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Nondistorting Flattening Maps and the 3-D
Visualization of Colon CT Images

Steven Haker, Sigurd Angenent, Allen Tannenbaum*, Member, IEEE, and Ron Kikinis

Abstract—In this paper, we consider a novel three-dimensional
(3-D) visualization technique based on surface flattening for vir-
tual colonoscopy. Such visualization methods could be important
in virtual colonoscopy because they have the potential for nonin-
vasively determining the presence of polyps and other pathologies.
Further, we demonstrate a method that presents a surface scan of
the entire colon as a cine, and affords the viewer the opportunity
to examine each point on the surface without distortion.

We use certain angle-preserving mappings from differential
geometry to derive an explicit method for flattening surfaces
obtained from 3-D colon computed tomography (CT) imagery.
Indeed, we describe a general method based on a discretization
of the Laplace–Beltrami operator for flattening a surface into
the plane in a conformal manner. From a triangulated surface
representation of the colon, we indicate how the procedure may
be implemented using a finite element technique, which takes
into account special boundary conditions. We also provide simple
formulas that may be used in a real-time cine to correct for
distortion.

Index Terms—Computed tomography (CT) colonography, flat-
tening maps, shape preservation, virtual colonoscopy.

I. INTRODUCTION

T HREE-DIMENSIONAL (3-D) visualization is becoming
an increasingly important technique in surgical planning,

noninvasive diagnosis and treatment, and image-guided surgery.
Surface warping and flattening, which allow the easy visual-
ization of highly undulated surfaces, are methods that are be-
coming increasingly widespread. For example, flattened repre-
sentations of the brain cortical surface are essential in functional
magnetic resonance imaging because we want to show neural
activity deep within the folds or sulci of the brain. Three-di-
mensional visualization is also of great importance in virtual
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colonoscopy in which we can noninvasively determine the pres-
ence of pathologies.

Virtual colonoscopy is currently an active area of research
by radiologists as a minimally invasive screening method for
the detection of small polyps (see [6] and [7] and the refer-
ences therein). In the colon, this has become possible because
of imaging devices that allow single-breath-hold acquisitions of
the entire abdomen at acceptable resolutions. Most reports have
focused on methods that use computer graphics to simulate con-
ventional colonoscopic procedures [7], [12], [15]. Other rele-
vant references include McFarland and Valev.

Virtual colonoscopy has some fundamental problems, which
it shares with conventional colonoscopy. The most important
one is that the navigation using inner views is challenging and
it happens frequently that sizable areas are not inspected at all,
leading to incomplete examinations. An alternative approach for
the inspection of the entire surface of the colon is to simulate
the approach favored by pathologists, which involves cutting
open the tube represented by the colon, and laying it out flat for
a comprehensive inspection. In some very recent work [10], a
visualization technique is proposed using cylindrical and planar
map projections. It is well known that such projections can cause
distortions in shape, as is discussed in [10] and the references
therein.

In this paper, we take another approach. We present a method
for mapping the colon onto a flat surface in a conformal manner.
A conformal mappingis a one-to-one mapping between sur-
faces that preserves angles and, in this sense, preserves the
local geometry as well. Our approach to flattening such a
surface is based on a certain mathematical technique from
Riemann surface theory, which allows us to map any highly
undulating tubular surface without handles or self-intersections
onto a planar rectangle in a conformal manner. There is some
related work in the interesting paper [17] on the topological
flattening of a tube onto the plane and its application to virtual
colonoscopy. In [17], an electromagnetic field is simulated by
placing charges along a fly-through path. The resulting field
lines that emanate from a point on the path define a surface
whose intersection with the colon surface forms a loop that is
flattened into the plane. Our approach differs in that no flight
path needs to be calculated and the conformal nature of the
flattening allows us to easily correct for distortion.

From a triangulated surface representation of the colon, we
indicate how our procedure may be implemented using finite
elements. Moreover, we explicitly show how various structures
of the colon may be studied using this approach. In contrast to
virtual colonoscopy methods that are based on a “fly-through,”
our method allows the entire colon surface to be viewed at once,
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unobscured by surface folds. Hence, the flattening mapping can
be used to obtain an atlas of the given surface in a straightfor-
ward, canonical manner. The flattening function is obtained as
the solution of a second-order, elliptic partial differential equa-
tion (PDE) on the surface to be flattened. From a triangulated
representation of the colon surface, we use a finite element pro-
cedure to numerically approximate the flattening function. This
numerical method involves nearly solving two sparse systems
of linear equations and can be accomplished by using standard
conjugate gradient techniques.

Once the colon surface has been flattened onto a rectangular
region of the plane, we use a method by which the entire colon
is presented as a cine, and which allows the viewer to examine
each surface pointwithout distortionat some time in the image
sequence. Thus, in this sense, we achieve 100% view with 0%
distortion. In addition to the colon, we have been employing
our method in the study of depth maps of bladder images, and
in the study of curvatures and polar maps from ultrasound heart
images. We are also interested in using our work for the con-
struction of canonical brain models and coordinates on both the
gray matter and gray/white matter boundaries from 3-D mag-
netic resonance data sets [1].

We now summarize the contents of this paper. In Section II,
we give a high-level overview of our flattening method. In Sec-
tion III, we describe the approximation method we employ for
numerically computing the flattening mapping based on finite
elements. In Section IV, we provide formulas that can be used
in real time to create a cine that provides a view of each point of
the surface without distortion. Then, in Section V, we illustrate
the methodology on some CT colon imagery, and in Section VI,
we draw some conclusions about our general approach as well
as directions for future research. Finally, in Section VII, we pro-
vide some key mathematical details justifying our methodology.

II. GENERAL APPROACH TOCOLON FLATTENING

We first consider a mathematical model for the colon surface.
Accordingly, let represent an embedded surface (no
self-intersections) that is topologically an open-ended cylinder.
In the mathematical appendix (see Section VII), we will give
more details on the analytical basis for flattening such a surface
onto the plane. In this section, we just sketch some of the key
points.

We assume that is a smooth manifold. For the finite element
method described in the next section, it will be enough to take it
as a triangulated surface. We refer the reader to [3] for the basic
theory of surfaces of the type we are considering here, and to
[11] for the relevant results on partial differential equations.

The boundary of consists of two topological circles, which
we will call and . We want to construct a conformal map
(i.e., a map that preserves angles and is one-to-one), ,
which sends to an annulus such that and are mapped
to the inner and outer boundary circles of, respectively.

The construction of begins with finding a solution to the
Dirichlet problem on , with boundary
conditions on and on . Here, is the
Laplace–Beltrami operator on the surface(see [11]).

We then find a smooth curve on that runs from to
such that is strictly increasing along . This curve defines a
cut on , and the cut surface is conformally equivalent to
a rectangle in the plane.

We next compute the harmonic function, which is conjugate
to by specifying boundary conditions on the cut surface and
again solving a Dirichlet problem. The details for this are given
in Section VII. The mapping : sends the surface

to a rectangle, and its exponential sends to an
annulus.

III. A PPROXIMATION OF THEFLATTENING FUNCTION

In the previous section, we outlined the analytical procedure
for finding the flattening map . Here, we will discuss the fi-
nite element method for finding an approximation to this map-
ping. See [8] for details about this method. Because the proce-
dure given here is crucial for the flattening algorithm we have
used in our simulations, we will describe this implementation
in some detail. In [1], we described a related method for brain
flattening. However, because of the differences in topology be-
tween the brain and the colon surface, the boundary conditions
for the flattening maps are different.

We assume that is a triangulated surface, and we look for
a flattening map which is continuous on and linear on each
triangle. Here, we will concentrate on finding, the method for
its conjugate being similar.

It is a classic result [11] that the harmonic functionis the
minimizer of the Dirichlet functional

where is the gradient with respect to the induced metric on
.
Let denote the finite-dimensional space of piecewise

linear functions on . For each vertex , let be the
continuous function such that

is linear on each triangle (1)

Now, this set forms a basis for , and so any
can be written as

So to approximate the solution to the PDE, we minimize
over all , which satisfy the boundary conditions.

To minimize , we introduce the matrix

for any pair of vertices . It is easy to see that if
and only if are connected by some edge in the triangula-
tion. We can show (see [8]) that minimizes the
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Dirichlet functional over with the boundary conditions,
if for each vertex

(2)

A. Computing

Assume . If , the edge belongs
to two triangles, and . An essential formula from
finite element theory [8], then says that

where is the angle at the vertex in the triangle ,
and is the angle at the vertex in the triangle .

If , we have

B. Summary of Method

We may summarize the finite element procedure for the con-
struction of the flattening map as follows:

1) Compute the .
2) Solve the linear equation (2) to obtain the piecewise linear

harmonic function .
3) Cut the surface from to , and compute the boundary

values of by integrating (the derivative of in
the normal direction [11]) around the boundary. Use fi-
nite elements to solve for. To find a cut, we may start
at a vertex on , and move from each vertex to the adja-
cent vertex that has the largest value ofassociated with
it. The maximum principle implies that there is always
an adjacent vertex with a larger value ofthan the cur-
rent vertex. Also, in this way, we make a cut that follows
closely the gradient of while remaining on edges of tri-
angles. Thus, our flattened image will be roughly rectan-
gular in shape.

IV. I NSPECTION ANDDISTORTION REMOVAL

In practice, once the colon surface has been flattened into a
rectangular shape, it will need to be visually inspected for var-
ious structures. In this section, we present a simple technique by
which the entire colon surface can be presented to the viewer as
a sequence of images or cine. In addition, this scanning method
allows the viewer to examine each surface point without distor-
tion at some time in the cine. Here, we will say a mapping is
without distortion at a point if it preserves the intrinsic distance
there.

It is well known that a surface cannot in general be flattened
onto the plane without some distortion somewhere (see [4]). For
conformal flattenings, we may show that the Gaussian curvature

and conformal distortion factor are related by the
nonlinear PDE (see [4])

(3)

This roughly shows that the greater the Gaussian curvature, the
larger the conformal distortion. The relationship is complicated,
however, because distortion and curvature are related via a non-
linear partial differential equation.

On the other hand, it is possible to achieve a surface flat-
tening that is free of distortionalong some curve. A simple ex-
ample of this is the familiar Mercator projection of the earth, in
which the equator appears without distortion. In our case, the
distortion-free curve will be a level set of the harmonic function

described above (essentially a loop around the tubular colon
surface), and it will correspond to the vertical line through the
center of a frame in the cine. This line is orthogonal to the di-
rection of the scan, so that every point of the colon surface is
exhibited at some time without distortion.

Explicitly, suppose we have conformally flattened the colon
surface onto a rectangle . Let be the
inverse of this mapping, and let be the amount
by which scales a small area near ; i.e., let be
the “conformal factor” for . Fix , and for each

, define a subset
that will correspond to the contents of a cine frame. We define
a mapping

from to that has differential

and in particular . The con-
formality of the flattening map, together with this value for

, implies that the composition of the flattening map
with sends the level set loop on the colon surface
to the vertical line in the – -plane without distor-
tion. In addition, it follows from the formula for that lengths
measured in the-direction accurately reflect the lengths of cor-
responding curves on the colon surface.

V. COMPUTERSIMULATIONS

We tested our algorithm on three different data sets provided
to us by the Surgical Planning Laboratory of Brigham and
Women’s Hospital. Because the results were similar in each
case, we just include here one of the sets. This example
consists in a test of flattening the colon surface contained in a
256 256 124 CT colon image. Four slices from this data
set are shown in Fig. 1.

First, using the fast segmentation methods of [9] and [14], we
found the colon surface. Unfortunately, the segmentation algo-
rithm does not guarantee that the surface found will be a topo-
logical cylinder. In fact, it may contain numerous minute han-
dles that develop because the boundary of the colon, as repre-
sented in the data set, may not be sharp. We used a morpholog-
ical-based method [5] by which these handles can be effectively
removed and a surface that has the topology of a closed-ended
cylinder can be extracted. This is done in such a way that the
large-scale geometry of the surface is not adversely affected.
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Fig. 1. Two slices of colon CT data.

We then created a triangularization of this surface using the
Visualization Toolkit [13]. (The newest version of VTK is avail-
able at the website www.kitware.com.) Next, the triangularized
surface was smoothed slightly to reduce the effects of aliasing.
This was done by using a flow based on mean curvature. The
triangles making up the two ends of the tubular surface were
then removed to produce an open-ended tube with two boundary
curves.

Next, as described in the Section III, we found the harmonic
function , made a cut along the colon surface from one
bounding curve to the other, and then found the conjugate har-
monic function to complete the calculation of the flattening
map onto a nearly rectangular region of the plane. We tried
cuts starting from several different boundary points and found
no significant changes from the results reported here; this
independence of path is in agreement with the mathematical
theory.

For purposes of visualization, we colored points of the
colon surface according to mean curvature, and then ap-
plied these same colors to the flattened image in the plane.
This gave an elegant way to visualize the structure of the
colon that is a twisted, undulating tube. Our segmentation
method is a so-called “level-set” method, in which the colon
surface to extract is defined implicitly as the zero level set

of a function defined on the
3-D volume. It is well known that the Gaussian and mean
curvatures of such an isosurface can be calculated from the
derivatives of ; doing so allows us to avoid having to make
these calculations on the triangulated surface after extraction.
In fact, we may use the function to determine the entire
second fundamental form for the isosurface, using the formula

where is the 3 3 Hessian matrix of second derivatives
of , and is a 3 2 matrix whose columns are arbitrary
orthonormal vectors perpendicular to the surface normal

. The eigenvectors and of yield the principal
directions (the directions in which the degree of surface bending
is extremal) as and , whereas the eigenvalues are
the corresponding principal curvatures. The Gaussian curvature
can then be found by , and the mean
curvature by trace .

In Fig. 2, we show three different views of the segmented
colon surface and its flattened representation colored according
to mean curvature. A small circled region visible at the bottom
of the flattened surface, and the corresponding region of the
original surface, is shown in detail in Fig. 3. In Fig. 4, we show

Fig. 2. Segmented colon and flattened representation.

Fig. 3. Region of interest and flattened representation.

Fig. 4. “Fly-through” view and flattened representation.

an interior “fly-through” view of the colon image, and its flat-
tened representation. Notice how much easier it is to get a view
of the whole interior region in this manner.

We would expect polyps to have relatively high Gaussian cur-
vature compared with the flatter surrounding colon surface. Fur-
ther, these areas should be convex with respect to the colon in-
terior, and thus have positive mean curvature with respect to
the outward surface normal. This suggests that as an alterna-
tive scheme for visualization, we color the flattened surface ac-
cording to the Gaussian curvature of the colon surface, but only
where both the Gaussian and mean curvatures of the colon sur-
face are positive. The other areas may be colored with some
neutral color. This alone, however, is not satisfactory for visu-
alization of the flattened colon because the folds of the colon
will not be represented. One solution to this problem is to use
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Fig. 5. Frames from distortion-correcting cine with original surface.

shading maps, an idea from computer graphics. The idea is to
translate surface normals from the original surface to the corre-
sponding point on the flattened surface. When rendered under
identical lighting conditions, the original surface and the flat-
tened surface with these “pseudonormals” will have similar ap-
pearances, because of similar shading. This allows us to color
the surface any way we wish and still have the surface folds dis-
tinguishable in the flattened representation.

We used this shading map in conjunction with the formulas in
Section IV to create a distortion correcting cine of a scan of the
colon surface. To make numeric integration fast and simple, we
interpolated the function (defined on the rectangular repre-
sentation of the colon in the– -plane) onto an equally spaced
grid. For each particular value of , increasing from 0 to

on this grid, we mapped the corresponding subrectangle
to the – -plane, as described in Section IV. We found that

this could be done in real time. Four frames from the resulting
cine can be seen in Fig. 5. For comparison, we show an exterior
view of the portion of the original colon surface corresponding
to each frame. As the cine progresses, the vertical line through
the center of the frame is a distortion-correcting representation
of a loop on the colon surface. These loops sweep continuously
over the colon surface from end to end, and thus every surface
point is presented to the viewer in some frame without dis-
tortion. Further, the mapping to the– -plane is a continuous
function of time, and so there is no jumping between frames.
The fact that distances in the-direction are the same as cor-
responding distances on the surface seems to help in keeping
distortion to an acceptable level even off the vertical center
line. Notice that the coloring and shading scheme indicate the
convex areas and surface folds. One can see the cine on our
web site http://noodle.med.yale.edu/~haker/colonoscopy. We
are currently investigating the usefulness of this visualization
scheme for the detection of polyps in a clinical setting.

VI. CONCLUSION

In this note, we described a procedure based on conformal
geometry and harmonic analysis for the construction of a flat-
tening map of a colon surface derived from volumetric CT data.
Further, we presented a numerical algorithm that finds this map

by a finite element technique. Finally, we demonstrated for-
mulas that can be used in a cine to provide a distortion-free view
of every point on the colon surface. Additional details on the un-
derlying mathematics, numerics and an application to 3-D brain
imagery may be found in [1].

Deformations of highly undulated surfaces have applications
in the analysis of military as well as medical imagery. They
also have applications in computer graphics, for example, in the
area of texture mapping. We believe that the angle-preserving
mapping methods described here will prove to be useful in these
areas.

We have also been considering area-preserving flattening
maps of minimal distortion as a way to optimize the tradeoff
between exact area-preservation and minimal angle deviation.
It is mathematically impossible to have both the area and angles
preserved everywhere in a diffeomorphism between surfaces
unless the two surfaces have the same Gaussian curvature; see
[4] for all of the relevant results and definitions. Thus, this type
of tradeoff is probably the best that we can do. For the mathe-
matical details, see [2]. We will be applying this methodology
to both brain and colon imagery in our future work.

VII. M ATHEMATICAL APPENDIX

We use the notation of Section II. We will fill in the details of
the high-level algorithm for the construction the flattening map

.

1) Let be the solution of the Dirichlet problem

on

on

on (4)

Here, represents the Laplace–Beltrami operator on
the surface . This second-order partial differential
operator is intrinsic to the surface and is a generalization
of the standard Laplacian in the plane. From the standard
theory of partial differential equations [11],exists and
is unique.

2) Let be a smooth curve on that runs from to
such that is strictly increasing along . The maximum
principle implies the existence of such a curve. This curve
defines a cut on , and the cut surface is conformally
equivalent to a rectangle in the plane.

Let be the oriented boundary of this cut surface; i.e.,
let run around , then along to , around , then
along again in the opposite direction to . The closed
path must run around and in a fashion consistent
with an orientation given on the surface.

We want to compute the harmonic functionthat is
conjugate to by specifying boundary conditions on the
cut surface and again solving a Dirichlet problem. Let

and denote tangential and normal derivatives,
respectively. By the Cauchy–Riemann equations, we have
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on and so the boundary values ofmay be found by
integration along

where here is the arc-length along . Because
is harmonic, the divergence theorem guarantees that

, and so is smooth (periodic) on .
Note that if we choose so that it follows the gradient

of from to , we would have along ,
and so would be constant on along the parts corre-
sponding to .

3) The component of the rectangular map
is then found by solving the Dirichlet problem using the
calculated boundary values for. If is chosen to follow
along the gradient of , the image of in the – -plane
under will be a rectangle of width 1 and some height.
For other curves , along which is monotone, the image
will be a region in the – -plane among the lines ,

, the graph of a function , and a copy of the
graph of shifted vertically by a constant, i.e., .
The fact that the distance across the region vertically is
constant is again a consequence of the divergence the-
orem. We may now dilate the flattened rectangular image
of under homothetically, and so we may assume that

. We may then map the surface to a true cylinder
of radius 1 by simply “rolling up” the flattened image. We
may also map it to an annulus via , effectively re-
connecting the image of the surface smoothly across the
cut. We may then map it to the sphere using stereographic
projection, if desired. In practice, we have found rectan-
gular mapping to be the most natural representation of the
flattened colon. The existence of the cut in the rectangular
mapping does not present a problem for visualization; the
constant height of the rectangular image allows us to ex-
tend it periodically above and below the cut.

Remark: The annular map is unique up to a dilation, rota-
tion, and translation. That is, any other conformal

that maps to an annulus and to its outer boundary is given
by

(5)

for some constants .
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