sets of landmarks. In other words, we want a solution that is
invariant to the choice of a particular coordinate system, or to
the choice of units. The simplest criterion satisfying these re-
quirements is , which is compatible with the
elasticity theory, as it corresponds to strain or bending energy
[25].

In addition to interpolation other approximation schemes
can be applied, the most popular being least squares fitting.
It consists of minimizing an extended criterion

. This has the advantage of accommodating
uncertainty (noise) in landmark positions.

For both interpolation and least squares fitting, as well
as for any other criterion of the general form

(with arbitrary function ), the function
that minimizes the criterion can be shown to be a cubic

spline [30], [31], i.e., a piecewise cubic function that is twice
continuously differentiable, with knots (the boundaries between
polynomial pieces) at points . In Appendix A, we show
that the solution can be expressed as a linear combination
of radial basis functions . However, these functions
are not convenient to work with because of their instability
and global support. Fortunately, it is possible to localize the

functions using divided differences, which yields a
base made of cubic B-splines with local support that generates
the same space [25].

The automatic landmark method is rather difficult to apply
because there is no automatic landmark detection algorithm
available that would be sufficiently robust and precise, es-
pecially for our class of medical images which typically
exhibit only a few distinct features. Moreover, it is difficult
to automatically find common features in both anatomical
MRI and EPI modalities. For this reason, instead of trying to
work with landmarks we introduce a data criterion(defined
in Section II-D) taking into account the entire image and
measuring the discrepancy between the warped version of the
observed image and the reference image . Then,
we seek a deformationsuch that the two images are as similar
as possible, i.e., when is minimized.

For the reasons mentioned above, we choose to search the
warping in the cubic spline space as in the landmark case.
However, there are now no explicit landmarks available to put
the knots on. We also do not know, how much useful informa-
tion each part of the image can provide. Therefore, we will dis-
tribute the knots uniformly over the image. It follows that the
function will be a uniform cubic spline, which can be uniquely
represented as a linear combination of uniformly spaced cubic
B-splines [28], [29]:

(2)

where is the set of the indexes of the spline functions, the
support of which intersects with the image andis the knot
spacing (the B-splines will be centered at points for

). Working with uniform splines is also significantly
faster with respect to nonuniform splines (see Appendix B for
a definition of a cubic B-spline). Note that in order to get a
complete control over , it is useful to put some spline knots
outside the image. For cubic splines, we need to put one such
exterior knot at each side. Consequently, for an image size
and knot spacing , we have knots.

We have thus transformed the registration task into a non-
linear finite-dimensional optimization problem: find a set of co-
efficients minimizing some criterion .

C. Splines—A Perfect Fit

Let us now show several important properties of the spline
model.

1) Good Approximation Properties:The error of a cubic
spline approximation decreases asymptotically as(mea-
sured by any or norm, ). Quantitative
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analyzes indicate that splines perform well in comparison with
other wavelet-like basis functions [33].

2) Speed:Cubic splines have a short compact support of
length four. They are symmetric and piecewise cubic. To eval-
uate at one particular point only five arithmetic opera-
tions (additions or multiplications) and three comparisons are
needed. In multiple dimensions, where we will use tensor prod-
ucts of cubic splines as basis functions (see Section II-E), the
computational complexity stays low thanks to separability. The
number of operations needed to evaluatealso does not depend
on the total number of basis functions (and thus the number of
parameters ).

3) Plausibility: The spline model corresponds to a wide
range of physical situations where the restoring force can be
approximated as being linearly dependent on the displacement.
In such situations, the generated deformation is physically
plausible. It is also a good approximation for cases when a
better model is not known, such as the deformation of EPI
images, even though it is not of mechanical origins.

4) Simplicity: The model is linear in the parametersand
polynomial with respect to the position. It is thus possible
to truncate the Taylor expansion such that it is exact in some
neighborhood of with a typical diameter of .

5) Scalability: Thanks to the -scale relation
where , we have the embedding

, i.e., the transition from a coarse space to a finer
space is exact [34].

D. Data Criterion

A reasonable and most often [3] used way to measure the dis-
crepancy between two images is the sum of squared differences
(SSD) criterion

(3)

where the sum is over all pixels in the image. Note that mini-
mizing this criterion is equivalent to calculating the maximum
likelihood estimate of the unknown parameters assuming that
the difference is an independently identically distributed (i.i.d.)
Gaussian noise and that the true test image is indeed a geometri-
cally distorted version of the reference one. Moreover, the SSD
criterion is also algorithmically advantageous because it is easy
to evaluate (including its derivatives) and because it depends
smoothly on the parameters. Interpolation (cf. Section II-G) is
needed to evaluate this criterion, as it calls for values ofon
generally noninteger coordinates.

E. Bivariate Case

The transition to the bivariate case is straightforward. The
criterion becomes

(4)

where we have taken the convenience notation

(5)

and where the warping function is now described by a 2-D array
of coefficients

(6)

Tensor products of splines were also used in [35].

F. Optimization Algorithm

The criterion is minimized with respect to the coefficients
using a regularized version of the Newton method [3], [36]

inspired by the Marquardt–Levenberg algorithm. This algorithm
smoothly varies between the gradient-descent and the Newton
approach, which gives it robustness and quadratic convergence
near the optimum.

The algorithm uses first two derivatives of the criterion
with respect to , i.e., and . Thanks to the spline rep-
resentation (2), the derivatives can be calculated exactly and at a
small cost. As the number of components each pixel contributes
to remains constant, the cost of evaluating, and
does not depend on the number of coefficients(or, equiv-
alently, the spacings , ) used to describe the deformation
(see Appendix C for explicit formulas).

At each step we update the vector of all coefficientsto
by taking

(7)

where the regularization factoris divided by a constant if
the previous step resulted in a decrease in, otherwise it is mul-
tiplied by the same amount.3 We iterate as long as the relative
and absolute change of stay abovea priori given thresholds.

When the number of coefficients exceeds a certain limit, the
Hessian matrix gets too big for the linear equation set (7)
to be efficiently solvable and this algorithm ceases to be prac-
ticable. Note that the theoretical computational complexity of
solving (7) increases as . The asymptotical memory require-
ments grow as . While iterative linear equation solvers gen-
erally speed up the solution of (7), it is at the cost of a loss in
precision and the overall gain in our case is insignificant.

When the size of the Hessian matrix exceeds our compu-
tational capacities, we replace the Marquardt–Levenberg opti-
mizer by a conjugate gradient method [36], which converges
quadratically too without explicitly calculating and storing the
Hessian matrix. Even though the conjugate gradient method
needs more iterations for smaller problems, it outperforms Mar-
quard–Levenberg for bigger ones.

G. Image Interpolation Model

To calculate the derivatives, as well as to evaluate the criterion
(4), an image interpolation model is needed to get a continuous
form from a discrete image . Because of their good

3We use� = 10.
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approximation properties, simple analytic form, and effective
algorithms available, we use cubic B-splines here as well

where

(8)

The coefficients can be obtained prior to registration by an
efficient filtering algorithm [29] which incurs negligible over-
head. For the filtering, we are using mirror boundary conditions
on the image. In this way we have the same number of coeffi-
cients as there are pixels in the original image.

H. Multiresolution

The robustness and efficiency of the algorithm can be signifi-
cantly improved by a multiresolution approach. The task at hand
is first solved at a coarse scale. Then, the results are propagated
to the next finer level and used as a starting guess for solving
the task at that level. This procedure is iterated until the finest
level is reached.

In our algorithm, multiresolution is used twice. First, we
build an image pyramid, a set of gradually reduced ver-
sions of the original image [37]. This pyramid is compatible
with our image representation (8) and is optimal in the
sense [i.e., in the sense of the criterion (4)], which ensures
that the approximation made by substituting the lower res-
olution image is the best possible. Based on an image of
size , we create a sequence of images with sizes

, where
, and where ,

. The optimum starting size
depends on the image. We chose ,
which works well in most cases.

Second, we use multiresolution for the warping function
as well. We start with a deformation described with very
few parameters and with a large distance between
knots. After the optimization of is complete, we halve
the distance between knots. This approximately corresponds
to doubling the number of knots in each direction, i.e.,
quadrupling the number of coefficients . Because of the
two-scale spline relation, we can exactly represent the warping
function from the old coarse space in the new finer space.
More precisely, the sequence of knot spacings is going to
be where

, ; the final element corre-
sponds to the user chosen target grid size. The sequence obeys

, . The process starts withbeing
identity.

The global strategy that combines the two multiresolutions
is depicted in Fig. 2. Symbolically, to construct the double
multiresolution we first extend the shorter of , to
the length by repeating the last element.
Then, consists of pairs of elements from , in
alternate progression: , , ,

, , .
The consequence of using multiresolution is that the algo-

rithm works best for images and deformations that follow the

multiresolution model, i.e., when a low-resolution version is a
good approximation of the finer resolution version.

I. Invertibility

We implicitly assumed that the deformationis recoverable
and recoverability requires invertibility. In case the EPI arti-
facts cause the signal from adjacent pixels to blend due to the
fold-over effect, the invertibility condition might not be sat-
isfied and the deformation is not recoverable. However, this
does not happen in practice. To ensure the stability of the reg-
istration it is necessary also to enforce the invertibility on the
trial solutions during the optimization process, i.e., to perform
constrained optimization. If we assume that the deformation
conserves orientation, the sufficient condition ensuring local
invertibility is the positivity of the Jacobian
everywhere. In our case, the invertibility condition reduces to

where is the image domain.
Although an iterative algorithm can be found verifying this

condition exactly, it is not practical to apply it for performance
reasons. Instead of checking that on a continuous
domain, we sample this condition on pixel coordinates. At this
scale, the two conditions are essentially equivalent.

There is little hope of finding an algorithm capable of solving
a constrained optimization problem of our complexity (highly
nonlinear criterion, hundreds of parameters, and tens of thou-
sands of constraints) in a reasonable time. We have therefore
chosen to convert the constrained search into an unconstrained
one using an exponential penalty cost function. A set of con-
straints

(9)

is replaced by a penalty function

(10)

Consequently, we will minimize the combined criterion

(11)

The choice of the constants and is a tradeoff between
speed and precision. As increases the penalty function gets
steeper, which improves precision in the vicinity of the con-
straints. At the same time, the criterion becomes highly non-
linear, which slows down the optimization. We setand so
that on the boundary of the permissible space and

for the initial configuration when is an iden-
tity.

J. Preprocessing

To apply the SSD criterion, we need to make the test and
reference images more similar, so that their difference after
warping is as close as possible to white noise. We choose there-
fore to apply a preprocessing step that consists of high-pass
filtering and histogram equalization. The effect can be seen in
Fig. 3.



KYBIC et al.: UNWARPING OF UNIDIRECTIONALLY DISTORTED EPI IMAGES 85

Fig. 2. The multiresolution strategy starts with a small version of the image (horizontal axis) and a small warping control grid (vertical axis). After several steps,
and by augmenting resolution alternatively in the two domains, we reach the original image resolution and the desired size of the control grid.

The preprocessing makes it unnecessary to add a special pa-
rameter accounting for differences in intensity profiles of the
two images. It also helps to compensate for the intensity dis-
tortion due to in-plane dephasing, which is also caused by the
magnetic field inhomogeneity. The dephasing cannot be com-
pensated completely, as it is impossible to differentiate between
effects of dephasing and warping on a single pixel.

III. EXPERIMENTS

A. General Comments

We tested the performance of our algorithm on several
hundreds of images. In addition, we compare to the automatic
method the results of the registration of 30 image pairs by three
different people, including one experienced practitioner. For
the manual registration, we use the standard thin-plate spline
method [8], [25], [38].

Unless stated otherwise, the tests are performed on
128 128-pixel spin-echo anatomical MRI images of the
brain, on a SUN Ultra workstation, and the published numbers
are arithmetical means of the results of experiments made on
all of the 30 horizontal slices of a brain volume. A typical
pair consisting of corresponding anatomical and EPI images is
shown in Fig. 3(a) and (b).

B. Error measurement

As a main measure to compare different solutions to the reg-
istration problem, we use the warping index defined in [3] as

where is the reference
solution (ideally, the true deformation) and is the region
of interest (in our case, the interior of the brain). This corre-
sponds to the mean per-pixel precision of the result.

We shall also use the SSD, as defined by (3). It measures the
similarity of the reference and warped test images as perceived
by the algorithm and corresponds to the quantity minimized.

C. Sources of Error

There are several reasons why we cannot expect a perfect
registration (indicated by ).

1) Different Images: Despite the assumptions made when de-
riving our criterion, the images we are asked to register are
not geometrically deformed versions of each other. To this
we must add the effects of discretization, quantization,
and noise. Any of them may result in spurious minima of
the criterion , misleading the algorithm. This problem
can be alleviated by preprocessing, or by choosing a dif-
ferent criterion, but it can never be completely removed.
The situation is more favorable when a small number of
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(a) (b)

(c) (d)

Fig. 3. (a) An anatomical MRI image. (b) A corresponding EPI image. Both images represent a horizontal slice through the middle of a human brain. (c) and(d)
The same images after preprocessing.

parameters is sought, for the random effects tend to cancel
out.

2) Local Minima: The algorithm with its local vision cannot
distinguish between local and global minima of the cri-
terion and can therefore get trapped in a local minimum.
Multiresolution improves significantly this aspect, but it
does not solve it entirely. Again, the situation is much
more favorable for a small number of parameters.

3) Warp Space: The true warping does not necessarily be-
long to the warp space . We define as the min-
imum achievable registration error, which is equal to the
distance between the true warping and the closest point
in the warp space . We call this closest point (which is
the best possible approximation ofin ) a projection

. In the or sense it is equal to where
the coefficients verify and
where we have denoted the basis functions byin order

to simplify the notation. For other norms, iterative proce-
dure must be used. In a controlled experimental environ-
ment we can thus calculate exactly and compare it
with the results of our algorithm.

4) Lack of Details: The precision is limited by the local res-
olution of the images. When two corresponding sharp
edges occur in both images, subpixel registration preci-
sion is often attainable. On the other hand, in homoge-
neous textureless regions there is little hope of recovering
any information whatsoever.

5) Criterion Surface Complexity: Depending on the images
being registered, the dependence of the criterion on the
parameters can be nonlinear, nonconvex, and generally
very complicated. In such a situation the convergence is
extremely slow. If the time is limited, we must stop the
algorithm before any significant improvement has been
realized.
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(a) (b)

(c) (d)

Fig. 4. Examples of deformation presented as contour plots. (a) and (b) were generated withW (10; 1:6) and (c) and (d) withW (10; 0:6).

6) Numerical Precision: Insufficient numerical precision
can hinder the performance of the optimizer. We have
encountered this problem only rarely, when iterative
methods were used to solve the normal equation set (7).

We have tried to design the experiments to separate the effect
of the above-mentioned factors whenever possible. However,
this will rarely be the case in a real-life situation.

D. Deformation Generator

To test our algorithm, we have implemented a wavelet-based
deformation generator. We want to generate a random
Sobolev-type deformation: a deformation lying in a prescribed
Sobolev space . The parameter refers to the regularity. It
is equal to the number of derivatives in the sense and it is
also strongly related to pointwise differentiability. The higher
the , the more regular are the functions from . Wavelets
are known to be good bases for functions lying in Sobolev
spaces and the decay of wavelet coefficients across scales is
directly related to a Sobolev-type regularity. Let denote
the coefficients of a wavelet expansion4

(12)

4For brevity, we shall deal here with the unidimensional case only.

where is an identity transform and is an orthogonal wavelet.
Then the displacement belongs to a Sobolev space
if and only if

(13)

provided that the regularity of is greater than [39]. It follows
that for (13) to hold, the necessary condition is

with (14)

Practically, we generate our deformations using zero-mean
normally distributed coefficients with variance

(15)

where governs the total energy of the deformation. Such a
deformation will be denoted where the relation be-
tween and is given by (14). Note that the generated dis-
placements are white noise for and become progressively
smoother as increases. The regularity of the deformation con-
verges to that of the generating waveletfor . For mod-
erate to large we get a hierarchical warping: a deformation
comprising displacements at several scale levels with gradually
decreasing amplitudes, from important large-level deformation
toward progressively smaller finer level details. The algorithm
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(a) (b)

Fig. 5. The quality of the registration as a function of the warp spline degree and the knot spacing. The initial values ranges (prior to the registration) were
E = 150 and$ = 3:5. Each point shown is an average of 30 experiments.

should work well for such deformations, which are compatible
with the multiresolution strategy.

Finally, the deformation can be projected ontoif needed,
in which case we denote it . Typically, we
use Battle–Lemarié wavelets of order four, , and

, depending of what aspect of the algorithm we
want to highlight. For some experiments we have also added
an affine component. Examples of generated deformations are
shown in Fig. 4.

E. Ideal Case

We begin our series of experiments with an ideal case. The
test ( ) and reference ( ) images are identical except for a
known transformation, no noise is present. We use a random
Sobolev deformation as defined in the previous
section. We show how the criterion and the warping index

decrease with the knot spacing. Moreover, we want to
demonstrate the advantage of using cubic splines to represent
the warping, as opposed to linear and quadratic ones.5 (Linear
splines are sometimes used for motion estimation [40], [41].)

Fig. 5 displays and as a function of the degree of
the splines used to represent the deformationand the knot
spacing . It clearly shows the benefit of using a high degree

in high-precision applications. The minimum achievable error
(cf., Section II-C2) is shown by a dotted line for the cubic

case and marked optimal.

F. Image Interpolation Order

As many other registration algorithm use only linear interpo-
lation on the image, we want to show in this experiment that
higher order image interpolation is advantageous from the point
of view of both precision and speed.

Table I demonstrates the dependency of the registration accu-
racy and speed on the degreeof the splines used for image in-
terpolation. As a deformation, we have chosen .
The stopping criterion was identical in all cases.

5For splines of even degrees, there is an additional shift term of 1=2 in (2),
e.g.,� (x=h� k+1=2), which minimizes the number of knots needed. Other
changes are straightforward.

TABLE I
THE QUALITY OF THE REGISTRATION AS A FUNCTION OF THE IMAGE

INTERPOLATION SPLINE DEGREE. THE WARPING FUNCTION WAS

INTERPOLATED BY CUBIC SPLINES

In addition to providing a less accurate approximation,
linear splines are penalized by not providing a meaningful
second derivative estimate of the image, which forces us to
use the slower conjugated gradient algorithm in place of the
Marquardt–Levenberg optimizer.

Table I shows that although all results are accurate to a
fraction of a pixel, the convergence speed varied a great
deal. This proves that the benefit from better approximation
properties of higher order splines with respect to linear, or even
quadratic ones, indeed outweighs the increase in computational
complexity per iteration. This is consistent with other findings
in the literature [3]. By being able to better estimate the image
derivatives , one is able to better estimate the criterion
derivatives and . This permits the optimization
algorithm to acquire a more precise local model of , which
in turn leads to more efficient optimization steps and faster
convergence. The ability to precisely represent an image from
a few samples is crucial at coarse levels of the image pyramid.
The iterations there are relatively inexpensive compared to
finer levels because we process much less data. It is therefore
beneficial to get as close as possible to the optimum. In this
manner we provide a good starting estimate for the next finer
level, where each iteration costs at least four times more, and
thus save the overall effort.

G. Noisy case

Fig. 6 demonstrates the dependence of the registration ac-
curacy on the signal-to-noise ratio. For this series of experi-
ments the test images were obtained from a known transforma-
tion of a reference image with a various level of white Gaussian
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Fig. 6. The quality of the registration as a function of the SNR in dB.h = 32,$ = 3:34. The error bars mark one standard deviation.

(a) (b)

Fig. 7. (a) Warping index and (b) SSD for an out-of-space deformation. The mean initial values (prior to the registration) ranged betweenE = 146,$ = 2:8

for � = 0 andE = 181,$ = 3:47 for � = 1. Error bars show one standard deviation.

noise added. Here, an in-space deformation
was used. We observe that the degradation of the algorithm’s
performance is graceful for dB.

H. Out-of-Space Deformation

This experiment illustrates the behavior of the algorithm as
the deformation progressively moves out of the warp space.
Specifically, we have used with

where the first term corresponds to the in-space part
of the deformation and is the displacement associated with

, i.e., . Fig. 7 compares the attained and theoreti-
cally attainable warping index and the corresponding SSD.

It can be seen that, the experimentally recovered deformation
is almost as close to the true one as theoretically possible, with

the exception of , i.e., a deformation lying exactly in the
warp space. On the other hand, we obtain mostly a smaller SSD
than what corresponds to the projection. This demonstrates that
the relationship between the criterion we optimize () and the
true error we make ( ) is far from straightforward. The min-
imum of the difference ( ) does not correspond exactly to the
true solution as measured by. We will see this sort of behavior
in Section III-J, as well.

I. Multiresolution Strategy

In Table II, we compare three multiresolution strategies: the
strategy actually used; a strategy without multiresolution in
the image size; and a strategy without multiresolution in the
warping grid size. The results show that both multiresolutions
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TABLE II
DIFFERENTMULTIRESOLUTION STRATEGIES. IMAGE SIZE IS DENOTED BYN ,
GRID SPACING BY h. FROM TOP TOBOTTOM: JOINT, IMAGE SIZE ONLY AND

WARP GRID SIZE ONLY MULTIRESOLUTIONS

improve accuracy as well as speed of the algorithm because
they reduce the amount of data to be treated and provide a
smoothed version of the problem.

Multiresolution in the warp grid size significantly improves
accuracy because it avoids that the algorithm is trapped in a
local minimum. The multiresolution in the image size reduces
the amount of data to be treated, and consequently the execution
time, mainly for coarse control grids.

The joint strategy combines the advantages of both multires-
olutions and yields the best results.

J. Artificial EPI images

By filtering and performing histogram modification of the
anatomical MRI images, we obtain images that are visually
equivalent to the corresponding EPI images (compare Figs. 3
and 8) and we use them as test images. We warp the anatomical
images with a known deformation and use them
as reference images.

The reference/test image pairs are registered automatically as
well as manually using the landmark method by three people, in-
cluding one experienced practitioner. The results are presented
in Table III. For the manual case, the best results obtained (in
the sense of among all the attempts of all the participants) are
shown. The column marked ideal shows the minimum attainable
warping index , given the fact that the target deformation
does not belong to the space searched by the algorithm. The re-
sults demonstrate that the automatic method is vastly superior
to the manual one.

K. Real EPI Images

Fig. 9 shows a typical pair of corresponding anatomical and
EPI images with superimposed contours of the anatomical
image before and after manual and automatic registration. It
illustrates that the automatic procedure leads to subjectively
comparable or better results than the manual one.

IV. CONCLUSION

We have suggested a new approach for undoing nonlinear uni-
directional deformations in EPI images. We proceed by regis-

Fig. 8. Artificial EPI image.

TABLE III
MANUAL VERSUSAUTOMATIC REGISTRATION.$ IS THE WARPING

INDEX, E IS THE MEAN-SQUARE DIFFERENCE

tering them with corresponding geometrically correct anatom-
ical MRI images. We have developed a fully automatic image
registration algorithm specialized for this task. Our technique
increases the geometrical precision of EPI images and thus im-
proves the quality of information obtainable from these images.
This will allow the use of EPI images in many clinical and di-
agnostic applications where they could not have been used pre-
viously, as well as an increase of their usefulness in existing
applications.

As an additional benefit, our method can be extended to com-
pensate for other causes of geometrical distortion of EPI images
besides imperfect magnetic field, such as heart beat and respi-
ration. (In this case, we would look for bidirectional warping.)

The novelty of our registration algorithm stems from a high-
order spline model for the warping. It has good approxima-
tion properties and lends itself well to a multiresolution ap-
proach, while permitting an efficient implementation. We have
also taken advantage of a spline model for the image being
warped, leading to a second dimension of the multiresolution
strategy, and yielding additional computational savings. Finally,
we have replaced the customary regularization criterion by a
scale parameter of the search space.

We have also presented many experiments to demonstrate
the performance of our algorithm.6 We plan to carry out more
clinical experiences to prove conclusively the potential of our
method in a real-world setting.

6An online demonstration of our algorithm is available on our WEB page
http://bigwww.epfl.ch/.
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(a) (b)

(c) (d)

Fig. 9. (a) Anatomical and (b) EPI images before registration, with superimposed contours from the anatomical images. (c) EPI image after automatic and (d)
manual registration.

APPENDIX A
OPTIMALITY OF THE CUBIC SPLINE MODEL

The landmark fitting from Section II-B is mathematically
equivalent to the smoothing spline problem frequently encoun-
tered in statistics [44]. We present here an informal derivation
of the variational property of cubic splines. We use an original
Fourier-based technique which is instructive and concise.

Consider the following approximation problem. Given a set
and a function , find a function

minimizing the functional criterion

with

(16)

It is not difficult to show that the solution of this problem
belongs to the same class as a solution of the interpolation

problem, that would consist of finding minimizing
under the constraints , equivalent to landmark
interpolation from Section II-B. We will therefore concentrate
on the interpolation case here.

Using the Lagrange multiplier method, we construct an aug-
mented criterion

(17)

We then express in terms of , the Fourier transform of

(18)
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where we have used . To find an optimal ,
we differentiate with respect to and we impose the first
order change to be zero

for all (19)

This gives

(20)

By interpreting as a phase shift, we get

(21)

where is the inverse Fourier transform of , which gives
a general form of all solutions to our interpolation or approxi-
mation problems as

(22)

The basis function is twice continuously differentiable
and piecewise cubic. Hence,is a cubic spline. In order to be
complete this solution needs to be augmented by a linear term
generating the null space of. For a rigorous treatment and
generalization to multiple dimensions, we refer to [38].

APPENDIX B
B-SPLINES

A B-spline of degree is recursively defined as

for
if

otherwise.

B-splines, as defined above, have a compact support
, are symmetric, and are -times contin-

uously differentiable. Specifically

if

if

otherwise.

(23)

APPENDIX C
EXPLICIT DERIVATIVES

Given by (4), (6), and (8), let us express the components
of and .

where (24)

(25)

where and the summation acrossonly needs to be
performed within the support of of length four. The second
derivatives are

(26)

(27)

(28)

which is easy to calculate because many terms can be reused
from the calculation of the first derivatives.
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