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Maximum-Likelihood Transmission Image
Reconstruction for Overlapping Transmission Beams

Daniel F. Yu, Jeffrey A. Fessler*, Senior Member, IEEE, and Edward P. Ficaro

Abstract—In many transmission imaging geometries, the
transmitted “beams” of photons overlap on the detector, such that
a detector element may record photons that originated in different
sources or source locations and thus traversed different paths
through the object. Examples include systems based on scanning
line sources or on multiple parallel rod sources. The overlap of
these beams has been disregarded by both conventional analytical
reconstruction methods as well as by previous statistical recon-
struction methods. We propose a new algorithm for statistical
image reconstruction of attenuation maps that explicitly accounts
for overlapping beams in transmission scans. The algorithm is
guaranteed to monotonically increase the objective function at
each iteration. The availability of this algorithm enables the
possibility of deliberately increasing the beam overlap so as to in-
crease count rates. Simulated single photon emission tomography
transmission scans based on a multiple line source array demon-
strate that the proposed method yields improved resolution/noise
tradeoffs relative to “conventional” reconstruction algorithms,
both statistical and nonstatistical.

Index Terms—A ttenuation maps, penalized-likelihood, multiple
source, SPECT.

I. INTRODUCTION

T O reconstruct quantitatively accurate images of radioiso-
tope emission distributions in single photon emission to-

mography (SPECT), one must compensate for the effects of
photon absorption or attenuation. Accurate attenuation correc-
tion requires good attenuation maps, and one can reconstruct
such maps from transmission scan measurements obtained ei-
ther prior to or simultaneously with the SPECT emission scan.

Several source/detector configurations for SPECT trans-
mission scans have been investigated, including a single fixed
line source opposite a symmetric fan-beam collimator, used
in triple-head SPECT cameras, a scanning line source for
orthogonal dual-head cameras, and offset line sources opposite
asymmetric fan-beam collimators. Cellaret al. [1] describe an
alternative geometry based on several fixed-position collimated
line sources opposing a parallel-beam collimator. In that
system design, the source collimation was selected to minimize
overlap on the detector of the transmitted “fan-beams.” They
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then applied the filtered back-projection (FBP) algorithm to
reconstruct the attenuation map (an ART algorithm was also
mentioned without details). This source collimation has the
undesirable consequence of very nonuniform count profiles,
as shown in [1, Fig. 2]. It is natural to expect that higher and
more uniform count profiles could lead to better reconstructed
attenuation mapsif the reconstruction method properly models
the beam overlap.

In both the scanning line source geometry and the geometry
of Celleret al. [1], there can be overlap of the beam footprints,
as illustrated in Fig. 2. Previously published statistical algo-
rithms for transmission tomography, e.g., [2]–[8], are inappli-
cable to the multiple source problem when the beams overlap. In
this paper we formulate a statistical model for multiple-source
transmission measurements with arbitrary overlapping beams,
and then derive an iterative algorithm for maximizing the likeli-
hood (or a regularized variant thereof). The log-likelihood is not
necessarily globally concave, which usually precludes proofs
of convergence to a global maximum. The algorithm that we
present is guaranteed to increase the likelihood at every itera-
tion, and the set of fixed points of the algorithm is the same
as the set of stationary points of the objective function. The al-
gorithm also satisfies the continuity conditions of Meyer [9].
Therefore, by the convergence results in [9], the proposed algo-
rithm produces a sequence of estimates that converge from any
nonnegative initial image to a stationary point of the objective,
provided the set of stationary points is not a continuum. This is
nearly as strong of a convergence result as one might expect for
a possibly nonconcave objective function. In Section II, we give
the statistical model and the proposed maximum-likelihood al-
gorithm; in Section III, we present some simulation results; in
Section IV, we present the results from our preliminary study on
optimal source collimation angles for a fixed system setup; and
finally Section V is discussion and conclusion.

II. STATISTICAL MODEL

Let denote the number of photons counted by theth de-
tector element1 during the transmission scan, for ,
where is the number of measurement elements. Each detector
element conceivably may count photons that originated in any
of the sources. We assume that separate blank scans
are available for each of the sources (or source positions for a
scanning line source). This information is essential for unscram-
bling the multiplexing of overlapping beams. Let denote the

1Each “detector element” corresponds to a unique radial position and view
angle, i.e., for typical two–dimensional reconstructionN = N N whereN
is the number of radial samples along the detector andN is the number of view
angles or “steps.”
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mean number of photons that would be observed during a trans-
mission scan by theth detector originating in the th source
in the absence of any patient in the scanner. Typically, thes
would be determined by a periodic calibrating “blank scan,” per-
formed separately for each of the sources, and then scaled by
the relative durations of the blank scan and transmission scans.
However, we ignore any statistical uncertainty in thes and
treat them as known constants. This assumption is reasonable
provided the blank scans are sufficiently lengthy.

Let denote the vector of unknown
attenuation coefficients for each of thepixels or voxels in the
attenuation map (or the coefficients of some other basis for the
attenuation distribution such as B-splines [10]). The line integral
between the th source and theth detector location through the
attenuating object is approximated by the following sum:

where is a matrix with nonnegative elements
and the s represent line-lengths or normalized strip-intersec-
tion areas.2 Thus, by Beer’s law the “survival probability” for a
photon transmitted from the th source in the direction of the
th detector is (approximately) .

We assume the s have independent Poisson distributions

where the means are given by

(1)

The s are nonnegative constants that one can include to ac-
count for the mean contributions of scatter,3 room background,
and emission crosstalk [11].

The summation over in (1) allows for arbitrary overlap of
the beams transmitted from each source. Nonoverlapping beams
would correspond to the assumption that if , then

for all , i.e., for all .
Under the above statistical model, given a particular measure-

ment realization , we can write the log-like-
lihood for in the following convenient form:

(2)

ignoring constants independent of. Since the form of this
log-likelihood is sufficiently different from the usual models

2Normalized by strip width.
3One could, for example, estimate the scatter contribution to ther s by the

triple energy window method. Since scatter is a spatially smooth function, one
can safely smooth such scatter estimatesr̂ fairly heavily, so generally the vari-
ability in the r̂ s will be much smaller than that of theY s. Thus we treat the
r̂ s as constants, hencen the notationr .

for emission tomography and transmission tomography [4], pre-
viously derived algorithms for maximum-likelihood estimation
are not directly applicable to this problem.

One could easily derive an expectation-maximization (EM)
algorithm [12], [13] that would monotonically increase the like-
lihood for this problem, generalizing [4]. However, the
convergence would be as painfully slow and the M-step as dif-
ficult as the usual transmission EM algorithm. Instead, we pro-
pose an algorithm based on an extension of our recent work on
paraboloidal surrogates methods [2], [3]. For even faster “con-
vergence” one could apply ordered subsets ideas [14].

Because of the ill-posedness of the reconstruction problem,
a penalty term is usually added to the likelihood to encourage
piecewise smoothness in the reconstructed image, resulting in
the following objective function:

(3)

Most roughness penalties can be expressed in the fol-
lowing general form:

(4)

where the s are potential functions acting as a norm on the
“soft constraints” and is the number of such con-
straints. The functions we consider here are convex, sym-
metric, nonnegative and differentiable [3]. Our goal is to pro-
duce a penalized-likelihood estimate

(5)

III. A LGORITHM

We focus on the unregularized maximum-likelihood
problem; the regularized approach easily follows from [3].
Since maximizing the log-likelihood directly is difficult to
do, we apply the principle of optimization transfer [6], [15]
and define a “surrogate function” that is easier
to maximize. Since this surrogate function depends on the
previous estimate at the th iteration, the algorithm consists
of repeatedly maximizing the surrogate function, i.e.,

(6)

Note that the maximization is constrained to enforce the non-
negativity constraint. The key algorithm design requirement is
to choose functions that satisfy the following conditions:

(7)

(8)

(9)

These conditions ensure that the proposed iteration monotoni-
cally increases the likelihood.
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TABLE I
ALGORITHM OUTLINE

A difficulty in maximizing is the sum over within the
logarithm in (2). To move the summation outside of the loga-
rithm, we first adapt De Pierro’s multiplicative convexity trick
[16]. Because is concave

(10)

(11)

where , and . This
inequality leads to our first surrogate function

(12)

(13)

where

The surrogate function remains too difficult to maximize di-
rectly because the argument of eachstill depends on ,
which has a complicated exponential form. However, it fol-
lows easily from the results in [2] and [3] that the following
paraboloidal function is a valid surrogate for :

(14)
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where

(15)

and

To ensure (9), we must choose the curvatures appropri-
ately [2], [3]. As discussed in [3], for the fastest convergence
rate, we would like to choose the curvatures as small as pos-
sible, subject to the constraint that the surrogate function
lies below the functions ; see Appendix A for the expres-
sion for the optimum curvature . We can also separate to
obtain another surrogate function , to which we could apply
the ordered subsets idea ([17], p. 107).

To obtain a monotonic algorithm that converges relatively
quickly, we apply coordinate ascent to the surrogatedefined
in (14), i.e., we sequentially update one pixel at a time while
holding all other pixels fixed. The derivative of the likelihood
surrogate parabola at is

(16)

where and

The curvature of the parabola is

(17)

Extension to the penalized likelihood case is straightforward
following the methods in [2] and [3], so we omit the details and
only comment on notations: denotes the penalty surro-
gate parabola for , and denotes its curvature. The maxi-
mization step of the coordinate ascent for pixelis

(18)

Fig. 1. Digital phantom used in our simulations and the ROI used for
collimation angle optimization.

Fig. 2. Scaled illustration of the system setup; the two fan-beams on the
left have collimation angle 2.6; the two fan-beams on the right side have
collimation angle 5.6.

Because of our construction based on surrogate functions that
satisfy (9), this update is guaranteed to monotonically increase
the value of . One iteration is finished when all pixels are up-
dated via (18) in a sequential order. We update the paraboloidal
surrogate function after one full sweep of coordinate ascent
(CA) through all pixels, although one could also perform more
than one CA sweep per surrogate. An outline of this algorithm
is given in Table I, where denotes the potential function
used in the penalty acting as a norm on the “soft constraints”

is the number of such constraints, anddenotes
the surrogate function used for ; see [3] for details.

IV. SIMULATION RESULTS

We compared the proposed reconstruction algorithm with
the “conventional” reconstruction algorithms (statistical and
FBP) that treat the transmission measurements simply as ideal
normalized parallel “strip-integrals.” The system geometry
corresponded fairly closely to the Siemens Profile system
(Hoffman Estates, IL) [18]. The sources for the simulated
system consisted of a multiple line source array with 14
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(a) (b)

Fig. 3. Distribution of blank counts (a) collimation angle 2.6(b) collimation angle 5.6.

Fig. 4. New sources; collimation angle: 2.6; 785 000 counts; top row: resolution 4.7 pixels; bottom row, resolution 6.8 pixels.

sources, unequally spaced, located on a line parallel to the de-
tector and 110 cm away from the detector plane.4 The detector
plane was located 22 cm away from the center of rotation. We
simulated a range of source collimation angles, from 1.6(with
almost no overlap in the transmission beams) to 6.6, and dis-
regarded detector collimation. The image consisted

4In addition to transaxial overlap of transmission source radiation, there are
some designs for transmission sources in which the overlap is primarily in the
axial direction. This algorithm can be easily modified to suit such designs. How-
ever, storage and computational issues might make this algorithm prohibitively
expensive to perform in reality.

pixels of size 3.56 3.56 mm . The sinogram size was 128
60 with detector bins of width 4.8 mm (i.e., the simulated

detector response was rectangular with width 4.8 mm). We
performed the simulation for two levels of transmitted counts,
one corresponding to a system whose center rods have just
been replaced (the new source case), and the other with sources
that have all decayed by one half-life (the old source case).
At 1.6 , we simulated 321 000 transmitted counts for the new
source case (160 000 counts for the old source case), and 263
000 background counts (on average). As the source collimation
angle increases, the number of transmitted counts increases,
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Fig. 5. New sources; collimation angle: 3.6; 994 000 counts; top row: resolution 4.7 pixels; bottom row, resolution 6.8 pixels. A resolution of 4.7 pixels was not
achievable with FBP in this case.

Fig. 6. Old sources; collimation angle: 2.6; 392 000 counts; top row: resolution 4.7 pixels; bottom row, resolution 6.8 pixels.

naturally, but the number of background counts remains the
same; at 2.6, there are 523 000 transmitted counts for the

new source case (261 000 counts for the old source case); and
at 6.6 , there are 1 396 000 transmitted counts for the new
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Fig. 7. Old sources; collimation angle: 3.6; 497 000 counts; top row: resolution 4.7 pixels; bottom row, resolution 6.8 pixels. A resolution of 4.7 pixels was not
achievable with FBP in this case.

source case. For simplicity, we used a space-invariant quadratic
penalty over first-order neighbors throughout our simulations.
The phantom used in our simulations, the ROI used for the
evaluation of variance in Section V (outlined by solid lines),
and the large region used for the evaluation of spatial resolution
(outlined by dashed lines) are shown in Fig. 1. Fig. 2 illustrates
the system setup. The radial distribution of blank counts (at any
projection angle) is shown in Fig. 3.

Figs. 4 and 5 show reconstructions of noisy data using
FBP, the parallel algorithm5 , and the proposed algorithm, with
new sources. Fig. 4 shows reconstructions with 2.6source
collimation and Fig. 5 shows reconstructions with 3.6source
collimation. Figs. 6 and 7 show the same reconstructions with
old sources. Since FBP and statistical algorithms have different
methods for controlling the resolution/variance tradeoff, we
must display images with similar resolutions (or similar
variances) to have a meaningful comparison between different
reconstruction algorithms. We chose so that the spatial
resolution of the images in Figs. 4–7 is 4.7 pixels on the top
row and 6.8 pixels on the bottom row. We use the following
simple method to determine the resolution of a particular
(noiseless) reconstruction. Given the ideal image and the
reconstructed image using ideal data

(19)

5We refer to the penalized-likelihood reconstruction assuming ideal normal-
ized parallel “strip-integrals” (and ignoring beam overlap) as the parallel algo-
rithm.

we define the resolution of to be

(20)

where represents a Gaussian smoothing filter with FWHM
, and the is a large region encompassing both the right lung

and our ROI as illustrated in Fig. 1.
We observe from Figs. 4–7 that the proposed algorithm con-

sistently produces less noisy reconstructions than both the par-
allel algorithm and FBP (this conclusion from anecdotal evi-
dence will be confirmed in Section V). The noise reduction is
especially significant when the collimation angle is large (i.e.,
3.6 ) and the desired spatial resolution is high (i.e., 4.7 pixels).
In such cases, FBP simply cannot produce a reconstructed image
of the desired resolution even with an unapodized ramp filter.
Since the parallel algorithm is based on an incorrect system
and statistical model, one expects artifacts due to model mis-
match. The absence of apparent artifacts in Figs. 4–7 is due to
regularization and noise. Fig. 8 shows the reconstructed images
from noiseless data (4.6collimation angle) using the parallel
and proposed algorithms with almost no regularization (
2 ). The reconstructed image from noiseless data using the
parallel algorithm shows severe artifacts resulting from model
mismatch, which are absent in the reconstructed image from
noiseless data using the proposed algorithm [Fig. 8(c)].

As the collimation angle increases, the artifacts generated by
the parallel algorithm worsen. In fact, even the noiseless recon-
struction has a spatial resolution of about 5.6 pixels when the
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(a) (c)

(b) (d)

Fig. 8. Reconstruction using the parallel and proposed algorithms with almost no regularization; collimation angle 4.6(a) (b) Parallel algorithm (c) (d) Proposed
algorithm. The profile displayed in (b) and (d) is of vertical column number 100, through the right lung.

collimation angle is 4.6 [Fig. 8(a)],6 and at 6.6, the noise-
less reconstruction has a spatial resolution of 7.7 pixels. Thus
for system setups with significantly overlapping transmission
beams, the parallel algorithm simply cannot produce a high-res-
olution reconstruction, no matter how many counts one collects.

The proposed algorithm is more time-consuming and uses
more memory than conventional statistical algorithms. For our
simulations, we used 14 system matrices (one for each source)
with appropriate collimation angles. The system matrices with
collimation angle 2.6occupy 20 MBytes of disk space, and the
system matrices with collimation angle 7occupy 50 MBytes of
disk space, compared to 8 MBytes occupied a single system ma-
trix used by the parallel algorithm. It also takes longer to project
or backproject an image in the proposed algorithm than the par-
allel algorithm; in fact, for collimation angle 2.6, each itera-
tion of the proposed algorithm takes about 1.9 s, compared to
about 0.8 s needed for the parallel algorithm, on a Sun Ultra2
workstation. Furthermore, because of the overlap between trans-

6The noiseless reconstruction [Fig. 8(c)] using the proposed algorithm has a
spatial resolution of 1.4 pixels.

mission beams, the convergence rate of the proposed algorithm
is also slower than the parallel algorithm; as the overlap be-
tween transmission beams increases, i.e., the collimation angle
gets larger, the curvatures , as given in (30) at the bottom
of the page, get larger, hence, the convergence rate becomes
even slower. In fact, if one goes from a collimation angle of
1.6 to 5.6 , the average curvature of the surrogate parabolas
increases by a factor of three. With regard to the number of iter-
ations necessary for convergence, i.e., the smallestsuch that

, where is the
largest objective value obtained in 40 iterations, the parallel al-
gorithm required 22 iterations and the proposed algorithm re-
quired 30 iterations for collimation angle 2.6and a desired
spatial resolution of 4.7 pixels. Hence, the total amount time
required by the proposed algorithm would be 3.3 times that of
the parallel algorithm for collimation angle 2.6and a desired
spatial resolution of 4.7 pixels. On a typical three-dimensional
data set, with 40 slices and running 20 iterations for each slice,
it would take approximately 25 min to perform a complete re-
construction on a Sun Ultra2 workstation.
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Fig. 9. High-count case: ROI resolution/variance curves for the proposed
algorithm.

Fig. 10. High-count case: ROI resolution/variance curves for the parallel
algorithm.

Fig. 11. High-count case: ROI variances at desired spatial resolution 4.7
pixels.

Fig. 12. High-count case: ROI variances at desired spatial resolution 6.8
pixels.

V. COLLIMATION ANGLE OPTIMIZATION

We performed a preliminary study of the optimal source
collimation angle given that the system configuration, source
strength, and background counts remain constant. As source
collimators open up, i.e., the collimation angle increases,
there would be more counts, but there would also be more
overlap of transmission beams. Hence, initially, when the
transmission beams widen from no overlap to some overlap,
we expect better resolution/variance tradeoffs; however, as the
transmission beams open up more and more, we expect less and
less improvements, and eventually worse resolution/variance
tradeoff since eventually each detected photon hitting will yield
very little information about where it originated. We want to
obtain the collimation angle that minimizes a region of interest
(ROI) variance for a fixed spatial resolution. We investigated
the proposed algorithm, the parallel algorithm (i.e., the conven-
tional statistical algorithm), and FBP (derived assuming ideal
parallel “line-integrals”). For the statistical algorithms, instead
of performing numerical simulations, we used the approach
outlined in [19] to compute the variance of the ROI. For FBP,
since numerical simulations are relatively inexpensive, we
performed 2000 realizations for each data point.

We will now derive an algorithm for approximately calcu-
lating the variance of the ROI of the proposed estimator. The ap-
proximate covariance for an implicitly defined biased estimator
is [19]

(21)

where is defined in (19), the th element of the operator
is , and the th element of the operator

is . We first derive and ,
which are needed for computing the variance of a ROI for the
proposed algorithm. Defining

(22)
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(23)

then

(24)

Since

(25)

we have

(26)

and, applying the chain rule, we have, after simplification

(27)

(28)

where , and
, i.e., .

(For a detailed derivation of the penalty part, see [19].) We
use the following recipe to compute the approximate estimator
(using the proposed algorithm) variance of a ROI:

1) compute by applying the proposed algorithm to
noise-free data ;

2) forward project to compute
;

3) use the conjugate gradient method [20] to solve, for ,
the system of equations ,
where is a vector with entries for pixels in-
side the region and zeros for pixels outside; denotes
the number of pixels in the ROI;

4) Compute

by first forward projecting to compute
, and then summing

(29)

For the parallel algorithm, the computation of the approx-
imate variance has been outlined in [19], except that we use

in [19, (23)], where is based
on the overlapping beam model (23) rather than the parallel
strip-integral model of [19].

Fig. 13. High count case: A comparison of optimal collimation angles, at
different resolutions for the proposed and parallel algorithms.

Fig. 14. High-count case: A comparison of minimum achievable normalized
standard deviation, at different resolutions for the proposed and parallel
algorithms.

For simplicity, we consider a first order quadratic penalty for
the results below. We analyzed the resolution/variance tradeoffs
for the ROI illustrated in Fig. 1: it is a 2 9 region that goes
across the boundary of the soft tissue, the lung, and the heart. We
performed the analysis at two levels of transmitted counts, one
with new sources (the high count case) and the other with old
sources (the low count case), i.e., the same as was done for Sec-
tion IV. The background count level for both cases remains the
same throughout. We only discuss the high count case; the low
count case gives similar results. Figs. 9 and 10 show the resolu-
tion/variance curves of the proposed algorithm and the parallel
algorithm, respectively, for various collimation angles ranging
from 1.6 to 6.6 . Based on these two figures, we calculated
(using cubic spline interpolation when needed) the variances of
the ROI versus collimation angle at two fixed resolutions: 4.7
pixels and 6.8 pixels, as shown in Figs. 11 and 12. The pro-
posed algorithm outperforms the parallel algorithm which in
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(30)

(31)

turn outperforms FBP at both resolutions, and at all collima-
tion angles. The performance gain of the proposed algorithm
over the parallel algorithm is more impressive at larger colli-
mation angles, e.g., more than 2.5. Using the proposed algo-
rithm, it seems that the optimal collimation angle for a resolu-
tion of 4.7 pixels is around 5, and for a resolution of 6.8
pixels, both much larger than typical collimation angles found
on SPECT cameras. However, if the suboptimal parallel algo-
rithm were used for reconstruction, then the optimal collima-
tion angle would be 2.6for a resolution of 4.7 pixels, and 4.1
for a resolution of 6.8 pixels. Even though the optimal colli-
mation angle for the parallel algorithm is closer to what is typ-
ically found on SPECT cameras than the proposed algorithm,
the proposed algorithm outperforms the parallel algorithm at all
collimation angles. Furthermore, for collimation angles larger
than 3.5, a resolution requirement of 4.7 pixels would prob-
ably mean very high variances in the parallel reconstruction.
Fig. 13 shows the optimal collimation angle for the proposed
and parallel algorithms at different desired spatial resolutions.
Naturally, as the desired spatial resolution improves, the op-
timal collimation angle decreases. Fig. 14 shows the minimum
achievable normalized standard deviation for the the proposed
and parallel algorithms at different desired spatial resolutions.
As expected, the proposed algorithm consistently outperforms
the parallel algorithm, resulting in reduction in the standard de-
viation by as much as 40%.

VI. DISCUSSION ANDCONCLUSION

We have presented a new algorithm for statistical image re-
construction of attenuation maps that explicitly accounts for
overlapping beams in transmission scans; an example of such
a system can be found in [21].7 The algorithm is guaranteed to
monotonically increase the objective function at each iteration,
and consistently achieves better variance/resolution tradeoffs
than the two “conventional” image reconstruction algorithms
tested in this paper, both statistical (the parallel algorithm) and
nonstatistical (FBP).

From our preliminary study on the optimal collimation angle,
we find that it is desirable to open up the source collimators and
allow beam overlap—provided the overlap is modeled appro-
priately in the reconstruction algorithm. (This conclusion ap-
plies to our ideal simulation settings where system geometry is
known perfectly. Robustness of the proposed algorithm to model

7The reconstruction algorithm in [21] ignores overlap of the beam footprints.

mismatch needs investigation, since in practical clinical situ-
ations, the s and s are never known exactly.) However,
detector collimation currently limits usable source collimation
angles to , so alternatives to widening source collimation
are needed to improve the counting statistics on this system.

A possible alternative to the coordinate ascent algorithm pre-
sented in this paper is the ordered subsets algorithm. Although
the ordered subsets algorithm is not guaranteed to converge to a
local maximum of the objective function, it often produces rea-
sonable images quickly and is more parallelizable than CA, so
it may be more practical for clinical use.

APPENDIX

For completeness, we include the following formula for
the optimum curvature, i.e.,

derived in [3]; see (30) and (31) at the top of the
page) where

Other curvature choices that lead to even faster convergence (but
do not guarantee monotonicity) can be found in [3].
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