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Maximum-Likelihood Transmission Image
Reconstruction for Overlapping Transmission Beams

Daniel F. Yu, Jeffrey A. Fessler’Senior Member, IEEEand Edward P. Ficaro

Abstract—n many transmission imaging geometries, the then applied the filtered back-projection (FBP) algorithm to
transmitted *beams” of photons overlap on the detector, such that reconstruct the attenuation map (an ART algorithm was also

a detector element may record photons that originated in different \antioned without details). This source collimation has the
sources or source locations and thus traversed different paths

through the object. Examples include systems based on scanningundes'rabl_e consgquence_ of very nonuniform couqt profiles,
line sources or on multiple parallel rod sources. The overlap of as shown in [1, Fig. 2]. It is natural to expect that higher and
these beams has been disregarded by both conventional analyticalmore uniform count profiles could lead to better reconstructed

reconstruction methods as well as by previous statistical recon- attenuation mapi the reconstruction method properly models
struction methods. We propose a new algorithm for statistical the beam overlap

image reconstruction of attenuation maps that explicitly accounts In both th ing li t dth t
for overlapping beams in transmission scans. The algorithm is nbo € scanning fine source geometry an e geometry

guaranteed to monotonically increase the objective function at Of Celleret al.[1], there can be overlap of the beam footprints,
each iteration. The availability of this algorithm enables the as illustrated in Fig. 2. Previously published statistical algo-
possibility of deliberately increasing the beam overlap so as to in- rithms for transmission tomography, e.g., [2]-[8], are inappli-
crease count rates. Simulated single photon emission tomography ¢ape to the multiple source problem when the beams overlap. In
transmission scans based on a multiple line source array demon- , . . .

strate that the proposed method yields improved resolution/noise this paPef, we formulate a statlstlcal model for multlple-source
tradeoffs relative to “conventional” reconstruction algorithms, ~transmission measurements with arbitrary overlapping beams,

both statistical and nonstatistical. and then derive an iterative algorithm for maximizing the likeli-
Index Terms—A ttenuation maps, penalized-likelihood, multiple hood (or "fl regularized variant thergof). The log-likelihood is not
source, SPECT. necessarily globally concave, which usually precludes proofs

of convergence to a global maximum. The algorithm that we
present is guaranteed to increase the likelihood at every itera-
tion, and the set of fixed points of the algorithm is the same
O reconstruct quantitatively accurate images of radioisas the set of stationary points of the objective function. The al-
tope emission distributions in single photon emission tgorithm also satisfies the continuity conditions of Meyer [9].
mography (SPECT), one must compensate for the effectsTdferefore, by the convergence results in [9], the proposed algo-
photon absorption or attenuation. Accurate attenuation corréithm produces a sequence of estimates that converge from any
tion requires good attenuation maps, and one can reconsti@anegative initial image to a stationary point of the objective,
such maps from transmission scan measurements obtainedtvided the set of stationary points is not a continuum. This is
ther prior to or simultaneously with the SPECT emission scanearly as strong of a convergence result as one might expect for
Several source/detector configurations for SPECT trargpossibly nonconcave objective function. In Section Il, we give
mission scans have been investigated, including a single fixéx statistical model and the proposed maximum-likelihood al-
line source opposite a symmetric fan-beam collimator, usgdrithm; in Section Ill, we present some simulation results; in
in triple-head SPECT cameras, a scanning line source fa@ction IV, we present the results from our preliminary study on
orthogonal dual-head cameras, and offset line sources opposjimal source collimation angles for a fixed system setup; and
asymmetric fan-beam collimators. Celktral. [1] describe an finally Section V is discussion and conclusion.
alternative geometry based on several fixed-position collimated
line sources opposing a parallel-beam collimator. In that Il. STATISTICAL MODEL

system design, the source collimation was selected to minimizq 4t y: genote the number of photons counted by thede-
. T
overlap on the detector of the transmitted “fan-beams.” They.tor elementduring the transmission scan, foe 1,..., N

whereN is the number of measurement elements. Each detector
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mean number of photons that would be observed during a trafte-emission tomography and transmission tomography [4], pre-
mission scan by théh detector originating in the:th source viously derived algorithms for maximume-likelihood estimation
in the absence of any patient in the scanner. Typicallybthe are not directly applicable to this problem.

would be determined by a periodic calibrating “blank scan,” per- One could easily derive an expectation-maximization (EM)
formed separately for each of thé sources, and then scaled byalgorithm [12], [13] that would monotonically increase the like-
the relative durations of the blank scan and transmission scditgod L(y:, Y') for this problem, generalizing [4]. However, the
However, we ignore any statistical uncertainty in thgs and convergence would be as painfully slow and the M-step as dif-
treat them as known constants. This assumption is reasondialalt as the usual transmission EM algorithm. Instead, we pro-

provided the blank scans are sufficiently lengthy. pose an algorithm based on an extension of our recent work on
Let ptue = [ple, ..., u}f“"]’ denote the vector of unknown paraboloidal surrogates methods [2], [3]. For even faster “con-

attenuation coefficients for each of theixels or voxels in the vergence” one could apply ordered subsets ideas [14].
attenuation map (or the coefficients of some other basis for theBecause of the ill-posedness of the reconstruction problem,
attenuation distribution such as B-splines [10]). The line integralpenalty term is usually added to the likelihood to encourage
between thenth source and thiah detector location through the piecewise smoothness in the reconstructed image, resulting in
attenuating object is approximated by the following sum:  the following objective function:

L O(u,Y) = L(p,Y) — BR(p). 3
[Arnu]i _ ZGZLNJ (N? ) (N? ) [ (N) ( )

=t Most roughness penaltieB(;:) can be expressed in the fol-

whereA™ = {a7} } isaN x p matrix with nonnegative elements'OWing general form:

and thez;’’s represent line-lengths or normalized strip-intersec- K
tion areas. Thu_s, by Beer’s law the sur_vwal prc_)bab_lhty fora R(p) = Z?/)k([cu]k) 4)
photon transmitted from the:th source in the direction of the Pt
th detector is (approximatelykp(—[A™ u];).
We assume th&;s have independent Poisson distributions where they,.s are potential functions acting as a norm on the
“soft constraints”Cu ~ 0 and K is the number of such con-

Y; ~ Poisson{y; (1)} straints. The functiong;, we consider here are convex, sym-
metric, nonnegative and differentiable [3]. Our goal is to pro-

where the means are given by duce a penalized-likelihood estimate

M 7 .
. = argmax &(p, Y). (5)
i) = | > bimexp(—[A™ )| +7i. 1) =0
m=1
The r;s are nonnegative constants that one can include to ac- I1l. ALGORITHM

count for the mean contributions of scattagom background,
and emission crosstalk [11].

The summation ovei in (1) allows for arbitrary overlap of
the beams transmitted from each source. Nonoverlapping bedl
would correspond to the assumption that;jf, # 0, thenb;;, =
0 forall &k # m, i.e.,b;,biu = 0forall k& # m.

Under the above statistical model, given a particular measu
ment realizatio¥” = [y1,...,yn]’, we can write the log-like-
lihood for i in the following convenient form:

L(Na Y) = Z hi <Z Uim(ﬂ)) ) hz(t) = y;logt — ¢,

m=1

We focus on the unregularized maximum-likelihood
problem; the regularized approach easily follows from [3].
ince maximizing the log-likelihood directly is difficult to
0, we apply the principle of optimization transfer [6], [15]
and define a “surrogate function®(yu;u™) that is easier
Fg_maximize. Since this surrogate function depends on the
previous estimatg™ at thenth iteration, the algorithm consists
of repeatedly maximizing the surrogate function, i.e.,

ptt =arg max Qys; u"). (6)

. Note that the maximization is constrained to enforce the non-
Wi (1) = i exp(—[A" p];) +7i /M ) negativity constraint. The key algorithm design requirement is

] . ] ] _ to choose&? functions that satisfy the following conditions:
ignoring constants independent pf Since the form of this

log-likelihood is sufficiently different from the usual models QUi ™) = L(p™Y), V" >0 @)
aqQ " oL
F 1) = 5, W , Vi=1,...,p (8)
2Normalized by strip width. Hj p=pr Hj p=p
30ne could, for example, estimate the scatter contribution to théy the Q(uy ™) < L(p,Y), VYu>0. 9)

triple energy window method. Since scatter is a spatially smooth function, one

can safely smooth such scatter estimatefirly heavily, so generally the vari- . . . .
ability in the #;s will be much smaller than that of thés. Thus we treat the 1N€S€ conditions ensure that the proposed iteration monotoni-

;s as constants, hencen the notatipn cally increases the likelihood.
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Initialize: i = FBP{log((E
for each iterationn = 1,.. .,
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TABLE |
ALGORITHM OUTLINE

Lim)/ (i — i)}, and lim = Eé;l apy, i=1,...,N
mter
Uim =  bim exp(—[Af)) + ri/M
M
G o= Y bimexp(~[AA))+ri
m=1
A i T
b?m = u::nb"m zm_ E:Mz

Compute ¢;y, according to (30)

. Yi _ n o —lim .
Gim = Gim = (b?me"i"m ey 1> bl e”tm, fore=1,...,N
forj=1,...,p
. M N
Qi = Z Z‘i_ma:?q'zm
. m=1 1—1 Y
d; = Zzuzm m C,m
m=1 i=1
g =
i o= |a Qj — B4, eni¥r((CAlk)
#) - 7 S R
dj + 8 i bk ((C)
Gim = Gim — Al cim (B — p39)
end
fim 1=l + Em—Iim  fori=1,.., N
Cim,
end
A difficulty in maximizing L is the sum overr within the where
logarithm in (2). To move the summation outside of the loga-
rithm, we first adapt De Pierro’s multiplicative convexity trick _n
. n D Y
[16]. Becausér; is concave bi = Tbinl
m
M M . A y}" 7
r . noo=
m=1 =1 Yi im
A -l
g7nrn(l) = ( 7rn + 77771) (b?rn 77771) .
2 z o, () qy
- U i
The surrogate functio®; remains too difficult to maximize di-
whereu?, £ u;, (4), andgr £ 5:(um) = °M_ up, . This  rectly because the argument of edghstill depends onu;yn,
inequa“ty leads to our first surrogate function B which has a Complicated exponential form. However, it fol-
lows easily from the results in [2] and [3] that the following
N u? paraboloidal function is a valid surrogate @Qf :
2303 oy, (M) g
=1 m=1 * Z m
= Z Z f:':g?m [A™ uli) (13) Z Z f;" (A (14
=1 m=1 =1 m=1 4
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where

n A n -n n

qirn(l) Gim (lzrn) + Gim (lzrn)

(l l?rn) - ; Cim (l l?rn) (15)

and

oy o d o,

girn(l) - dlgzrn(l)

o d?

gznrn (l) = ﬁgznrn (l)

zrn - Anl n] _ZA?}N;L

To ensure (9), we must choose the curvatyi€s, } appropri-

ately [2], [3]. As discussed in [3], for the fastest convergence
rate, we would like to choose the curvatures as small as pos-

sible, subject to the constraint that the surrogate funagpn
lies below the functiong, ; see Appendix A for the expres-
sion for the optimum curvature,,. We can also separafg, to
obtain another surrogate functigry, to which we could apply
the ordered subsets idea ([17], p. 107).

To obtain a monotonic algorithm that converges relatively

quickly, we apply coordinate ascent to the surroggtedefined

in (14), i.e., we sequentially update one pixel at a time while
holding all other pixels fixed. The derivative of the likelihood

surrogate parabola @t; is

Qi) 2 @Q%u, I
Sy 3 Sy [t (05) = i (B = )
imim=1 Y

(16)

wherel;,,, 2 [A™}i]; and

g7nrn(l) <¢ - 1) b?rne_l'

b2 et 7

m

The curvature of the parabof@; is

A O?
d} = Q5 (s p")
J aNJQ

=200 () (17)
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Fig. 1. Digital phantom used in our simulations and the ROI used for
collimation angle optimization.

Sources
. o .0 @

Detectors

Fig. 2. Scaled illustration of the system setup; the two fan-beams on the
left have collimation angle 2% the two fan-beams on the right side have
collimation angle 5.6.

Because of our construction based on surrogate functions that
satisfy (9), this update is guaranteed to monotonically increase
the value of®. One iteration is finished when all pixels are up-
dated via (18) in a sequential order. We update the paraboloidal
surrogate function after one full sweep of coordinate ascent
(CA) through all pixels, although one could also perform more
than one CA sweep per surrogate. An outline of this algorithm
is given in Table I, where/;, denotes the potential function
used in the penalty acting as a norm on the “soft constraints”
Cu =~ 0, K is the number of such constraints, afxg denotes

Extension to the penalized likelihood case is straightforwattie surrogate function used fgy,; see [3] for details.
following the methods in [2] and [3], so we omit the details and

only comment on notations;(1;) denotes the penalty surro-
gate parabola for;, andp; denotes its curvature. The maxi-

mization step of the coordinate ascent for pixéd

pnew

Hy = arginax Q([ﬂlv s 7/lj*17 His /:Lj-l—lv s 7ﬂp]7un)

#; 20
Q7 (i) — BR; (1)

— BR () = | i 18
e J(NJ) Hy + d?“r/}ﬁj (18)

IV. SIMULATION RESULTS

We compared the proposed reconstruction algorithm with
the “conventional” reconstruction algorithms (statistical and
FBP) that treat the transmission measurements simply as ideal
normalized parallel “strip-integrals.” The system geometry
corresponded fairly closely to the Siemens Profile system
(Hoffman Estates, IL) [18]. The sources for the simulated
system consisted of a multiple line source array with 14
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Fig. 3. Distribution of blank counts (a) collimation angle 2 ) collimation angle 5.8.
FBP Parallel algorithm Proposed algorithm
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Fig. 4. New sources; collimation angle: 2;&85 000 counts; top row: resolution 4.7 pixels; bottom row, resolution 6.8 pixels.

sources, unequally spaced, located on a line parallel to the dixels of size 3.56x 3.56 mn¥. The sinogram size was 128
tector and 110 cm away from the detector planéhe detector x 60 with detector bins of width 4.8 mm (i.e., the simulated
plane was located 22 cm away from the center of rotation. WWletector response was rectangular with width 4.8 mm). We
simulated a range of source collimation angles, from {wdth  performed the simulation for two levels of transmitted counts,
almost no overlap in the transmission beams) tG,6afd dis- one corresponding to a system whose center rods have just
regarded detector collimation. The image considtztlx 128 been replaced (the new source case), and the other with sources
that have all decayed by one half-life (the old source case).
4In addition to transaxial overlap of transmission source radiation, there @ 1.6°, we simulated 321 000 transmitted counts for the new

some designs for transmission sources in which the overlap is primarily in t8g ,rce case (160 000 counts for the old source case) and 263
axial direction. This algorithm can be easily modified to suit such designs. Hog— '

ever, storage and computational issues might make this algorithm prohibitivet$0 ba_Ckground counts (on average). As-the source cglllmanon
expensive to perform in reality. angle increases, the number of transmitted counts increases,
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FBP Parallel algorithm Proposed algorithm

DOPD

Fig. 5. New sources; collimation angle: 3;®94 000 counts; top row: resolution 4.7 pixels; bottom row, resolution 6.8 pixels. A resolution of 4.7 pixels was not
achievable with FBP in this case.

FBP Parallel algorithm Proposed algorithm

Fig. 6. Old sources; collimation angle: 2;6392 000 counts; top row: resolution 4.7 pixels; bottom row, resolution 6.8 pixels.

naturally, but the number of background counts remains thew source case (261 000 counts for the old source case); and
same; at 2.8 there are 523000 transmitted counts for that 6.6, there are 1396000 transmitted counts for the new
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FBP Parallel algorithm Proposed algorithm

Fig. 7. Old sources; collimation angle: 3;6¢097 000 counts; top row: resolution 4.7 pixels; bottom row, resolution 6.8 pixels. A resolution of 4.7 pixels was not
achievable with FBP in this case.

source case. For simplicity, we used a space-invariant quadrati define the resolution gf to be

penalty over first-order neighbors throughout our simulations.

The phantom used in our simulations, the ROI used for the arg min Z Gty — i |2 (20)
evaluation of variance in Section V (outlined by solid lines), =

and the large region used for the evaluation of spatial resolution

(outlined by dashed lines) are shown in Fig. 1. Fig. 2 illustratgghere,, represents a Gaussian smoothing filter with FWHM
the system setup. The radial distribution of blank counts (at agyand theR is a large region encompassing both the right lung
projection angle) is shown in Fig. 3. and our ROI as illustrated in Fig. 1.

Figs. 4 and 5 show reconstructions of noisy data usingwe observe from Figs. 4—7 that the proposed algorithm con-
FBP, the parallel algorithpm and the proposed algorithm, withsjstently produces less noisy reconstructions than both the par-
new sources. Fig. 4 shows reconstructions with? Z6urce gie| algorithm and FBP (this conclusion from anecdotal evi-
collimation and Fig. 5 shows reconstructions with“3s@urce gence will be confirmed in Section V). The noise reduction is
collimation. Figs. 6 and 7 show the same reconstructions Wigapecially significant when the collimation angle is large (i.e.,
old sources. Since FBP and statistical algorithms have differg)go) and the desired spatial resolution is high (i.e., 4.7 pixels).
methods for controlling the resolution/variance tradeoff, wg sych cases, FBP simply cannot produce a reconstructed image
must display images with similar resolutions (or similapf the desired resolution even with an unapodized ramp filter.
variances) to have a meaningful comparison between differefjhce the parallel algorithm is based on an incorrect system
reconstruction algorithms. We choge so that the spatial ang statistical model, one expects artifacts due to model mis-
resolution of the images in Figs. 4—7 is 4.7 pixels on the tqRatch. The absence of apparent artifacts in Figs. 4—7 is due to
row and 6.8 pixels on the bottom row. We use the followingagy|arization and noise. Fig. 8 shows the reconstructed images
simple method to determine the resolution of a particulffom noiseless data (£6&ollimation angle) using the parallel
(noiseless) reconstruction. Given the ideal imagf&® and the gpq proposed algorithms with almost no regularizatign=¢

reconstructed imagg using ideal data 2-19). The reconstructed image from noiseless data using the
parallel algorithm shows severe artifacts resulting from model
ji = argmax O (1, 7; (™)) (19) mismatch, which are absent in the reconstructed image from

n>0

noiseless data using the proposed algorithm [Fig. 8(c)].
o _ o As the collimation angle increases, the artifacts generated by
SWe refer to the penalized-likelihood reconstruction assuming ideal normaj- llel al ith Inf h isel
ized parallel “strip-integrals” (and ignoring beam overlap) as the parallel algh2® Parallel algorithm worsen. In fact, even the noiseless recon-
rithm. struction has a spatial resolution of about 5.6 pixels when the
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Fig. 8. Reconstruction using the parallel and proposed algorithms with almost no regularization; collimation &ngle(B)éarallel algorithm (c) (d) Proposed
algorithm. The profile displayed in (b) and (d) is of vertical column number 100, through the right lung.

collimation angle is 4.8 [Fig. 8(a)]¢ and at 6.6, the noise- mission beams, the convergence rate of the proposed algorithm
less reconstruction has a spatial resolution of 7.7 pixels. Thgsalso slower than the parallel algorithm; as the overlap be-
for system setups with significantly overlapping transmissidaween transmission beams increases, i.e., the collimation angle
beams, the parallel algorithm simply cannot produce a high-regets larger, the curvatures,,, as given in (30) at the bottom
olution reconstruction, no matter how many counts one collects. the page, get larger, hence, the convergence rate becomes
The proposed algorithm is more time-consuming and usegen slower. In fact, if one goes from a collimation angle of
more memory than conventional statistical algorithms. For olir6® to 5.6°, the average curvature of the surrogate parabolas
simulations, we used 14 system matrices (one for each souriceyeases by a factor of three. With regard to the number of iter-
with appropriate collimation angles. The system matrices witttions necessary for convergence, i.e., the smallestch that
collimation angle 2.6 occupy 20 MBytes of disk space, and theb (1) — ®(1°) > 0.999[®(p*) — ®(u°)], where®(1*) is the
system matrices with collimation anglé @ccupy 50 MBytes of largest objective value obtained in 40 iterations, the parallel al-
disk space, compared to 8 MBytes occupied a single system rgarithm required 22 iterations and the proposed algorithm re-
trix used by the parallel algorithm. It also takes longer to projequired 30 iterations for collimation angle 2.&nd a desired
or backproject an image in the proposed algorithm than the papatial resolution of 4.7 pixels. Hence, the total amount time
allel algorithm; in fact, for collimation angle Z6each itera- required by the proposed algorithm would be 3.3 times that of
tion of the proposed algorithm takes about 1.9 s, comparedth@ parallel algorithm for collimation angle 2.@nd a desired
about 0.8 s needed for the parallel algorithm, on a Sun Ultrapatial resolution of 4.7 pixels. On a typical three-dimensional
workstation. Furthermore, because of the overlap between tragiata set, with 40 slices and running 20 iterations for each slice,
it would take approximately 25 min to perform a complete re-

6The noiseless reconstruction [Fig. 8(c)] using the proposed algorithm has a . .
spatial resolution of 1.4 pixels. construction on a Sun Ultra2 workstation.
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V. COLLIMATION ANGLE OPTIMIZATION

We performed a preliminary study of the optimal source
collimation angle given that the system configuration, source
strength, and background counts remain constant. As source
collimators open up, i.e., the collimation angle increases,
there would be more counts, but there would also be more
overlap of transmission beams. Hence, initially, when the
transmission beams widen from no overlap to some overlap,
we expect better resolution/variance tradeoffs; however, as the
transmission beams open up more and more, we expect less and
less improvements, and eventually worse resolution/variance
tradeoff since eventually each detected photon hitting will yield

o [<)
o o
3 o
T v

normalized standard deviation
o
)
S

0.02}
very little information about where it originated. We want to
0 , . , , , , obtain the collimation angle that minimizes a region of interest
4 5 6 7 8 9 10 (ROI) variance for a fixed spatial resolution. We investigated

resolution (pixels) the proposed algorithm, the parallel algorithm (i.e., the conven-

Fig. 10. High-count case: ROI resolution/variance curves for the paraliéPnal statistical algorithm), and FBP (derived assuming ideal

algorithm. parallel “line-integrals”). For the statistical algorithms, instead
018 of performing numerical simulations, we used the approach
' o FBP outlined in [19] to compute the variance of the ROI. For FBP,
+ Parallel algorithm since numerical simulations are relatively inexpensive, we
* Proposed algorithm oL .
0.16F performed 2000 realizations for each data point.

We will now derive an algorithm for approximately calcu-
lating the variance of the ROI of the proposed estimator. The ap-
proximate covariance for an implicitly defined biased estimator
is [19]

o
-
Y

Cov(f1) = [V @(j1, )] ' V& (i2, ) Cov{Y}

normalized standard deviation
o
o

0.1 x V1@, )] [V (i, )] (21)
0.08h wherey: is defined in (19), théj, k)th element of the operator
V20is 8? /9j1,;0/k, and the(j, k)th element of the operat&f'*
is 9% /01,0y, We first deriveV2°®(y, V) and VL& (1, Y),
0.06, > 3 4 5 6 > Which are needed for computing the variance of a ROI for the
collimation angle proposed algorithm. Defining
Fig. 11. High-count case: ROI variances at desired spatial resolution 4.7 _ m
pixels. Pim(ﬂ) é birne Z] 19H (22)
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I ’ I — Parallel aléorithm
Z pzrn + T3 (23) 7t —— Proposed algorithm H
m=1
then o
Opim (1) o1 H
im i ©
= —ajjpim(1) (24) ¢
Since = P!
o |
© R —
£ i
Z yilog (1) — Gi() 25 g :
|
we have 9 |
. 25b T -
IL(p,Y) Z vi 9ui(p)  Oui(p) = . . . . .
- — - 4 5 6 7 8 9 10
I —1 i) Oy I desired resolution
N
. Fig. 13. High count case: A comparison of optimal collimation angles, at
- Z <1 - ) Z awp”" “ (26) different resolutions for the proposed and parallel algorithms.
=1 m=1
and, applying the chain rule, we have, after simplification 011 y y I Ty
0.1} \ —— Proposed algorithm H
VRO, Y) = —C(p)' diag{1/7:(11)} @7
M 0.09
—VOe(uY) = 3 (A" 008}
m=1

=)

o

<
r

diag{ (7 (1) — 7)1 — i /7 () YA
+ C(p) diag {y:/5; (1)} C(1) + BR(1)
(28)

o

o

5}
T

o
o
K

whereR(;) = V2R(1).C(w) = {c;;()}, andey;(n) =
> et GPim (1), i€, Clp) = 3, diag{pim (1) }A™.
(For a detailed derivation of the penalty part, see [19].) W
use the following recipe to compute the approximate estimat
(using the proposed algorithm) variance of a ROI: 0.01;

1) compute i by applying the proposed algorithm to resolution (pixels)

noise-free d_atévyi(u““e)}; . M . Fig. 14. High-count case: A comparison of minimum achievable normalized

2) forward projecti to computey; (fi) = > _,,_; Pim (1) +  standard deviation, at different resolutions for the proposed and parallel
i algorithms.

3) use the conjugate gradient method [20] to solveyftt',
the system of equations-V2°®(ji, 7)]ufOl = ROL
wherect©l is a vector with entries /nror for pixels in-
side the region and zeros for pixels outsidgy; denotes
the number of pixels in the ROI,;

4) Compute
(uON)'VH (1, ) Cov{Y H[VH (1, )] ulO!
by first forward projecting «%°T to compute
v = diag{1/7; (1) }C(j)«R°L, and then summing

minimum achievable std (normalized)
(=
(=)
(2]

o

o

)
T

0.02f

For simplicity, we consider a first order quadratic penalty for
the results below. We analyzed the resolution/variance tradeoffs
for the ROl illustrated in Fig. 1: it is a % 9 region that goes
across the boundary of the soft tissue, the lung, and the heart. We
performed the analysis at two levels of transmitted counts, one
with new sources (the high count case) and the other with old
sources (the low count case), i.e., the same as was done for Sec-
tion IV. The background count level for both cases remains the
same throughout. We only discuss the high count case; the low

Var (RO Z w2y (1) (29) count case gives similar results. Figs. 9 and 10 show the resolu-
tion/variance curves of the proposed algorithm and the parallel
algorithm, respectively, for various collimation angles ranging

For the parallel algorithm, the computation of the approXrom 1.6° to 6.6°. Based on these two figures, we calculated
imate variance has been outlined in [19], except that we ugesing cubic spline interpolation when needed) the variances of
Cov(Y) = diag{#m:(1*¥)} in [19, (23)], wherey; is based the ROI versus collimation angle at two fixed resolutions: 4.7
on the overlapping beam model (23) rather than the paralfgkels and 6.8 pixels, as shown in Figs. 11 and 12. The pro-
strip-integral model of [19]. posed algorithm outperforms the parallel algorithm which in
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[ o (0) = gn (17 s (Y (I
n _2917’71( ) gZ'rn ( an) —g gZ'rn ( Z'rn) ( an) , l;’]’,,?l > 0
Cim = L (l?nl) + (30)
[__g?rn(o)]+ ? lznrn = 0
n b -1 . i
(20/050%) {1 = ) =yt Pt g et (22 )], >0
_ L . Jim Jim + (31)
YiTim n
- b—] | =t
( “m + 7irn) +

turn outperforms FBP at both resolutions, and at all collimanismatch needs investigation, since in practical clinical situ-
tion angles. The performance gain of the proposed algorithations, thea;}s andb;,,,s are never known exactly.) However,
over the parallel algorithm is more impressive at larger colldetector collimation currently limits usable source collimation
mation angles, e.g., more than 2.8Jsing the proposed algo- angles ta> 2.6°, so alternatives to widening source collimation
rithm, it seems that the optimal collimation angle for a resolare needed to improve the counting statistics on this system.

tion of 4.7 pixels is around® and>>7° for a resolution of 6.8

A possible alternative to the coordinate ascent algorithm pre-

pixels, both much larger than typical collimation angles founsented in this paper is the ordered subsets algorithm. Although
on SPECT cameras. However, if the suboptimal parallel algthe ordered subsets algorithm is not guaranteed to converge to a
rithm were used for reconstruction, then the optimal collimaecal maximum of the objective function, it often produces rea-
tion angle would be 2%for a resolution of 4.7 pixels, and 4.1 sonable images quickly and is more parallelizable than CA, so
for a resolution of 6.8 pixels. Even though the optimal collit may be more practical for clinical use.

mation angle for the parallel algorithm is closer to what is typ-

ically found on SPECT cameras than the proposed algorithm,
the proposed algorithm outperforms the parallel algorithm at all
collimation angles. Furthermore, for collimation angles large

than 3.5, a resolution requirement of 4.7 pixels would probt—n
ably mean very high variances in the parallel reconstructiofim
Fig. 13 shows the optimal collimation angle for the propos
and parallel algorithms at different desired spatial resolutions.
Naturally, as the desired spatial resolution improves, the op-
timal collimation angle decreases. Fig. 14 shows the minimum

APPENDIX

For completeness, we include the following formula for
e optimum curvature, i.ec, = min{c > 0 : g, (1) <
(D)vl > 0} derived in [3]; see (30) and (31) at the top of the
e%age) where

A -
—n £9n U n
Yim = birn,e o+ Tim+

achievable normalized standard deviation for the the propogginer curvature choices that lead to even faster convergence (but
and parallel algorithms at different desired spatial resolutiord® not guarantee monotonicity) can be found in [3].

As expected, the proposed algorithm consistently outperforms
the parallel algorithm, resulting in reduction in the standard de-
viation by as much as 40%.
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VI. DIScusSsION ANDCONCLUSION

We have presented a new algorithm for statistical image re-
construction of attenuation maps that explicitly accounts for
overlapping beams in transmission scans; an example of suc
a system can be found in [21]The algorithm is guaranteed to 2l
monotonically increase the objective function at each iteration,
and consistently achieves better variance/resolution tradeoffs
than the two “conventional” image reconstruction algorithms [3I
tested in this paper, both statistical (the parallel algorithm) and;,,
nonstatistical (FBP).

From our preliminary study on the optimal collimation angle, 5]
we find that it is desirable to open up the source collimators and
allow beam overlap—provided the overlap is modeled appro-
priately in the reconstruction algorithm. (This conclusion ap- [6]
plies to our ideal simulation settings where system geometry is
known perfectly. Robustness of the proposed algorithm to model7]

“The reconstruction algorithm in [21] ignores overlap of the beam footprints.
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