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Automated Graph-Based Analysis and Correction of
Cortical Volume Topology

David W. Shattuck* and Richard M. Leahy

Abstract—The human cerebral cortex is topologically equiva- of cortical surface variation are possible using surface warping
lent to a sheet and can be considered topologically spherical if itis methods [3], [5]-[9]. Two-dimensional brain surface topology
closed at the brain stem. Low-level segmentation of magnetic res- is frequently assumed for cortical flattening approaches, such

onance (MR) imagery typically produces cerebral volumes whose . . . .
tessellations are not topologically spherical. We present a novel al- as those described in [1], [2], [4], and [5]. The cortical mapping

gorithm that analyzes and constrains the topology of a volumetric Methods presented by Druey al. and Fischiet al. require 2-D
object. Graphs are formed that represent the connectivity of voxel surfaces for flattening; such surfaces can be obtained by cutting
segments in the foreground and background of the image. These g spherical surface [2], [5]. Topologically correct brain surfaces
graphs are analyzed and minimal corrections to the volume are o, a150 be used to constrain the location of neural current

made prior to tessellation. We apply the algorithm to a simple test to th bral cort h vina i bl .
object and to cerebral white matter masks generated by a low-level SOUICES L0 Ihe Cerebral Conex when Solving INVErse probiems in

tissue identification sequence. We tessellate the resulting objectsmagnetoencephalography (MEG) and electroencephalography
using the marching cubes algorithm and verify their topology by  (EEG) [1], [10]. Applications such as these motivate the devel-
computing their Euler characteristics. A key benefit of the algo- opment of automated methods for generating cerebral cortex
rithm is that it localizes the change to a volume to the specific areas g, f5ce representations that have the appropriate topology.
of its topological defects. h ) L - -
Magnetic resonance (MR) imaging is the typical modality
~ Index Terms—Magnetic resonance imaging, topological correc- from which neuroanatomical surfaces are obtained because of
tion, topology, segmentation. its ability to provide high resolution, high contrast images of the
soft tissues of the human brain. The task of identifying struc-
|. INTRODUCTION tures in MR imagery is typically approached from one of a

. . . ._few directions. Registration techniques can be used to deform
G EOMET.RIC m_formatlon ‘F."bOUt. the cere_:bra_\l cort_ex IS1M Jabeled atlas to a subject to identify neuroanatomy [11]-[13].
portant in various neuroimaging applications includin

. . . X . . 'Yhese methods typically perform well in subcortical structures
intersubject registration and comparison, image reconstructi

and visualization techniques. The field of brain mapping hgﬂbh as the basal ganglia but have difficulty matching the cortex

f q h attenti ducing flat and other wo-di Fie to the variability found among different subjects. For this
ocused much attention on producing flat and otner two-dimeps 554 - collinget al.incorporated a low-level tissue classifica-

sional (2-D) representations of the ce_rebra_ll cortu_:al surfaceﬂgn scheme with a deformable atlas in order to label regions of
order to produce coordinate systems in which brain geometrl[ﬁa cortex [13]

and other properties may be compared [1}-[9]. These metho %nothertechnique for identifying anatomical structures is the

inherently rely on an important topological property of th%se of deformable surface methods, several of which have been

cerebral cortex—that it is a single sheet of connected tissé\?rveyed by Mclnerney and Terzopoulous [14]. These methods

enclosing the telencephalon._By closing the cortical surfaceceé% be implemented such that the topology of the final surface
:Ee :)ralr:stem ;/ve carr: des%:petthe Icerebral %ortex as _Fhavmgtches that of an initial template. However, this can be compu-
€ lopology ot a sphere. 1his topology provides us wi qgtionally intensive compared to low-level processing, and the

important ability—it guarantees the exisience of Ir“’ert'blaeforming surface must be prevented from intersecting itself.

one-to-one maps between cortical surfaces of different SUbjeﬁEo these methods do not always deform well into cortical
and each other, or between these surfaces and a geometric p, s !

i h as th h With h int biect st uctures due to other attractors in the image. Accurate seg-
ltive such as the sphere. YWith such maps, Intersubject SiUEantation using deformable surfaces often depends upon a rea-

sonably accurate initialization [15].
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Fig. 1. Topological errors in a cortical surface. Two close-up views of the grey matter/white matter cerebral boundary surface generated fevei issuel
classification of an MR image. Several topological handles are clearly visible, including bridges between the cerebral hemispheres.

defects in the form of small handles or tunnels on the surfabg a number of 2< 2 bridges. The structure will not have spher-
or even false connections between the hemispheres, as seaaaitopology, but will be invariant under the median filter.

Fig. 1. In this paper, we present a method designed to take a binary
The method presented by Tetal.provides for identification volumetric object with an arbitrary topology and automatically
of potential topological defects which can then be correctedlit its membership such that a marching cubes [21] tessellation
by hand; verification of the Euler characteristic on the volumef the edited object will be homeomorphic to a sphere. The

ensures that the corrected volume will have the appropriateethod identifies topological problems in the volume prior to
topology [16]. The cortical surface-based analysis methotissellation and makes minimal changes in the volume. This
presented by Dale, Fischl, and Sereno [4], [5] addressed thisthod is suitable for use in cortical surface identification
problem using hand editing for larger topological defectsecause of its ability to find and then break or fill the small
while ignoring smaller ones that do not impact their flatteningppological defects that occur during classification. Most
methods. Identification of the topological errors was performesignificantly, the method identifies specific locations within the
by viewing an inflating cortical surface, and correction wagolume where topological defects form and can be corrected
achieved by editing the surface or the data. Interactive corregth changes to the membership set that are local to the area
tion of surface meshes, or the volumes from which they aof the proposed defect. In most cases, these changes are on the
generated, can be difficult and time consuming, particularly forder of one or two voxels. In this way, the algorithm respects
errors involving only a few voxels. More recently, Fisatlal. the geometry of the cerebral cortex when making its changes to
presented a method to perform automated topological surgémg volume. We demonstrate the method on a simple test object
on the initial cortical surface [17]. This method inflates thend on several white matter volumes generated from MR brain
cortex to a sphere and identifies overlapping triangles in timages.

spherical surface. These areas occur due to topological handles,

and are retessellated to correct the topological defects. II. METHOD

The cortical identification method presented by &al. also .
I?ur method analyzes and corrects the topology of volumetric

addresses the issue of automatically correcting surface topol%g? biects. W the obiect input ¢ laorithm i
[18], [19]. Their method makes use of fuzzy classification t ary objects. Ye assume the object input 1o our aigornthm 1S
ingle, wholly connected foreground object with no internal

produce an initial isocontour representing the boundary betwedi! . . : .
white matter and grey matter. If this surface is not homeoma avities. In this context, we mean conne(_:ted in the §|x-ne|ghbor
phic to a sphere the fuzzy membership set is median-filter&g">€" where two voxels are nelghbors i an_d only if the_y_share
spatially and the isocontour surface is recomputed. This pro common fﬁce- B_ecause the abject hgs no internal cavities, the
dure is iterated until a surface with the appropriate topology gck_g_round Is a single connected region. For background con-
found. The topologically correct isocontour surface is then us%&cm\."ty' we use.the D18 rule, where any two voxels are neigh-
as an initial condition for an active contour model that finds thg>"> if and only .|f_they share a common face or edge. lllustra-
medial grey matter cortical surface using a gradient vector floVPns of connectivity rules are shown in Fig. 2.

method [20]. While this approach has been shown to produce . ) .
topologically spherical surfaces, the use of median filtering dir Graph Based Topological Analysis of Volumetric Data

the membership set affects the entire volume and can smootihe topological genus of a surface represents the number of
certain aspects of the cortex. A second drawback to this amnintersecting closed curves that can be inscribed on the sur-
proach is that the use of @33 x 3 median filter does not guar- face without separating the set of surface points into disjoint
antee a topologically spherical result. An example of this issets. In more common terminology, the genus represents the
configuration of voxels with two-voxel-thick sheets connectedumber of holes in the object. For simple polyhedra, which are



SHATTUCK AND LEAHY: AUTOMATED GRAPH-BASED ANALYSIS AND CORRECTION OF CORTICAL VOLUME TOPOLOGY 1169

D& D18 D26

Fig. 2. Examples of connectivity rules. A (shaded) voxel and its D6, D18, and D26 neighbors.

homeomorphic to a sphere, the genus is zero. The genus of amhe strength of the connection between two nodes in the ob-
object can be determined from its Euler characteristic, whigct is represented in the graph by a weight associated with the
can be computed from a tessellation of the object accordingedge. In this paper, we use a weight function that measures the

the Euler—Poincaré formula number of voxels in a connection between nodes in adjacent
slices. In this way, nodes that are very strongly connected will
x=V-E+F=2-2 (1) have large weights, while nodes that touch at only a few voxels

will have small weights. A simple example of a foreground con-
nectivity graph, computed for a toroidal object, is shown in
Fig. 3. The cycle in this graph corresponds to the handle (or
hole) in the object.
We base our connectivity rules for the connections in the fore-
p topological genus [22] ground graph on the D6 rulg, with a slight quification that
For an obiect with the tooolo ’ of a sphere— 2. The genus makes our method appropriate for the marching cubes algo-
J pology phese= 2. 9 rithm. We start by taking the intersection of two adjacent slices

may also be computed as a summation of the object's local Euéﬁ"fd consider each D6 connected component within this inter-

char_actgristics [16]' Howeyer, these .c_omputa'Fions provide B8ction to be a single connection between nodes. However, as
spa}tlal information regardmg the posm_on or size of the top%‘nown in Fig. 4, a X 2 x 2 cube of foreground voxels with op-
logical handles present in the volume since, from a topologic§site corners removed will produce two distinct connections
viewpoint, such information is wreleyant. For this reason, we afjsing D6 connectivity, implying a topological hole according to
alyze the topology of the object while also analyzing its geongyr algorithm. This is contrary to a marching cubes tessellation
etry. We form two weighted graphs, one for foreground voxel this object, which will not have a hole. Our algorithm exam-
and one for background voxels, that contain information aboles connected regions that have a voxel sharing an edge with a
the volume. Based on a conjecture described below, this allowsikel in another connected region to see if voxels in that region
us to determine if the foreground object is topologically equivare in the configuration shown in Fig. 4. If so, the two connec-
lent to a sphere by counting the number of cycles in the grapkisns are merged. This reduces the number of corrections made
The cycles also provide information about the size and locatitm the object, improving its fidelity to the initial classification

of handles or holes. [23].

1) Foreground Connectivity GraphWe create a foreground 2) Background Connectivity GraphThough cycles in the
connectivity graph that captures important information abotdreground connectivity graph represent the possible presence
the structure of the binary image foreground. We examine tbéa topological handle or hole, the foreground graph itself is
object along a selected cardinal axis, identifying the connectedt sufficient for testing the topology of the object. If the torus
components within each slice. Each in-slice connected commd+ig. 3 is rotated 90such that its hole is vertical relative to the
nent, which we call a node, corresponds to a vertex in the graghcing axis, also shown in the figure, then it will not generate

We next analyze how each of the nodes is connected to theycle in its foreground connectivity graph. Because of such
nodes in the slices above and below it. We define a connectidiscrepancies, we also form a background connectivity graph.
between two nodes as a contiguous collection of voxels in o@mce again, we find each of the connected background compo-
node that share a face with a contiguous collection of voxeients, which we describe as background nodes, in each slice
in a node in an adjacent slice. Each connection in the objecbisthe object. These are represented by vertices in the back-
represented by an edge in the graph. Importantly, two nodes ngaigund graph. Here, we use D18 connectivity rules to identify
be connected in more than one place. In such a case, they ti# connected components. This means that within a slice, con-
have multiple edges connecting their vertices in the foregroundcted components will share a face or edge. Connections be-
connectivity graph. Such an occurrence is the simplest formtefeen adjacent nodes and the strengths of these connections
a topological handle existing in the object. are then found, and represented in the background connectivity

X Euler characteristic;
1% number of vertices;
E number of edges;
F number of faces;
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Fig. 3. Analysis examples. (From left: Object, foreground graph, and background graph) (top) 2x & binary volume containing a torus, and its connectivity
graphs. Analysis is performed along thexis. The hole in the object appears as a cycle in the foreground graph. (bottom) The same object, rotated g0
connectivity graphs. The hole in the object now appears as a cycle in the background graph. The foreground appears as a single node. Analysisakopgrform

H‘P s ' Um
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Fig. 4. Special connectivity rule. This example showsa2x 2 configuration of voxels consisting of six foreground voxels such that two opposite corners
of the cube are background. Taking the intersection of the two slices shows the D6 connections between the two slices. The intersection in testsase sug
two connections between the slices and the presence of a topological handle. However, no such handle is present in a marching cubes tessellggoh of thi
Representing these two apparent connections as a single connection in the foreground connectivity graph makes our algorithm more apprepvitteter us
marching cubes algorithm.

graph as weighted edges. These connections are found by talBngAutomated Topological Editing of Volumetric Data
the intersection of pairs of connected components from adja-Low-level segmentation results will not typically exhibit
cent slices after dilation of one of these components withspherical topology. In this section, we describe methods by
cross operator. This identifies connections formed by compehich the topology of a volumetric object may be altered
nents sharing an edge, but not those that only share a corserthat its surface will be homeomorphic to a sphere. It is
An edge is added to the background graph for each connectenl conjecture that if an object does not have a topologically
component in this intersection, with the edge weight defined Ispherical surface, then its connectivity graphs will have cycles.
the component’s size. It should be noted that for some casesTimeis, our strategy for correcting an object’s topology is to
size of connection will be dependent on which node is dilatedter the object’'s membership set in such a way that it will
prior to taking the intersection; we intend to address this in fgenerate foreground and background connectivity graphs that
ture implementations of our method. Background connectivityave no cycles. We first identify a pair of desired graphs using
graphs are also shown in Fig. 3. Kruskal's algorithm [24] to produce two maximal spanning
3) Spherical Homeomorphism Conjecturédfe conjecture trees. Since the weighting of our graphs represents the strength
that if the foreground and background connectivity graphs fof connection between nodes in adjacent slices, the maximal
an object without interior cavities are both trees (graphs wipanning tree algorithm will remove the lightest possible
no cycles), then the object's surface is homeomorphic tosat of edges from the graphs, corresponding to the weakest
sphere. This forms the basis for our correction strategy. Thougbnnections, in order to create trees. The task of our editing
we have not proved our conjecture, it has been true for egmocedure is to break the links in the actual object that represent
simulated and real object we have analyzed. the edges deleted from the graphs.
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Fig. 5. Correcting object topology. We edit an object to remove a handle. (a) The original object and its foreground connectivity graph. (b) We subsamp
object in a slice adjacent to the connection we are breaking. The foreground connectivity graph is expanded. (c) We can then remove a node irdttigegraph an
object; this breaks the cycle in the graph and causes the object to have a genus of 0. (d) In this simple case, we could have simply removed a nodptirom the gr
and object.

1) In-Place Correction: It is important to recognize that have been part of the maximal spanning tree. Thussthexels
each edge connecting two nodes in the graphs correspondsan be removed without altering any other nodes in the object.
connections between voxels and not voxels themselves. Stiilthis test is not passed, we do the same test wittand slice
both nodes contain subsets of voxels that form the edge. If wer 2. A similar test is used for background voxels.
naively remove either set of voxels from the nodes, we mayOur third test is to simply remove the voxels that form a link
break links to other nodes in the object. This could result fnom either node and examine the object or background to see if
separating the object into multiple pieces. For this reason, wer correction caused it to become a disjoint set. If so, we undo
have devised three tests for sets of voxels before we alter thbie correction. Otherwise, we accept the correction and proceed
membership in the object. These tests are described belowdrthe next problem.
order of increasing computational complexity. A simple cor- 2) Subsampling MethodIn some cases, we may be unable
rection example appears as Fig. 5. When removing voxels framfind a suitable way of breaking a link in the tree by only
the foreground nodes, we are removing them from the objemmoving or adding voxels to the object. Instead, we can sub-
Conversely, when we remove voxels from the backgroursdmple the volume at the location of the topological defect.
nodes, we are adding them to the object. More specifically, we can insert a slice between the two slices

Ouir first test is based on the graph itself. Each edge to be vehere the link occurs; this slice will be a duplicate of either
moved connects two nodes that will remain in the graph aftslice. We have effectively cut one of the slices in half.
correction and are, therefore, part of the desired maximal spanSplitting the slice in two introduces duplicate nodes in the
ning tree. If either of these nodes is a leaf on the tree, i.e.,gfaph for the original slice. Assume we duplicate slicevith
it is only connected to one other node on the tree, then we cglite n’, and now the slices appear in the volume in the order
remove the voxels from this node and sever the link. The rén,»n’,n 4+ 1}. Given a nodeV, in n’, N, is linked only to the
maining edges in the graph will be unaffected. It may be thwde it duplicates in slice, sayN,, and the nodes in + 1 to
case that other voxels in this node are separated from the matlrich &V, was connected. We are free to remove the voxels that
object; however, other nodes are unaffected. It may also be fbem an undesired link betwee¥, and the nodes in slice+ 1.
case that removing voxels from the foreground or backgrourahy other voxels inV, will remain connected tav,, and, thus,
nodes will produce cycles in the opposite graph; however, thagy other connections betweéf and nodes in slice + 1 will
can be corrected in subsequent operations. In practice, we hamain connected to the object. A simple example is shown in
not observed situations where cycling between solutions occufsg. 5.

The second test we apply is to examine the connectivity inWe keep an index to these slices as being only half of their
the area of the two possible corrections. This is best explainedginal height so that we can compensate for this in tessellation
with an example. Assume we want to remove a set of foregrouod other procedures. Clearly, the in-place correction method
voxelsS; from a node in slice,, and theS; voxels form an un- is preferred as subsampling can greatly increase the size of
desired connection with the set of voxéls in slicen + 1. If  the volume and subsequent tessellations. However, having this
the neighbors of; in slicen — 1 are also foreground voxels, method as a last resort ensures that we can always generate an
then these voxels will remain connected after we remové&ithe object that produces appropriate graphs. In practice, we have
voxels. Furthermore, they will remain connected to the rest nbt encountered a brain volume that required the subsampling
the object because they would otherwise have been only caofrection method. The subsampling method is described in
nected toS;, and the edge formed betweéh and.S; would more detail in [25].
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Fig. 6. Axis dependence of corrections. The corrections applied to an object vary depending on the axis along which the volume is analyzed. (@ and (b) T
object from Fig. 3 is corrected by removing a single voxel. (c) and (d) The same object analyzed along a different axis is corrected by addingsthree voxel

C. Iterative Multiaxis Correction 11) Iterate steps 2—10 with an increasing threshold until no

The nature of the changes described in the previous section __ further corrections can be made. _ _
depends on the axis along which the object is analyzed. This ist2) Ifcycles still exist, conclude by inserting duplicate slices
shown in Fig. 6, where a topological handle is fixed by eitherre- ~ Where necessary and remove undesired linking voxels in
moving one voxel or adding three. To ensure that we make the ~ the duplicate slices.
smallest changes possible to the object, we iteratively apply the
corrections along each axis. A threshold is used, and only cor- . RESULTS
rections less than or equal to the threshold are performed. Thigve implemented the topological constraint algorithm in C++
multiaxis approach dramatically reduces the number of voxe{d successfully applied it to volumetric objects. We present the
that are added to or removed from the object membership ggfults of the algorithm on a small test object and demonstrate

[25], [23]. the graph formation and correction process. We then present the
] ) ] results of using the algorithm on several cerebral cortex masks
D. The Topological Constraint Algorithm generated from MR images of several subjects.

The topological constraint algorithm is summarized below. .
The algorithm assumes as input a single D6 connected objecfin Simple Test Objects

a single D18 background; i.e., the object has no interior back-Fig. 7 shows two renderings of a small hand-created object

ground cavities. composed of 65 connected voxels. The voxels are contained
1) Set the threshold value to one. within four slices of a 20« 20 x 6 volume. Computation of the
2) Starting with thez axis, compute a foreground connecEuler—Poincaré formula on the marching cubes [21] tessellation
tivity graphG = {N, E}. shows that the object has a genus of five. The handles or holes of

3) Compute a maximal spanning trée= {N, EY from the object are clearly visible; we see three holes aligned with the
G ={N, E}. The setk; = E — E represents the set of vertical axis and two aligned horizontally. The interslice con-

edges to be deleted from the tree. nectivity graphs for this object are also shown in Fig. 7. Each of
4) Find the set of edgeB; C E, that have weights less the three vertical holes are captured as cycles in the foreground
than or equal to the threshold. graph, while the two horizontal holes are captured in the back-

5) For each edge € E, where either node is connected tgground graph.
only one other node iift, remove the voxels thatformthe For illustrative purposes, we apply the algorithm along
link from the slice where the node is singly connecteda single axis only. The foreground pass identifies the three
6) For each edge remaining i, test the connectivity in foreground cycles, creates the desired maximal spanning tree,
the slices above and below to see if the linking voxelBnd removes three voxels to produce an object with genus 2.
can be removed from the node; if so, remove them. These graphs and the corrected object are shown in Fig. 8.
7) For each edge remaining if;, remove the linking The background analysis is then performed—two cycles are
voxels and test to see if the correction is acceptable.itfentified, a maximal spanning tree is created, and three voxels

not, restore the voxels to their previous state. are added to the object to break the cycles. These graphs and
8) Repeat steps 2—7 for the andy axes. the resulting object are shown in Fig. 9. This object has a
9) Repeat steps 2-8 for the background components in tienus of 0, as verified by the Euler—Poincaré formula. In this

object. case, all corrections were made using the in-place correction

10) Repeat steps 2-9 until no further changes can be magbgproach. The connectivity graphs of this object are two trees,
at this threshold. in accordance with our conjecture. A total of five voxels were
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Fig. 7. Test object. (a) and (b) Renderings of a simple object used to test the topological constraint algorithm. (c) Connectivity graph fordfof@groun
Connectivity graph for background.

changed to constrain the topology of this object. While thesleese defects since it will choose the smallest regions it can in
changes appear very significant to the shape of the objectwhich to make its corrections.
should be noted that the object’s structure is of the same scald) Preprocessing:We preprocessed six T1-weighted
as its topological defects. MR volumes for this study using a sequence of low-level
steps described in [26]. We first stripped skull and scalp
from the volume using a combination of edge-enhancing
anisotropic diffusion filtering, Marr—Hildreth edge detection,
The method described in this paper can be applied to arbitramyd mathematical morphology. We then compensated for
three-dimensional binary volumetric objects. Our specific appiimage nonuniformity using a parametric tissue intensity model
cation is to constrain an object representing the interior voluriteat adapts a tricubic B-spline gain field to match local tissue
of the cerebral cortex such that its tessellation is topologicalyoperties to the global properties of the image. Finally, the
equivalent to a sphere. This problem provides an excellent teekels within the brain volume were labeled as white matter,
for the algorithm, as segmentations based on low-level tissgieey matter, cerebrospinal fluid (CSF), and partial volume
classification typically produce brain surfaces with numerow®mbinations of these. The classification step used the same
tiny handles due to classification errors. The use of the topolggarametric model as the inhomogeneity compensation step, but
ical constraint algorithm may be justified by the small size ah this case the model was formulated into a Bayesian classifier

B. Human MR Data Sets
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Fig. 8. Foreground correction. (a) The maximal spanning tree identified by the algorithm. (b) Connectivity graph of the object after foregemiiwh c(ay
Rendering of the edited object.
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Fig. 9. Background correction. (a) The maximal spanning tree identified by the algorithm for background connectivity. (b) Connectivity grayiijet thiter
background correction. (c) The corrected object with genus 0.

with a Gibbs spatial prior model to encourage piecewidi&ve to the fine anatomical detail in the image. Thus, the initial
contiguous labeled regions. volume typically included the surfaces of the ventricles. To ac-
We used the output of the classification step to produce theunt for this, we searched for the lateral ventricles by analyzing
initial white matter volume. The largest connected componettie CSF voxels in the volume. If found, the ventricles were then
composed of voxels containing white matter was selected, andluded in the inner cerebral white matter volume; otherwise
additional processing was performed to compensate for certiey were filled manually. Hand editing was also required to
segmentation irregularities. Specifically, in the area of the subnsure that the complete subcortical nuclei structures were also
cortical nuclei, interior grey matter often joined with sulcal CSkcluded inside the initial white matter volume. It should be
as a result of the low resolution of the acquisition system relaeted that if structures such as the basal ganglia are left unfilled
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TABLE |
CHANGES MADE TO CORRECTTOPOLOGY. THE GENUS OFEACH OBJECTWAS REDUCED BY OUR ALGORITHM TO ZERO WITHOUT THE NEED FORSUBSAMPLING.
IN EACH CASE, THE NUMBER OF VOXELS CHANGED WAS VERY SMALL COMPARED TO THESIZE OF THE BRAIN VOLUME, AND FEW LARGE CHANGES WERE MADE

initial brain initial  final number of  voxels pct. largest number of
size (voxels) genus genus  changes  changed changed change changes > 10

1 411952 207 0 217 464 0.11% 38 5

2 218055 129 0 136 449 0.21% 54 8

3 641153 201 0 217 436 0.07% 40 5

4 444990 237 0 368 712 0.16% 41 6

5 648132 233 0 164 360 0.06% 35 4

6 455896 109 0 111 257 0.06% 37 3
TABLE I

Size AND NUMBER OF CHANGES MADE TO EACH WM V OLUME. MOST
CHANGES MADE ARE ONE OR TWO VOXELS IN SIZE; A FEW LARGE CHANGES
OF SIZE LARGER THAN 10 ARE REQUIRED FOREACH VOLUME

Number of changes made per size
volume | Total 1 2 3 4 5 6 7 8 9 10 >10
1 2171160 24 16 4 1 0 4 2 1 0 5
2 1367 95 16 6 4 4 2 0 0 1 O 8
3 217 | 156 28 12 4 4 2 2 0 3 1 5
4 368 267 57 18 10 5 3 0 1 0 1 6
5 1641119 23 10 3 2 2 0 0 1 O 4
6 111, 70 24 5 5 1 1 0 0 1 0 3 !

so that bridges in the white matter exist, these structures w
be severed or filled by the topology correction algorithm. W
cut the volume at the brain stem to remove the cerebellum. T
resulting volume was then processed with the topological cc
straint algorithm to force its tessellation to be homeomorphic
a sphere. '

2) Topological Correction ResultsiWe applied the topo-
logical constraint algorithm to six T1-weighted MR volume:
after preprocessing using the procedure described above.
processing was performed using the BrainSuite tool [27];
processing time for each volume was between 5 and 10 min@§ 10. Slice from a topology corrected image. White voxels are those
an Intel Pentium Ill Xeon 933-MHz CPU. It should be notedoxels common to the precorrected and corrected image. Black voxels have
that aspects of the implementation of our approach, such en changed by the algorithm to correct the topology. The changes made by

i ~ . thé algorithm tend to be only a few voxels per topological defect.
the frequent recalculation of the graphs, can be optimized,
providing for substantial decreases in computational cost.

Each white matter volume was tessellated after topologicalThe small nature of the changes made is highlighted by
correction and the genus was verified by the Euler—Poincaré féig. 10, which shows the corrections made to a single slice
mula. In every case, the method produced a final volume withiraone of the volumes. Fig. 11 shows renderings of marching
tessellation having an Euler characteristic of two, correspondiggbes tessellations of one of the volumes before and after
to a genus of zero and homeomorphism to a sphere. Importarggirection. The cortical surfaces are identical except in regions
the algorithm was able to correct all volumes without subsarwhere topological defects have been broken or filled.
pling and with very few changes to the membership set. To analyze the axis dependency of our corrections, we applied

Table | shows the initial genus, number of changes, atiie algorithm to each volume after transposingittaad: axes,
largest single change made to each volume. Further detaitgl they and > axes. ldeally, the set of voxels changed would
of the changes made are provided in Table I, which shows independent of orientation. In most cases, at least 70% of the
the number of changes made for each size. Fig. 12 showsoxels changed were independent of orientation. However, there
histogram of the fraction of changes made of each given sizegre volumes in which only 25% of the voxels changed were
averaged over the six volumes. Our algorithm changed less thiatiependent of orientation. This could be addressed in future
0.21% of the voxels in any volume, and 90% of the changasrk by combining the analysis of all three axes.
were made by altering three or fewer voxels. Most changesA more important problem with our approach is that each
made were less than ten voxels in size. The larger changesed# made to the object is restricted to changing voxels within
unlikely to closely follow the anatomical contours of the imaga single slice of data. Anatomical boundaries in the volume are
since they are restricted to be within a single plane. Howevent likely to line up along these boundaries, which means that
the algorithm can be run with a limit on the largest change maeds the size of the correction gets larger it is more likely to de-
to the volume. The larger changes can then be made manualliate from the anatomical boundary. This can result in notches
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Fig. 11. Topological constraint results. The top rendering shows a marching cubes tessellation of a white matter surface following a smoeiténsj&ircade
artifacts due to the binary nature of the data. Several topological defects are clearly visible in the image. The lower rendering shows the saaftervolume

application of the topological correction algorithm, after tessellation and smoothing by the same process. All topological handles have beseviited but
the global properties of the figure remain nearly identical. Inset are close-ups of corrected topological defects.

08 this would allow us to remove voxels forming a topological de-
o7 - fect that are less likely to be white matter.

IV. CONCLUSION

In this paper, we have presented a new method that analyzes

0.4 S and alters the topology of a binary volumetric object so that its

tessellation will be homeomorphic to a sphere. The method is

appropriate for forcing the topology of cerebral white matter

0z . volumes to be spherical. It operates on the voxel membership

- set of the volume, and makes minimal changes to force it to
H - have the topology of a sphere. The method has correctly altered
e .. ~IF1=  the topology of every volume tested.

z f ] This method provides a completely automated way to quickly
correct the topology of cortical volume segmentations. When
Fig. 12. Histogram of average fraction of changes made per size. Averaggged in combination with largely automated segmentation pro-
over the six brains in Table I. cedures, the burden on human operators to produce topologi-

cally correct cortical surface models is significantly reduced.

in the final surface, though the use of the multiaxis iterative appis increases the scale on which surface-based intersubject
proach significantly reduces this. In future work, we intend tBopuIation studies can realistically be performed.
explore approaches that will allow larger corrections to follow

more natural contours. One possible method would involve re-
moving only a portion of each defect during an iteration, where
the portion removed will be selected based on the intensity ofThe authors gratefully acknowledge the valuable contribu-
the MR data. For our cortical surface identification algorithntjons made by the reviewers of this paper.
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