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Abstract— A novel method for denoising func-
tional MRI temporal signals is presented in this
note. The method is based on progressively en-
hancing the temporal signal by means of adaptive
anisotropic spatial averaging. This average is based
on a new metric here proposed for comparing tem-
poral signals corresponding to active fMRI regions.
Examples are presented both for simulated and
real two and three dimensional data. The software
implementing the proposed technique is publicly
available for the research community.
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I. INTRODUCTION

Functional Magnetic Resonance Imaging (fMRI) is
the most significant and revolutionary advance in MRI
in recent years, e.g., [1], [2], [3]. This technique uses
MRI to non-invasively map areas of increased neu-
ronal activity in the human brain without the use of
an exogenous contrast agent. The majority of fMRI
experiments are based on the blood oxygenation level
dependent (BOLD) contrast, which is derived from
the fact that deoxyhemoglobin is paramagnetic, and
changes in the local concentration of deoxyhemoglobin
within the brain lead to alterations in the magnetic
resonance signal. It is generally assumed that neu-
ronal activation induces an increase in regional blood
flow without a commensurate increase in the regional
oxygen consumption rate (CMRO2) in which case the
capillary and venous deoxyhemoglobin concentrations
should decrease, leading to an increase in T2* and T2.
This increase is reflected as an elevation of intensity
in T2*- and T2-weighted MR images.

Functional MRI has better spatial resolution than
other non-invasive techniques like EEG (electroen-
cephalography) or MEG (magneto encephalography).
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On the other hand, it has poorer time resolutions.
This restriction on time resolution and the low signal
to noise ratio (SNR) of fMRI images makes neces-
sary the use of well designed data acquisition proto-
cols. Two classes of protocols are popular, the pe-
riodic or block-design and the event-related one. In
the periodic paradigm the subject alternates between
periods of stimulation and rest, which usually have
the same time duration. In this case each pixel/voxel
of the fMRI data consists of a time series which can
be divided in epochs, an epoch being the period of
time (images) which corresponds to activity or rest.
Thus the data can be considered “periodic” where the
“period” is just the epoch duration. In the case of
event-related paradigms the subject realizes the ac-
tivity only during a short period of time, i.e., a trial,
and the trial can be repeated in a periodic or random
fashion. The work described here is tuned to block
design protocol on periodically repeated event related
protocols, though many of the concepts here intro-
duced can be extended to event-related experiments
as well.

Much work on analyzing, denoising, and clustering
active regions in fMRI volumes has been reported in
the literature. The problem consists on cleaning the
data and determining which voxels belong to activated
zones of the brain, see for example [4], [5], [6], [7], [8],
[9], [10], [11], [12], [13]. In this note we present a novel
technique based on anisotropic (selective) spatial av-
eraging of time series. The data enhancement and
estimation of active voxels is progressively improved.
The improvement is based on comparing, using a met-
ric introduced in this paper, the time series of unclas-
sified voxels with those of previously classified ones.
This technique will be detailed in the rest of this pa-
per. The software is publicly available for the research
community at http://www.ece.umn.edu/users/guille.

II. SELECTIVE AVERAGING OF TIME-SERIES

Different methods have been reported in the liter-
ature for noise removal in fMRI, e.g., [14], [15], [16],
[17]. We now discuss our approach.



A. Isotropic averaging

If multiple copies of the signal, all corrupted with
the same type of noise, are available, the simplest
way to denoise the signal is to average among its
repetitions.! There are different standard ways to do
this average. For instance, let us consider a standard
N x N grid where each cell (7, j) contains one instanti-
ation of the time signal z; ;(¢). One way to obtain an
averaged version Z; j(t) of the signal at the cell (3, j)
is to replace it with the signal obtained by averaging
the original signal with all its neighbors by
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where we have used a simple 3 x 3 neighborhood. The
obvious problem with this kind of filtering is that if
we have signals of different classes (e.g., active and
non-active voxels), the averaging process will merge
them, leading to an undesired result. The problem of
merging signals of different classes is well known and
sometimes it is called blurring in the literature. We
can improve the averaging process simply by multi-
plying each neighbor by a positive factor (weight> 0)
before averaging. Different selections on the weights
will lead to different smoothing results. Usually the
weights are selected to be constant and one way to
represent it is by a matrix or mask (in our case a
3 x 3 matrix) where each cell represents one weight.
We obtain in this way a weighted average, the entries
of the mask are just the weights assigned to each of
the neighbors of the cell (4, 7). When the weights are
selected to be constant, the average processing is an
isotropic average or stationary average, all the cells in
the grid are treated in the same way. This kind of av-
erage processing works when all the time series on the
neighborhood are of the same class or when there is
not much concern about the mixing of different kind of
signals. This is of course not the case of fMRI, where
we can have active and non-active pixels/voxels in the
same neighborhood.

B. Anisotropic averaging

When we want to make a selective averaging of the
signals we have to use specific weights for each cell of
the grid. That means that the weights are based on
some kind of measure (metric) concerning the specific
neighbor and the cell being averaged. In our case we
will call this measure a confidence measure, and

!Under simple conditions, averaging is actually the optimal
estimator of the original signal.
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In (2) the term w,; is determined by a confidence
measure involving the signal being averaged z;; and
its corresponding neighbor z, 4(¢). Note then that the
weights are position dependent, and the averaging is
anisotropic or non-stationary. We can represent the
confidence measure as a scalar function which takes as
inputs two time signals and returns their similarity:
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It is this confidence measure which will allow us to
distinguish between different kind of signals and be
able to perform a selective averaging, that is averaging
only the signals of the same class. The key problem
then becomes the design of the confidence measure.
In our case of fMRI signal processing, we have two
different signals to treat, concretely the activity sig-
nal and the rest one.? These signals are very noise
and the percentage of change between an activate sig-
nal and a non activated one is at most 10%. We have
then to distinguish two quite similar signals, both of
them very noisy, and to assign a measure of similarity.
It seems adequate then to use a probabilistic measure
between the signals and to use this probability mea-
sure as a confidence measure for our weighted average.
We proceed to describe this now.

C. The confidence measure

Different work, e.g., [14], [6] had suggested that
the activation information of the fMRI signal is con-
centrated in the low frequencies. In fact, Mitra et
al. [14] had demonstrated how the low frequencies
contain the information of both the activation pat-
tern and physiological noise. We considered the use
of the (time) Fourier spectrum of the data in order
to construct the similarity measure between the time
signals. This has two main advantages: First, the
Fourier spectrum is invariant under translation of the
signals, which makes our measure invariant to possible
time displacements of the activation pattern. Second,
we can consider only the low frequency information
rejecting the high frequencies which are mainly due
to noise. Due to the periodicity of the stimuli in the
paradigm, we can expect the signal corresponding to

2In this note we consider only one class including all active
pixels, though the activation pattern in the class can vary, see
below. The extension of the work here presented, to allow for
more than one class, is the subject of current research.



activity to be pseudo-periodic also. In fact our signal
is composed of periods of rest and activity or epochs
of approximately equal length (there is a repetition,
though the signal repeating does not have to be ex-
actly the same). If we look at the spectrum of such
a signal formed of n epochs we can observe that the
highest contribution in frequency corresponds to the
n-frequency of the Fourier decomposition, and to its
multiples. In the left side of Fig. 1 we can observe
the simulation of this type of behavior.

One way to construct a similarity measure between
our signals is to consider them as points in certain
space and then define a metric in this space, giving
the notion of distance between signals. The first step
is to define an adequate space. Consider a signal
z(t) composed of k epochs and denote by X (w) its
Fourier spectrum. We can remove the first value of
the Fourier spectrum which corresponds to the aver-
age value of z(t) and does not carry any frequency
information. Since we are interested only in the low
frequency information we can also simply cut off the
Fourier spectrum by discarding the high frequency in-
formation which is mainly noise as pointed out in [14].
We simply take the first 5k elements of the Fourier
spectrum, which assures that all the low frequencies
are taken into account. We denote as X (w) this trun-
cated Fourier spectrum of the signal. Since X (w) con-
tains the low frequency information of the signal it
seems appropriate to define our space as the one gen-
erated by this truncated Fourier spectrums, which is a
5k-dimensional space. We are actually not interested
in the whole space, as we are just interested in the
subspace corresponding to the spectrums of the acti-
vated voxels. One way to obtain this subspace is by
constructing its covariance matrix from a sample of
activated voxels. Our approach consists of detecting
some (clearly) activated voxels, simply by using a cor-
relation with a box-car function, and then use these
voxels to construct the covariance matrix. We can
fix the threshold value of the correlation in order to
detect only highly activated voxels making sure that
non activated voxels are not included in our initial
set. First of all we normalize our initial set using the
Euclidean norm in $°* and then subtract the average
vector of the normalized set to each normalized vector.
Denote by H the matrix whose columns are formed
by the normalized 0 mean cut spectrums of the ini-
tial set of activated voxels (we will denote this initial
set as ). Then the covariance matrix of the data is
simply HHT. This 5k x 5k symmetric matrix is then
diagonalized in order to obtain an orthonormal rep-

resentation of our space, say HH' = PTDP, where
P is formed by the eigenvectors of the decomposition
and D is a diagonal matrix whose elements are the
corresponding eigenvalues. We can think about the
eigenvalues as a measure of the information that each
eigenvector contribute in the description of the sub-
space formed by the initial set of points. The goal is
to select only those eigenvectors whose eigenvalues are
significant. The usual way to do this is by selecting the
minimum number of eigenvalues necessary to obtain a
certain percentage of the total information contained
by the whole set of eigenvalues, usually a 90% is used.
Once the eigenvalues are ordered in a descending or-
der we can obtain the most relevant eigenvalues by
selecting the minimum [ which obeys
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The eigenvectors associated with the selected eigen-
values are then a good low dimensional representa-
tion of the subspace we are interested in. Defining P
and D as the matrices of the selected eigenvectors (in
columns) and eigenvalues respectively, we can define
the Mahalanobis distance in our subspace by

ds(z,y) = (X (w) =Y (w))PD™'P" (X (w) — f’(w)()-)
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The distance of a point z(¢) (or the reconstruction
error) to the subspace of interest S can be calculated

(6)

Finally, we can define the similarity between two
voxels z(t) and y(t) as:

d(z,8) = | X[l — | PTX]l2.
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where Wp and W; are defined as
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and « is a parameter which controls the diffusivity of
the averaging process.

D. Proposed algorithm

The algorithm is an iterative process which uses the
metric (measure) calculation as a feedback process to
progressively improve the results. Before beginning
to iterate we have to find an initial threshold value



for the correlation coefficient making sure that the
initial set of activated voxels do not contain any false
positive. The iterative process can be resumed in the
following steps:
1. Compute the initial set {2 of activated voxels by
thresholding the correlation coefficient.
2. Using the current set of activated voxels, find the
metric, Wp and W7i.
3. For each voxel of the grid calculate their averaged
voxel using Eq. (2).
4. Update the initial grid substituting each voxel by
its averaged version and go to step 1.
This algorithm can be easily extended to 3D data
sets simply by modifying the 2D neighborhood of each
voxel by its 3D neighborhood.

ITI. RESULTS

We have evaluated our method both on simulated
and real fMRI data. First of all we present an exper-
iment on simulated activation data which was cor-
rupted with real baseline noise. We then test our
method on two sets obtained from a 1.5 T scan-
ner. The first data set serves as an example for the
2D smoothing algorithm while the second one was
smoothed using the full 3D Euclidean connectivity.
Activation maps were obtained before and after the
smoothing process showing the performance of the
proposed algorithm. The activation maps were con-
structed by thresholding the correlation coefficient be-
tween a box car shaped activation model and each
voxel of the image.

The first example shows the performance of the al-
gorithm on a 10 x 10 grid of simulated data which
was obtained by corrupting with real 1.5 T baseline
data a fictitious set of activations. In the right hand
of Fig. 1 we show the initial spatial configuration and
activation pattern used to simulate the activation on
the baseline. In Fig. 2 we present the detected activa-
tions before and after the regularization process. Note
that the holes in the filtered activations are preserved,
that is even if a non activated pixel is surrounded by
activated pixels it remains non active after the regu-
larization. Finally in Fig. 3 and Fig. 4 we plot the
time series corresponding to the activation pattern de-
tected and its immediate neighbors. Note that none
of the non activated pixels has been affected by the
activated ones during the regularization process.

Now we describe the experiments performed on the
real data. The first data set corresponds to an oblique
slice (FA = 550, FOV = 22 x 22cm?, slice thickness
5mm) through both the motor and the visual areas of

006

=1

0 100 200 300 400 500 (] 50 100

Mwwwm

08 Mottt
11 4
Wl ||
o Mt
Fig. 1. Left: from top to bottom simulated data using an

exponential function as stimuli (note that each stimuli
is different from the previous one), real baseline from
a healthy male (no stimulation), simulated data gen-
erated by adding the simulated stimuli and the base-
line and their corresponding Fourier spectrum (right).
Right: Activation pattern used in the grid simulations.
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Fig. 2.  Activation map obtained on the simulated grid
before (left) and after (right) the 2D smoothing process
(initial threshold=0.45, a = 0.5, 10 iterations).

a healthy male. T weighted echo planar images (EPI)
were acquired (TE = 60ms, TR = 300ms). During
the acquisition of the EPI images, the subject was
asked to perform right-handed rapid finger movement
when flashing LED goggles were on. In each epoch,
which lasted 19.2s, the LED goggles were turned on
for 5.4s. The epoch length is equal to 64 images and
a total of 31 epochs were acquired.

The second data set consists of three consecutive
slices (FOV = 22 x 22cm?, slice thickness 6mm)
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3. Time series corresponding to a 6 x 6 ROI centered
on the grid before regularization.
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4. Time series corresponding to a 6 X 6 ROI centered
on the grid after regularization.

Fig.

from the visual-motor cortex of a healthy female. 7%
weighted EPI images were acquired (T'E = 60ms,
TR = 800ms). During the acquisition, the subject
was asked to perform a finger opposition task during a
visual stimulation (on time/on time+-off time=10/40).
The epoch length is equal to 40 images and a total of
19 epochs were acquired.

Fig. 5. Activation map obtained on the male brain before
(left) and after (right) the 2D smoothing process (initial
threshold=0.5, oo = 0.5, 10 iterations).
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Fig. 6. Selected ROI of the activation map obtained on the
male brain before (left) and after (right) the smoothing
process.

In Fig. 5 we show the activation maps obtained
before (left) and after (right) the smoothing process
on the male subject. The regularization process leads
to a better detection of the activation clusters due
to the improvement of the signal to noise ratio. In
Fig. 6 we have selected a ROI (see Fig. 5 right)
containing one of the clusters which is detected after

the smoothing process, and then we have plotted each
of the temporal series before (left) and after (right) the
smoothing process. One can notice how the signal is
enhanced in the smoothed ROI, leading to a better
clustering.

Fig. 7. Activation map obtained on the female brain before
(left) and after (right) the 8D smoothing process (initial
threshold=0.5, o = 0.5, 10 iterations).
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Fig. 8. Selected ROI of the activation map obtained on the
female brain before (left) and after (right) the smooth-
ing process.
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In Fig. 7 we show the activation maps obtained be-
fore (left) and after (right) the 3D smoothing process
on the female subject. As in the previous case the reg-
ularization process leads to a better detection of the
activation clusters. In Fig. 8 we have selected a ROI
(see Fig. 7 right) containing one of the clusters which
is detected after the smoothing process, and then we
have plot each of the temporal series before (left) and
after (right) the smoothing process. Once again, the
signal is enhanced, leading to a better clustering.

IV. CONCLUSIONS

A novel method for denoising functional MRI tem-
poral signals was presented in this paper. The method
is based on progressively enhancing the temporal sig-
nal by means of an adaptive anisotropic spatial aver-
aging. This average is based on a new metric defined
for time series corresponding to active fMRI regions.
Examples were presented both for simulated and real
two and three dimensional data.



We are currently investigating the use of structural
MRI to help in the averaging process. The basic
idea is to use connectivity information computed with
structural MRI, [18], to further specify the averaging
neighborhood. We are also currently investigating the
metric and concepts here introduced for the enhance-
ment of signals obtained in event-related fMRI. One
of the directions is to use the concept of progressive
enhancement, which permits to start with a very small
set of confident pixels/voxels. Results on these direc-
tions will be reported elsewhere.
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